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ABSTRACT
This paper uses the Model of Consciousness called Integrated Information Theory (IIT) developed
by Giulio Tononi and his team and generalized Mathematical Model of IIT and Quantum IIT

developed by Johannes Kleiner and Sean Tull, to develop a model of consciousness for Kerr black
hole. In which I will step by step de�ne System, State, Mechanism, Space of Proto-experience,

Division & Cuts and Repertoire for Kerr Black Hole in terms of it's mass and angular momentum
per unit mass using Information Geometry to be precise Ruppeiner geometry, where probability
density is de�ned in terms of Ruppeiner metric, which is negative of hessianof entropy of Kerr
black hole. In the section of black hole thermodynamics we will also discuss how entropy is the
function of areaof event horizon of black hole:. Prior to that we will discuss what is event horizon
and how it's radius is a function of it's mass andangular momentum per unit area. This paper can
serve a pioneering work on understanding and developing a relationshipbetween cosmology and
Consciousness, and as it is suggested that universe could itself be a black hole: this paper may help

to develop a model for consciousness of cosmos itself.
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1 Kerr Black Hole

Depending on the parameters M and a, Kerr spacetimes are divided into three categories: slowly
rotating Kerr spacetime (�slow Kerr�) for 0<a2<m2, extreme Kerr spacetime for a 2 = M2 , and
rapidly rotating Kerr spacetime (�fast Kerr�) for m2<a2_: In this paper, we are concerned with
slow Kerr spacetimes only, since most physically interesting phenomena manifest only for this type
of spacetime.

Similar to the Schwarzschild case, the points where the Kerr metric fails provide important physical
insights. Notice that the Kerr metric does not fail at r=0, so we let r run over the whole real
line.It is topologically convenient to think of the coordinates r and t as cartesian coordinates over
R2 together with spherical coordinates � and ' on S2 ; hence the Kerr spacetime is modeled as
the product manifold R2 � S2 . There are three subsets of the space at which the metric fails:

1. On the horizons: ∆ = 0. For slow Kerr, this horizon equation has two distinct solutions
r�=m� m2 ¡ a2

p
. De�ne the outer and inner horizons H+ and H¡ to be the set of points

where r=r+ and r=r¡, respectively.

2. On the ring singularity �: � 2=0. This terminology comes from the fact that � 2=0 if and
only if both r=0 and cos �=0. Thus, � is the cartesian product of a time axis R1 (t) and a
circle S1 , namely, the equatorial circle �=�/2 in S2 at radius r=0. Informally, the circle
itself is sometimes called the ring singularity, with �=S1�R1 its history through time.
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3. On the axis A: sin �=0. In the sphere S2, sin �=0 picks out the north pole p(�=0) and the
south pole ¡p(�=�). Hence in the Kerr spacetime R2 � S2 , the solution set to the axis
equation is

[R 2(r; t)�fpg][ [R 2 (r; t)�f¡pg]

2 Black hole thermodynamics

Axiom 2.1. SBH is the entropy and A is the surface area of event horizon. Then

SBH/A

Axiom 2.2. The event horizon is characterized by a quantity, k, known as the surface gravity.
The surface gravity is uniformly constant over the event horizon. The black hole's surface gravity
seemingly has temperature-like properties in that it has absolute zero, arbitrary scale and is de�ned
in equilibrium. We can thus suspect that the black hole's temperature, TBH is proportional to its
surface

TBH/�

Now the great contribution of Hawking to black hole physics�despite all the surprises and initial
incredulity�is that he convincingly and systematically derived the proportionality constant

SBH=
c3�kBA
2_Gh

TBH=
h�

4�2ckB

Now setting up the parameters c=G= kB=1, h=2�=2 (kB)
¡1

we get,

SBH=
A
4�

and TBH=
�
2�

2.1 Kerr black hole thermodynamics and information geometry

A=4�(r+)
2 and SBH=

A
4�

)SBH=(r+)
2

SBH=m
2

�
1+ 1¡

�
a
m

�2r �2
=
¡
m+ m2 ¡ a2

p �2
2.1.1 Thermodynamic geometry

De�nition 2.1. The Ruppeiner metric is de�ned as the negative of the Hessian of the entropy
function with respect to the thermodynamic system's mechanically conserved quantities:

g ij
R =¡@i@jS(x)
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Where i; j 2fM;ag in the case of Kerr blackholes

let Ω be the number of (equiprobable) microstates consistent with a given macroscopic state.
Boltzmann argued that the macroscopic entropy is given by

S=kB lnΩ

Einstein rewrote this equation as

P / e S/kB

where p is the probability decity that the given macrostate will be realized. We can Taylor expand
the entropy around an equilibrium state, taking into account that the entropy has a maximum
there, and introduce the Hessian matrix.

g ij
R (x)=¡@i@jS(x)

Here x stands for the n extensive variables shifted so that they take the value zero at equilibrium.
The matrix is positive de�nite if the entropy is concave. If we normalize the resulting probability
distribution (and set k B=1) we obtain

P (x)=
det(g R)

q
(2�)

n

2

e
¡1

2

P
ij

g ij
Rxixj

In the case kerr blace holes n=2, and i; j 2fM;ag

2.1.2 Flatness theorem

It is observable that there are seemingly geometrical patterns of thermodynamic geometries for
black hole families. It is then natural to investigate why some thermodynamic geometries are �at,
whilst the others are not. In information geometry we can de�ne a metric in some preferred a�ne
coordinate system by

gij
I =@i@j 

where  =¡S; entropy.

Now, the main question is when is an information metric �at?

Theorem 2.1. Flatness theorem : The information metric de�ned through

g ij
I (x; y)= @i@j (x; y) and  (x; y)=¡xa_f(xb_y)

with b=¡1 and a=/ 1, x and y are coordinates on the state space and f is some smooth function, is
�at.

Proof.

We change coordinates on state space (x; y)!( ; �)

where  =xa_f(xb_y), as metioned above, and �=xb_y and taking b=¡1

we get we get a �at manifold. �

By �atness theorem themodynamic geometry of Kerr black hole is �at.
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3 The Mathematical Structure Of IIT 3.0

Integrated Information Theory (IIT), developed by Giulio Tononi and collaborators, has emerged
as one of the leading scienti�c theories of consciousness. The more generel mathematical model
of IIT (3.0 the latest version) was developed by Johannes Kleiner (Munich Center for Mathemat-
ical Philosophy) and Sean Tull (University of Cambridge), in the rest of the paper we will review
it and apply it to kerr black hole, to know the degree of cousiouness in them which may also give
us an idea if universe is consiouss or not.

3.1 Systems

De�nition 3.1. A system class (a collection of sets, or more generaly mathematical objects) Sys
is a class each of whose elements S, called systems, come with the following data:

1. a set St(S) of states;

2. for every s2St(S), a set Subs(S)�Sys of subsystems and for each M2Subs(S) an induced
state sjM 2 St(M)

3. a set DS of decompositions, with a given trivial decomposition 12 DS;

4. for each z 2 DS a corresponding cut system Sz2Sys and for each state s2St(S) a corres-
ponding cut state sz 2St(Sz).

5. Sys contains a distinguished empty system, denoted I,and that I2Sub(S) for all S.

Axiom 3.1. Subs(S)'Subs0(S) for all s; s02St(S) and Subs(S)'Subsz (Sz) for all z2DS. Here
' indicates bijections.

3.2 Experience

De�nition 3.2. An experience space is a set E with:

1. an intensity function jj:jj:E!R+

2. a distance function d:E�E!R+

3. a scalar multiplication R+ �E!E, denoted (r; e)!r �e, satisfying

I. jjr �e jj=r �jje jj

II. r �(s �e)=(rs) �e

III. 1 �e=e

for all e 2 E and r; s2R+

Note 3.1. the distance function does not necessarily have to satisfy the axioms of a metric. While
this and further natural axioms such as d(r �e; r �f)=r �d(e; f) might hold, they are not necessary
for the IIT algorithm

Example 3.1. Any metric space (X; d) may be extended to an experience space X�:=X�R+ in
various ways. E.g., one can de�ne jj(x; r)jj=r; r �(x; s)=(x; rs) and de�ne the distance as
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d�((x; r); (y; s)) = (r¡ s) d(x; y)

This is the de�nition used in classical IIT

De�nition 3.3.

1. For experience spaces E and F, we de�ne the product to be the space E�F with

� distance

d((e; f); (e0; f 0))= d(e; e0)+ d(f ; f 0)

� intensity,

jj(e; f)jj=max fjje jj; jjf jjg

� and scalar multiplication

r �(e; f)=(r �e; r �f)

2. Generalization of the product of expirence space is
Y
i

_Ei where i belongs to a ring or �eld

or subset of them e.g. set of integers with:

� distance

d((ei)i; (fi)i)=
X
i

_d(ei; fi)

� intensity,

jj(ei)ijj=max fjjei jjgi

� scalar product

r(ei)i=(rei)i

3.3 Repertoires

De�nition 3.4. Let D denote any set with a distinguished element 1, for example the set D S of
decompositions of a system S, where the distinguished element is the trivial decomposition 12DS.
Let e be an element of an experience space E. Then a decomposition of e over D is a mapping
e�:D!E with e�(1)=e.

For subsystems M;P 2 Subs(S), de�ne DM;P : =DM �DP . This set describes the decomposition
of both subsystems simultaneously. It has a distinguished element 1MP=(1M ; 1P ).

De�nition 3.5. A cause-e�ect repertoire at S is given by a choice of experience space PE(S),
called the space of proto-experiences, and for each s2St(S) and M;P 2Subs(S), a pair of elements
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causs(M;P ); e�s(M;P )2PE(S)

and for each of them a decomposition over DM;P

So, to futher elobrate cause-e�ect repertoire at S is experience space PE(S) with

� an intensity function jj:jj:PE(S)!R+

� a distance function d:PE(S)�PE(S)!R+

� a scalar multiplication R+�PE(S)!PE(S), denoted (r; causs(M;P ))!r �causs(M;P ), sat-
isfying,

I. jjr � causs(M;P )jj=r �jj causs(M;P ) jj

II. r �(s � causs(M;P ))=(rs)� causs(M;P )

III. 1 � causs(M;P )= causs(M;P )

for all causs(M;P ) 2 PE(S) and r; s2R+ similarly for e�s(M;P ) .

Decoposition of causs(M;P ) over DM;P is the mapping causs(M; P ):DM;P!PE(S), such that
causs(M;P )(1MP)= causs(M;P ), similarly for e�s(M;P ):

De�nition 3.6. 7. A cause-e�ect structure is a speci�cation of a cause-e�ect repertoire for every
S2Sys such that.

PE(S)=PE(S z ) for all z 2Ds

The names `cause' and `e�ect' highlight that the de�nitions of causs(M; P ) and e�s(M; P ) in
classical and quantum IIT describe the causal dynamics of the system. More precisely, they are
intended to capture the manner in which the `current' state s of the system, when restricted toM ,
constrains the `previous' or `next' state of P , respectively

3.4 Integration

I have now introduced all of the data required to de�ne an IIT; namely, a system class along
with a cause-e�ect structure. From this, we will give an algorithm aiming to specify the conscious
experience of a system. Before proceeding to do so, we introduce a conceptual short-cut which
allows the algorithm to be stated in a concise form. This captures the core ingredient of an IIT,
namely the computation of how integrated an entity is.

De�nition 3.7. Let E be an experience space and e an element with a decomposition over some
set D. The integration level of e relative to this decomposition is

�(e): = min
1=/ z2D

d(e; e�(z))

De�nition 3.8. The integration scaling of e is then the element of E de�ned by

�(e): =�(e) � ê

where �e denotes the normalization of e, de�ned as
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ê: =fe if kek=0

1

kek �e if kek=/ 0
�

Finally, the integration scaling of a pair e1; e2 of such elements is the pair.

�(e1; e2) : = (�(e1) � e1̂; �(e2) � e2̂)

where � : =min (�(e1) ; �(e2)) is the minimum of their integration levels.

De�nition 3.9. Let S be a system in a state s2St(S) and assume that for every M2Subs(S) an
element eM of some experience space EM with a decomposition over some DM is given. We call
(eM)M2Subs(S) a collection of decomposable elements, and denote it as (eM)M.

De�nition 3.10. The core of the collection (eM)M is the subsystem C2 Sub(S) for which �(eC )
is maximal.�The core integration scaling of the collection is �(eC ).

i.e. �(eC )=max
�
�(eM): = min

1=/ z2D
d(eM ; e� (M z)):M 2 Sub(S)

�
and

De�nition 3.11. The core integration scaling of a pair of collections (eM ; fM )M is �(eC ; fD),
where C, D are the cores of (eM )M and (fM )M , respectively.

3.5 Constructions - Mechanism Level

Let S2Sys be a physical system whose experience in a state s2St(S) is to be determined. The �rst
level of the algorithm involves �xing some subsystem M 2 Subs(S), referred to as a `mechanism',
and associating to it an object called its `concept ' which belongs to the concept space.

C(S): =PE(S)�PE(S)

For every choice of P2Subs(S), called a `purview ', the repertoire values causs(M;P ) and e�s(M;P )
are elements of PE(S) with given decompositions over DM;P . Fixing M , they form collection
of decomposable elements

causs(M): =(causs(M;P ))P2Sub(S)

e�s(M): =(e�s(M;P ))P2Sub(S)

De�nition 3.12. The concept of M, CS;s(M) is then de�ned as the core integration scaling of
this pair of collections,

CS;s(M)= �(causs(M;P c); e�s(M;P e))�

where Q (andR) are the core cause (and e�ect) perviews de�ned as follows.

P c2fP :max f�(causs(M;P )); P 2 Sub(S)gg

similarly for P e, where

�(causs(M;P )) := min
1=/ z2DM;P

_d(causs(M;P ); causs(M;P )(z))

Also,

�
�
causs(M;P c); e�s(M;P e)

�
=
�
�(causs(M;P c))_caussd (M;P c); �(e�s(M;P e))_e�sc (M;P e)

�
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and where caussd (M;P c) is normalisation of causs(M; Q) and similarly for e�sc (M;P e)

It is an element of C(S). Unravelling our de�nitions, the concept thus consists of the values of
the cause and e�ect repertoires at their respective `core' purviews P c , P e , i.e. those which make
them `most integrated'. These values caus(M;P c ) and e�(M;P e ) are then each rescaled to have
intensity given by the minima of their two integration levels.

3.6 Constructions - System Level

De�nition 3.13. all concepts of a system are collected to form its Q-shape, de�ned as

Qs(S): =(CS;s(M))M2Subs(S)

This is an element of the space

E(S)=C(S) n(S)

where n(S): = jSubs(S)j, the cardinality of Subs(S),which is �nite and independent of the state s
according to our assumptions..

Note 3.2. We can also de�ne a Q-shape for any cut of S. Let z2DS be a decomposition, Sz the
corresponding cut system and s z be the corresponding cut state. We de�ne

Qs(S
z ): =(CSz;sz (M))M2Subsz(Sz)

Because

PE(S)=PE(S z ) for all z 2Ds,

and since the number of subsystems remains the same when cutting, Qs(S z ) is also an element
of E(S). This gives a map

Q� S;s : DS!E(S)

z!Qs(Sz)

which is a decomposition of Qs(S) over DS.

De�nition 3.14. Considering this map for every subsystem of S gives a collection of decomposi-
tions de�ned as:

Q(S; s) := (Q�M;sjM)M2Subs(S)

This is the system level-object of relevance and is what specifies the experience of a system
according to IIT.

De�nition 3.15. The actual experience of the system S in the state s2St(S) is

E(S; s): =Core integration scaling ofQ(S; s)

i.e.
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E(S; s) = �(Q� C;sjC) =�(Q
�
C;sjC )Q

�̂
C;sjC

where C is,

C 2

(
K: �(Q�K;sjK )=max

�
�(Q�M;sjM ): = min

1=/ z2DM

d(Q�M;sjM ;Q
�
Mz;szjMz):M 2Subs(S)

�)

and Q�̂ C;sjC is normalised Q� C;sjC.

The de�nition implies that E(S;s)2E(M), whereM2Subs(S) is the core of the collectionQ(S;s),
called the major complex. It describes which part of the system S is actually conscious. In most
cases there will be a natural embedding E(M)!E(S) for a subsystem M of S, allowing us to
view E(S; s) as an element of E(S) itself. Assuming this embedding to exist allows us to de�ne
an Integrated Information Theory concisely in the next section.

3.7 Integrated Information Theories

De�nition 3.16. An Integrated Information Theory is determined as follows. The data of the
theory is a system class Sys along with a cause-e�ect structure. The theory then gives a mapping

Sys!!!!!!!!!!!!!!
E

Exp

into the class Exp of all experience spaces, sending each system S to its space of experiences E(S)
de�ned as,

E(S)=C(S) n(S)

and a mapping

St(S)!E(S)

s!E(S; s)

which determines the experience of the system when in a state s, de�ned above. The quantity of
the system's experience is given by

�(S; s)= kE(S; s)k

and the quality of the system's experience is given by the normalized experience E(S;s). The experi-
ence is located in the core of the collection Q(S;s), called major complex, which is a subsystem of S.

4 Quantum IIT and Kerr Black Hole

In this section we will try use the framework of Quantum IIT and it apply on black hole to develop
a model for consiouness of black holes.

4.1 Systems for Kerr Black Hole

1. We �rst describe the system class underlying classical IIT. Physical systems S are considered
to be built up of several components H1; :::;Hn, called elements

In case of Kerr black hole elements areHm;Ha�R where m reperests mass and a represents
angular momentum per unit mass.
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2. Each element Hi comes with a state space S, i.e. St(S) de�ned as.

St(S)=S(Hs)

where:

I. Hs=�
n

i=1


n

i=1
H

i

In case of Kerr black hole:

HS = �
i2fm;ag



i2fm;ag

Hi,

where Hm;Ha�R such that Hm_
S
Ha=H :=R and Hm_

T
Ha=?

II. S(Hs )�L(Hs ) describes the positive semide�nite Hermitian operators of unit trace
on Hs , aka density matrices

In case of Kerr black hole elements :

S(HS ) = fP~:HS!R0
+ j tr(P ) =1 g

also

P (m; a)=
det(g ijR)i;j2fm;ag

q
2�

e
¡
X

i;j2fm;ag
g ij
Rxixj

for all m
 a2 

i2fm;ag

Hi

and let ':Hm�Ha!HS using universal property of algebra P =P~�' for the sake of
simlicity we will be using P instead of P~, it wouldn't make much di�erence.. Hence
we would beconsidering S(HS )= fP g

where xm: =m, xa: =a and (g ijR)i;j2fm;ag is Ruppeiner metric mesitioned is section
5.1.1 Thermodynamic geometry.

III. we de�ne trace as, this has been done taking into considration that P ; Q2S(HS)

before de�ning trace we will make some co-ordenate tranformations, in the following
manner:

Let f : (0;m)!R, be a bijection such that f~(0)=¡1 and f~(m)=1, f~ is dmooth
fuction and f~0(a)> 0, for all a so that f would be strictly incrising function and
max ff~(a)g= f~(m) and min ff~(a)g= f~(0). where f is restriction of f~ over (0;m).

example of such a f is

f(a)= ln(a(m¡ a)¡1)

and let hbe f¡1 in our example

a=h(x)=
m

e¡x+1
and h0(x) =

me¡x

(e¡x+1)2
for all y 2R

Let u: (a;1)!R, be a bijection such that u~(a)=¡1 and u~(1) =1, u~ is smooth
fuction and u~0(a)> 0, for all a so that u~ would be strictly incrising function and
max fu~(a)g=u~(m) and min fu~(a)g=u~(0). where u is restriction of u~ over (0;m).

example of such a u is

u(a)= ln(m(m¡ a))
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and let vbe u¡1 in our example.

m= v(x)=
a+ a2+4_ey

p
2

and v 0(x)= ey(a2+4_ey)¡
1

2 for all y 2R

taking a=�(z; y); m= �(z; y). And in perticular example of ours using above four
equations and taking x+ y= z would lead to

a=�(z; y) :=
ez

ey+ ez
p for all z 2R, y 2R

m= �(z; y) := ey+ ez
p

for all z 2R, y 2R

a) traP (m)=

Z
0

m

P (m; a) da,

which leads to:

traP =
Z
R

P (m;h(x))h0(x) dx

b) trmP (a)=

Z
a

1
P (m; a) dm

which leads to:

traP (a)=

Z
R

P (v(y); a)v 0(y) dy

c) tra (P 
Q) (a)=
Z
0

m

P (m; a)Q (m; a)da, similarly with m

d) tr;P (a;m)=P (a;m)

e) trSP =

Z
Hm�Ha

P (a; m)dadm=

Z
R

Z
R

P (�; �)_det(J)_dxdy = 1 where J is

jacobean

3. The time evolution of the system is again given by a time evolution operator, which here is
assumed to be a trace preserving completely positive map

T : L(HS )! L(HS )

i.e.

T 2 fF :L(HS)!L(HS)jtr(F(P ))=tr(P )= 1g

and if P is positive de�nate the T (P ) is also positive de�nate.

In case of Kerr black hole:

T (P )(a;m) is e
¡� d

dt(P (a;m))=P (a� ;m�)

where � is time lapsed and d

dt
is derivative with respect to time given mass and aungular

moment per unit time are fuction of time.

m� is mass at time � , similarly a� is the anuglar momentum per unit mass at time � .
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4. We also d�ne S := f;;m; a; Sg and Sub(S)�S

4.2 Subsystems for Kerr Black Hole

1. Subsystems are again de�ned to consist of subsets M of the elements of the system, with
corresponding Hilbert space

HM = �
i2M


i2M

H
i

In case of kerr black hole Subsystem:

HM 2f;;Hm;Ha;HSg

2. The time-evolution TM :L(HM )!L(HM ) is de�ned as

TM (P )=trM? (T (trM? (P )�P ))

we de�ne,

TM (P )(eM ; eM?): =trM? (T (trM? (P )(eM)P (���; eM?)))

this implies,

(TM (P )(eM ; eM?))(eM): =trM? (T (trM? (P )(eM)P (eM ; eM?)))

where M;M?2S: =f;; a;m; Sg and eM 2fM g for all M 2S also M?=SnM

In case of kerr black hole

Case I M =m i.e. M?= a

(Tm (P )(m; a) )(m) = tra
�
e
¡� d

dt(tra (P ) (m)P (m; a))
�

let, m� is mass at time � , similarly a� is the anuglar momentum per unit mass at time
� . cosidering tra (P ) (m)P (m; a)) as a single funtion of a andm. Also, using the equation
mentioned in section 7.1.3, we get:

(Tm (P )(m; a) )(m)= tra ((tra (P ) (m�)P (m� ; a�)))

Since, m�� are independet of a

(Tm (P )(m; a) )(m)= ((tra (P ) (m�) )tra (P (m� ; a�)))

or

(Tm (P )(m; a) )(m) = ((tra (P ) (m�) )tra¡� (P (m� ; a)))

Similarly,

(Ta (P )(a;m) )(a)= ((trm (P ) (a�) )trm (P (a� ;m�)))

In general we can say that:

(TM (P )(eM ; eM?))(f): =trM? (trM? (P )(eM�)P (f�; eM�
?))
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where eM� is the evolution of eM at time � similary with eM�
? and f

�
where eM 2M ,

eM�
?2M? and f

�
2S.

4.3 Decompositions and Cuts

Decompositions are also de�ned via partitions z=(D;D?)2DS of the set of elements N into two
disjoint subsets D and D? whose union is N . For any such decomposition, the cut system S (D;D?)

is de�ned to have the same set of states but time evolution

T (D;D?)(P )=T
�
trD? (P )�

1
dim(HD? )

1HD?

�
Which implies,

T (D;D?)(P ) (eD; eD?) =
1

dim(HD? )

�
e
¡� d

dt(trD? (P )(eD) 1HD?(eD?))
�

Which implies,

T (D;D?)(P ) (eD; eD?)=
1

dim(HD? )
(trD? (P )(eD�) )eD�

?

So, in the case of kerr black hole,D;D?2f;;m; a; Sg and eD=�

example D=m i.e. D?= a

T (m;a)(P ) (m; a)=
1

dim(Ha )
(tra (P )(m�) )a�

4.4 Proto-Experiences for Kerr Black Hole

De�nition 4.1. For any P ; Q2S(HS ), the trace distance de�ned a

d(P ; Q)=
1
2
trS (P¡Q)2

p
=
1
2
trS jP¡Qj

PE(S): =S(HS )

where S(HS): =S(HS)�R+

� an intensity function jj:jj:S(HS)!R+

jj(P ; r) jj=r for all (P ; r)2S(HS)

� a distance function d�:S(HS)�S(HS)!R+

d((P ; r); (Q; s))= jr¡ sj d(p; q) for all (p; r)2S(HS)

� a scalar multiplication S(HS)!S(HS), denoted (r; P�)!r �P�, satisfying r �(P ; s)=(P ; rs)

I. jjr �P� jj=r �jjP� jj

II. r �(s �P�)=(rs)�P�

III. 1 �P�=P�

for all P� = (P ; s) 2 S(HS) and r; s2R+

13



Note 4.1. in the case of Kerr black holes for each (P ; r) 2 S(HS), following condition is
imposed on r as to make evey eqally probale event have same intesity, also this will ensure that
the distance between two equally probable states is zero.

r 2fnJP (m; a)K�: JP (m; a)K= fP (�; �):P (�; �)=P (m; a)gg

where nJP (m; a)K is cardinality or dimeaion of JP (m; a)K and � some constant.

4.5 Repertoires for Kerr black Hole

Let a system S in state P 2 St(S) be given. we utilize maps caus0 s and e�0 s which here map
subsystems M and N to St(N). They are de�ned

e�P
0
(M;N)=trN? T

�
trM? (P )� 1

dim(HM? )
1HM?

�

causP
0
(M;N)=trN? T 6

�
trM? (P )� 1

dim(HM? )
1HM?

�
T 6 is hermitian adjoint of T .

In case of kerr blackhole T 6�e¡�
d

dt, so that T 6T = identity

Also, In case of kerr blackhole M;N 2f;;m; a; Sg and using the fact that

T
�
trM? (P )� 1

dim(HM? )
1HM?

�
=T (M;M?)(P )

we get

e�P
0
(M;N)(eM ; eM?)=

1
dim(HM? )

trN?( (trM? (P )(eM�) )eM�
?)

similary

causP
0
(M;N)(eM ; eM?)=

1
dim(HM? )

trN?( (trM? (P )(eM¡�) )eM¡�? )

e�P
0
(;; N) (eS)=

1
dim(HS )

trN?( (trS (P ) )( eS�))=
1

dim(HS )
trN?( eS�)

since, trS (P )= 1

Similarly,

causP
0
(;; N)(eS)=

1
dim(HS )

trN?( eS¡�)

e�P (M;N)(eM ; eM
? )( e

S�
) =

1
dim(HM? )dim(HS )

trN?( (trM? (P )(eM�) )eM�
?)trN?( eS�)

similarly,

causP (M;N)(eM ; eM
? )( e

S�
)=

1
dim(HM? )dim(HS )

trN?( (trM? (P )(eM¡�? ) )eM¡�? )trN?( eS¡�)

De�nition 4.2.

1. e�P(M;N)(zM ; zN) := e�P0 (Mz; Nz)
 e�P0 (Mz?;; Nz?�)
 e�p0(;; N?)

where Mz_
S
Mz?;=M and Mz_

T
Mz?;= ; similarly for N, hence Mz?;=Mz

?
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Hence,

I. e�P0 (Mz ; Nz)(eMz
; eMz

?)=
1

dim(HMz
? )

trNz?( (trMz
? (P )(eMz�

) )eMz�
? )

II. e�P0 (Mz?;; Nz?�)(eMz
?; eMz

) =
1

dim(HMz
)
trNz

� �
trMz

(P )
¡
eMz�

?
� �
eMz�

�
III. e�P0 (;; N?)(eS)=

1
dim(HS )

trN( eS�)

since each of the above three quatities are numbers we get

1
dim(HMz

?
HMz

HS )

trNz?( (trMz
? (P )(eMz�

) )eMz�
?)trNz

� �
trMz

(P )
¡
eMz�

?
� �
eMz�

�
trN( eS�)

2. similarly; causP(M;N)(zM ; zN) := causP0 (Mz ; Nz)
 causP0 (Mz?;; Nz?�)
 causp0 (;; N?)

1
dim(HMz

?
HMz

HS )

trNz?
�
(trMz

? (P )(eMz¡�
))eMz¡�

?

�
trNz

��
trMz

(P )
¡
eMz¡�

?
� �
eMz¡�

�
trN(eS¡�)

4.6 Constructions - Mechanism Level

We know that concept space, C(S) :=PE(S)�PE(S), and we also know

causP(M) := (causP(M;N))N2Sub(S)

e�P(M) := (e�P(M;N))N2Sub(S)

De�nition 4.3. The concept of M, CS;P(M) is then de�ned as the core integration of pair of
collection:

CS;P(M)= �(causP(M;N c); e�P(M;Ne))

where N c(and N e) are the core cause (and e�ect) perviews de�ned as follows:

N c2fN :max f�(e�P(M;N)); N 2Sub(S)gg

similarily for Ne, where

�(e�P(M;N)) := min
1=/ z2DM;N

_d(e�P(M;N); e�P(M;N)(z))

And we know that,

d(causP(M;N); causP(M;N)(z))=
1
2
_trS jcausP(M;N)¡ causP(M;N)(z)j

Similarly we can cunctruct system level model which would be more completed and from the we
can eveluate � for the black hole and get degree of consiounesss.

5 Appendix: Geometry Of The Kerr Space Time

De�nition 5.1. Boyer-Lindquist coordinates

x0= t, x1= r2+ a2
p

_sin � cos �, x2= r2+ a2
p

_sin � sin �, x3= r cos �
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Note 5.1. let �m� is mass and �a� is angular monentum per unit mass of black holw.

De�nition 5.2.

1. �2= r2+ a2_cos2 �

2. ∆=r 2+a 2¡2mr,

De�nition 5.3. metric tensor of Kerr Space Time

1. gtt=¡1+2mr/�2=¡1+2
mr

r2+ a2cos2 �

2. grr= � 2/∆= r2+ a2cos2 �
r 2 +a 2¡2mr

3. g��= � 2=r2+ a2_cos2 �

4. g��=
�
r 2 +a 2+

�
2mra2 sin2 �

� 2

��
sin2 �=

�
r 2 +a 2+

�
2mra2 sin2 �
r2+ a2cos2 �

��
sin2 �

5. g�t= gt�=
¡2mra sin2 �

� 2
=
¡2mr a sin2 �
r2+ a2cos2 �

6. gij=0 for all i=/ j and i; j 2/ ft; �g

Note 5.2.

1. Kerr space time is Minkoski space-time if m=0= a

2. Kerr space time is Schwarzschild space-time if a=0
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