The alternate interpretation of the Quantum theory utilizing indefinite metric

Masahito Morimoto

(Dated: 9 September 2021)



In this paper, we propose an alternate interpretation of the quantum theory using
objective physical reality that does not depend on the conventional probability inter-
pretation.

As typical physical phenomena for the probability interpretation, we consider the
single-photon interference, single-electron interference, and EPR correlation experi-
ments using photon polarization. For the calculation using the alternate interpreta-
tion, the minus sign derived from the covariant quantization of Maxwell’s equations,
which is associated with the scalar potential of time axis component of four-vector,
is taken as it is as an inevitable request from the theory. We show that both conven-
tional and alternate interpretation derive the identical calculation results for these
single photon, single electron interference, and EPR correlation.

These alternate calculation processes describe that there is the scalar potential in
whole space-time and when there is some geometrical arrangement in the space, the
scalar potential forms the oscillatory field of the potential according to the arrange-
ment. [t reveals the objective physical reality that the single-photon, single-electron
interference, and EPR correlation are generated by the movement of the photons and
electrons in the oscillatory field with interference.

In addition, we show that the oscillatory field formation of the scalar potential
depending on the geometrical arrangement causes energy fluctuation in the space,
which enables removal of infinite zero-point energy and causes spontaneous sym-
metry breaking and Casimir effect. By recognizing the electromagnetic field as an
unitary U(1) gauge field and generalizing it to a special unitary SU(2), we also show
the uncharged particle, e.g. neutron, interferences are generated by the geometrical
arrangement of the SU(2) gauge field. Furthermore, we discuss the origin of the scalar
potential by distinguishing the space where the substance exists and the vacuum.

Finally, by introducing the extended Lorentz gauge, we propose the alternate so-
lution without physical state and subsidiary condition for the contradiction between
Lorentz gauge as an operator equation and the commutation relation in the covariant
canonical quantization of Maxwell’s equations with the conventional Lorentz gauge.

This paper contains the compilation of published author’s papers'? in addition
to featured discussions such as the physical reality, uncharged particle interference

and alternate proposal for the contradiction between Lorentz gauge as an operator



equation and commutation relation?.
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I. INTRODUCTION

The standard quantum theory has been constructed based on probability interpretation.
An arbitrary state of a microscopic physical system such as an atom or elementary particle
is represented by a state vector equate with a vector in Hilbert space. An expected value of
a physical quantity is obtained from the eigenvalue equation of an operator representing a
physical quantity. That is the outline of the calculation technique of the standard quantum
theory based on probability interpretation.

According to the idea of equating this physical state with a vector in Hilbert space, the
inner product of the vectors is interpreted as representing the probability that the state of
the system exists in the space-time. Calculations using this basic concept are in agreement
with experimental results. Without this concept, single photon and electron interference are
difficult to explain. In addition, an entangled state exhibiting long-range correlation that
seem to contradict relativity has been discussed by probability interpretation.

However, as long as follow this concept, it is difficult to solve the paradoxes associate
with a wave packet reduction typified by ”Schrodinger’s cat” and ”Einstein, Podolsky and
Rosen (EPR)”.%5

To interpret quantum theory without these paradoxes, de Broglie and Bohm proposed
the so-called "hidden variable” theory.>” However it is considered "hidden variable” has
been rejected by violation of Bell’s inequality. The rejection of "hidden variables” due to
the violation of Bell’s inequality is inconsistent with relativity that relies on the locality of

physical laws.

Although the improvement has not been completed so far, some researchers have been

trying to improve the quantum theory based on probability interpretation to fit relativity.® 2

Various discussions and experiments have been conducted associate with the correctness
of the basic concept of quantum theory that requires description of physical phenomena
beyond relativity and common sense. For examples, quantum mechanical superpositions
by some experiments have been reviewed.!® The atom interference by using Bose-Einstein
condensates (BECs) has been reported experimentally and theoretically.!*'® The coherence
length of an electron or electron-electron interference by using Aharonov-Bohm oscillations
in an electronic MZI has been discussed theoretically.!%!” A plasmonic modulator utilizing

an interference of coherent electron waves through Aharonov-Bohm effect has been stud-



ied by the author.!® The entangle states have been widely discussed experimentally and
theoretically.!2* The photon interference by using nested MZIs and vibrate mirrors has
been measured and analyzed.??® The double-slit electron diffraction has been experimen-
tally demonstrated.?”

These reports associated with quantum phenomena have convinced the validity of the
basic concept of the probability interpretation, and the reliability of the standard quantum
theory based on the probability interpretation has come to be considered unwavering.

However, these reports just confirmed the agreement between the measurement results
and the calculation results based on the basic concept of the probability interpretation, and
examined the application of the interference derived from the probability interpretation.
They have considered no possibility other than the probability interpretation of quantum
theory.

In this paper, we propose an alternate interpretation of the quantum theory without
probability interpretation and show the identical calculation results are obtained for single
photon interference, single electron interference, and EPR correlation utilizing both conven-
tional and alternate interpretation. Then we also show the alternate interpretation describes
objective physical reality that photons and electrons are actually moving in space-time in-
stead of probability interpretation.

According to the alternate interpretation, the concept of pure state of which probabil-
ities are fundamental sense does not need in nature. Only the concept of mixed states of
which probabilities are statistical sense is physically valid as a natural law. Although the
probability interpretation of the standard quantum theory using the mixed state is use-
ful for calculations, it is shown that quantum theory will be deterministic physics without
probability interpretation as in classical physics.

In addition, we show that the removal of infinite zero-point energy without artificial sub-
traction, Casimir effect and spontaneous symmetry breaking can be spontaneously obtained.
Furthermore, by generalizing the electromagnetic field of unitary gauge field to special uni-
tary gauge field, we also show uncharged particle interference can be explained as the same
mechanism, i, e., by the geometrical arrangement of the SU(2) gauge field.

The structure of this paper is as follows.

In chapter II, we summarize the covariant quantization of Maxwell’s equation that re-

quires an indefinite metric, which is the essence of this paper, and discuss that the indefinite



metric obtained by the quantization should take precedence over the probability interpreta-
tion.

In chapter III, we indicate the difference in calculation and interpretation for single-
photon interference, single-electron interference and EPR correlation between using the
conventional probability interpretation and alternate interpretation. Despite the differences,
except for the interpretation, the identical results can be obtained as the observable physical
phenomena. In addition, we show a convenient format for calculation named “simple cal-
culation method”, which simplifies the calculation of the alternate interpretation. From the
calculation results by the alternate interpretation, it becomes clear that the scalar potential
is a physical reality with a minus sign of indefinite metric.

In chapter IV, as applications of the alternate interpretation, we show that the removal
of infinite zero-point energy, Casimir effect, spontaneous symmetry breaking can be spon-
taneously obtained utilizing the generalization of the geometrical arrangement in the space
discussed in chapter III. We also refer to the general approach for single particle interference
include uncharged particle.

In chapter V, the origin of the indefinite metric potential and Maxwell’s equations in
vacuum, which is the core of the alternate interpretation examined in this paper, is discussed.

In chapter VI, we discuss the contradiction between Lorentz condition as an operator and
commutation relation in covariant canonical quantization of Maxwell’s equations. Then we
propose the alternate method introducing the extended Lorentz gauge that can avoid the
contradiction without physical state and subsidiary condition.

In chapter VII, we summarize the alternate interpretation.



II. COVARIANT QUANTIZATION OF MAXWELL’S EQUATIONS

In order to revise the basic concept of the conventional standard quantum theory based
on probability interpretation to the alternate interpretation using objective physical reality,
covariant quantization of Maxwell’s equations using Lorentz gauge is indispensable instead
of using Coulumb gauge. That will be shown together with concrete calculations in the
following chapters.

The purpose of the quantization described in this chapter is to clarify the introduction
of the minus sign required by the indefinite metric, which is necessary for the discussion in
the following chapters.

For that purpose, quantization is performed using Fourier transform without going into
the details of canonical quantization, namely, the four-vector satisfying the covariant form
of Maxwell’s equations is expressed by the Fourier transform of plane wave expansion and
then those Fourier coefficients are replaced with operators along with setting commutation
relations.

The canonical covariant quantization of Maxwell’s equations in Lorentz gauge requires
the discussions other than the purpose of this chapter, i.e., associate with the selection
of Lagrangian density and the setting of commutation relations. Therefore the canonical
quantization will be dealt with independently and discussed in Chapter VI.

However, there is no difference in calculations and discussions in the following chapters,

whether the quantization in this chapter or the canonical quantization is adopted.

A. Quantization using Lorentz gauge

The subject of the discussion is Maxwell’s equations below.
1 02 1 0¢
A——=—|A- A+ —=— ) = —ppi
( c? 8252) v <V * c? 8t) ol
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where pg and g are the permeability and permittivity of a vacuum respectively.
In the Maxwell’s equations (1), the electromagnetic potentials ¢ and A are expressed as

following four-vector in Minkowski space.
Al = (A% AL A% A°) = (g/c, A) (2)
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The charge density p and space currents i are also expressed as following four-currents.

i* =% 7t 5% 7% = (ep, 1) (3)

0

Hence, by setting the axises of Minkowski space as 2° = ct, !

=ux, 22 =y, 3 = 2,

Maxwell’s equations in the Lorenz gauge are expressed as following covariant form
OA" = pgg", 0, A" =0 (4)
In addition, the conservation of charge
divi+ dp/ot =0 (5)
is expressed as following covariant form.
auj H= (6>

where,
9, = (1/cdt, 1/0x, 1/dy, 1/0z) = (1/02°, 1/02', 1/02°, 1/02°) (7)
and O is the d’Alembertian :0J = 9,0* = §%/20t* — A.

The covariant and contravariant vectors can be transformed to each other using the

simplest Minkowski metric tensor g, as follows.

1 0 0 O
0-1 0 0
g, =g = (8)
00 -1 0
00 0 —1|
AU’ = g,uyAV ) AH = guVAV (9)

The following quadratic form of a four-vector is invariant under a Lorentz transformation.
— (a)? (10)

The wave front equation can be expressed by applying a minus sign to the above quadratic

form and can be described by using metric tensor as follows.
—g,, vrr" = —atw, = Py - =0 (11)

9



This quadratic form, including the minus sign, is also introduced into the inner product of
arbitrarily vector and commutation relations in Minkowski space.
Maxwell’s equations that satisfy the four-vectors with no four-current in free space can

be expressed as the following Fourier transform by plane wave expansion.?

A,(z) = /d;;z[au)(k)e;x)%)e—im +a(A)T(k>€£LA)*(k)€ik.z] (12)
A=0
~ A3k
k= ko (277)° ko = [k (13)

where the unit vector of time-axis direction n and polarization vectors 69)(]{?) are intro-

1

duced as n?> = 1, n° > 0 and € = n, eV and €? are in the plane orthogonal to k and

n
V) - M k) ==6n A, N=1,2 (14)

% is in the plane (k, n) orthogonal to n and normalized

el

E)-n=0, ®E)-®Fk) = -1 (15)

Hence €, €M) (and €®) and €® can be recognized as a polarization vector of scalar wave,
transversal waves and a longitudinal wave respectively. Here we take the following the easiest

forms as these vectors.

(16)

o O o =
o O = O
S = O O
- o O O

The quantization is performed by replacing the Fourier coefficients of the four-vector with

operators A, = S d(’\)(k)e,(f)(k) and setting the commutation relations as follows.
[Au(k), ALR)] = —,,0(k = K) (17)

The time-axis component has the opposite sign of the space axes. Because (0| Ag(k)Af(k)[0) =
—0(k — k),

(111 = ~(010) [ dil (k) (19
where |1) = [ dkf(k)Al(k)|0). Therefore, the time-axis component is the source of indefinite

metric.
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Here, when we identify |1) as the single photon state by the probability interpretation,
the probability that there is one photon in space is negative. Therefore the probability
interpretation is inapplicable for the covariant quantization.

Mathematically, the negative sign of the inner product of vectors is contrary to the
definition of the inner product of vectors in Hilbert space.

In the first place, equating of the physical state vectors |x) and those inner product (z|z)
with the vectors and those inner product in Hilbert space such as |z) > 0 (z]|z) = 0 <
|z) = 0 was not derived from theory, but estimated and artificially introduced.

The reliability of the identification has been established as a result of accumulating agree-
ment between the calculation results obtained from the probability interpretation and various
experimental results.

In addition to the reliability, the mathematical procedures which can reconcile the prob-
ability interpretation with the indefinite metric has been developed for example so-called

29,30 and Nakanishi-Lautrup formalism®' as will be mentioned in

Gupta-Bleuler formalism
chapter VI. However, such a procedures are not necessarily required theoretically, and can
be understood as mathematical techniques to be consistent with the probability interpreta-
tion by introducing artificial manipulation such as physical states and subsidiary conditions.

On the other hand, the minus sign is necessarily introduced from Maxwell’s equations and
the theory of relativity. In the first place, the physical space of the natural world is expressed
as Minkowski space even if gravity is ignored or Riemann space if gravity is included, and
the metric is not limited to a positive definite value.

In this paper, we accept the introduction of the minus sign as an inevitable request
from the theory, and propose an alternate interprettion of the quantum theory without
probability interpretation. In the following chapters we show the calculation results of
single-photon interference, single-electron interference and EPR correlation using probability
interpretation can be faithfully reproduced by introducing the minus sign. Then we also show
these phenomena will be clear the image of objective physical reality.

If Coulomb gauge is adopted, the scalar potential of the time axis component, which is
the source of the indefinite metric, will be ignored. Therefore the discussion in the next
chapter becomes difficult. In addition, the explicit covariance of Maxwell’s equations is also
lost, hence Lorentz gauge should be adopted to construct the basic concept of physical law

independent of the coordinate system.
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III. SINGLE PHOTON, SINGLE ELECTRON INTERFERENCE AND EPR
CORRELATION

In this chapter, we show the calculation methods for the single photon interference, single
electron interference, EPR correlation by using both probability and alternate interpreta-
tion. We emphasize that the calculation of single-photon and single-electron interference by
using probability interpretation imposes the description that a single particle that cannot
be further divided must be considered as if it were divided into separate paths on us.

On the other hand, the calculation of single-photon and single-electron interference by
using the alternate interpretation reveals that the scalar potential, which is the source of the
indefinite metric, forms an oscillatory field due to the geometrical arrangement of the exper-
imental setups. Then we can obtain the image of objective physical reality which describes
the inseparable single photon or electron moves in the oscillatory field while interfering with
each other.

For EPR correlation, the calculation utilizing polarized photons will be discussed. On
the calculation of EPR correlation by using probability interpretation, two photons having
polarizations orthogonal to each other must be considered as a correlated photon pair state
(Entanglement), which simultaneously splits into different paths and only probabilistically
exists in whole space-time. This kind of explanation requires not only the probability in-
terpretation but also the ”denial of locality” which contradicts the relativity such that the
polarization of the photon of the other path is determined at the very moment when the
polarization is found by the polarization measurement of the photon of the other path.

On the other hand, according to the alternate interpretation, the correlated photon pair
has the designated polarization that is determined when it generates, and when the polar-
ization direction is measured, those photons are interfered with the scalar potential that
forms an oscillatory field due to the geometrical arrangement of the experimental setup. We
clarify that there seems to be a non-local long-range correlation beyond the causality due

to the interference with the potential.
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FIG. 1. Schematic view of Mach-Zehnder Interferometer (MZI). BS:Beam Splitter.

A. Single photon interference
1. Calculation using probability interpretation

Figure 1 shows a schematic view of the Mach-Zehnder Interferometer (MZI) and coordi-
nate system.!

On the probability interpretation, the calculation of the single photon interference by
using Maxwell’s equations (1) in free space (i =0, p = 0 ) in Coulomb gauge eliminates
the scalar potential ¢ and only uses the quantized vector potentials @ and a' as the photon
annihilation and creation operator respectively.

According to the reference?, the following electric field operator of which square E'E is
used as an electric field intensity operator proportional to the photon number, and number
state |n) are introduced to calculate the single photon interference of the MZI.

E = idl exp (i6) + iag (19)
V2 V2
where @218 the photon annihilation operator corresponding to an optical mode passing
through path 1 or 2, respectively, € is a phase difference corresponding to the difference in
length between the two paths.

Q1oro and &J{OYZ are defined along with the expected photon number from the photon

creation and annihilation operators a and a' in free space (MZI input) before the photons

are split into two paths as follows.
ot s ot s ot 1
(nlajaun) = (nfayaz|n) = (nlajazln) = on (20)
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V2 V2

The photon number at the MZI output is calculated as follows by using the squared operator

and the number state.??
A AT ~ ]_ AT A 1 At A AT A
(I) < (n|E"E|n) = §<n|a1a1|n> + §<n|a2a2\n) + cos 0(n|ajas|n) (22)

where (f ) is the expected field intensity proportional to the photon number.
Substituting 1 (n = 1) for the photon number as a single photon, the above expected
value is calculated to be as follows.

A 1 1 1 1 1
(I) Z+Z+§COSQZ§+§COSQ (23)

The above calculations can be interpreted that the photon incident from the MZI is
passing through both path 1 and 2 simultaneously with probability 1/2 along with the
phase difference corresponding to the optical length between the two paths, as is clear from
the form of the electric field operator introduced in (19), the expected photon number (20)
on each path, the division of the photon creation and annihilation operator (21).

This interpretation is valid as statistical physics that when the intensity of light incident
on the MZI is high and the photon number n is large, approximately n/2 photons are on
one side and n/2 photons are on the other side.

This kind of statistical state has been introduced as a mixed state which is multiplied by a
density matrix proportional to the probability including the pure state having a fundamental
probability. The probability interpretation using the mixed state is considered statistically
valid.

However, even if the intensity of light incident on the MZI is very low and it is considered
to be a single photon that cannot be split any more, the single photon is considered as a pure
state with fundamental probability and passes through both path 1 and 2 simultaneously
with probability 1/2.

2. Calculation using alternate interpretation

In order to revise the probability interpretation to alternate interpretation with objective
physical reality, we examine again the electromagnetic field of the incident photon beam on

the MZI in Figure 1.
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First, assume that a light beam having an angular frequency w and a propagation constant
[ polarized in the x-axis direction propagates in the z-axis direction, and the electric field of
the light beam forms, for example, a Gaussian distribution of which cross-sectional shape is
well localized in free space. Then, the electric field of the input light beam can be expressed

as follows.

2 2

E=e, -Cg-exp (—x wa ) - cos (wt — f52) (24)
0

where, e, is unit vector parallel to the x-axis. Cg is an arbitrary constant which is propor-
tional to the magnitude of the electric field. wyq is the radius of the optical beam. E and B

are expressed by vector and scalar potentials as follows.

0
E——aA—qu
B=VxA (25)

By introducing a vector function C, A is calculated from (24) and (25) as follows.

1 2 2
A=——e, -Cp-exp (_x —|—2y ) -sin (wt — fz) + C
w w§
0

To localize B to space, we can take C as an irrotational vector function V x C = 0. For
example, C and ¢ can be expressed by introducing an arbitrary scalar function A which
satisfies C = V\ and V (%/\ + qb) =0.

Then B is expressed as follows

B=VxA
2 .2
= gey -Cg - exp (_x —|—2y ) - cos (wt — fz)
0
2 2 2
—rfl%ez~CE-exp (_a: ;_gy ) -sin (wt — fB2) (27)

Therefore, E and B are localized in the free space in the input. In contrast, the vector
and scaler potentials are not necessarily localized. The above localized form (24) is one
example, other forms which satisfy the Maxwell’s equations (1) in free space i =0 and p = 0
can be adopted.

Note that, the free space propagation will expand the radius of the Gaussian beam.

However, that of the propagated beam w (z) will be approximately 10.5mm when the beam

15



of which launched radius wy = 10mm propagates z = 100m in free space. This value can

w,

2
be calculated using w (2) = wp4/1 + ( > in the case of wavelength A = 1pym. Hence the

szg
spatially expansion of the beam will be negligible small in the case of the paths of the MZI
are less than several tens meters.

As described above, even if the photon is localized, the potentials are not always localized.
In particular, the scalar potential can exist in whole space-time. The alternate interpretation
is shown below by utilizing the existence of the scalar potential as the objective physical
reality.

First, note that vector potentials and scalar potential are mixed by Lorentz transforma-
tion. Therefore from the Lorentz invariance, vector potentials and scalar potential should
be equally treated as (1|Af Ag|1) = (1| ATA;[1) = (1| AT Ay[1) = (1] AL As[1).

For simplicity of calculation, the incident beam in the figure 1 is assumed to be perfectly
polarized on the x-axis, and the longitudinal wave that is considered to be unphysical pres-
ence is ignored, i.e., Ay = 0, A3 = 0. However, as mentioned above, the scalar potential
can exist in the whole space-time. Therefore, the four-vector at the input of the MZI is

expressed as follows.

A,u, - (AOa Al) 07 O) (28)

It is reasonable for physically phenomenon taht the scalar potential is split when there are
two paths of the MZI. Here, we examine that a single photon represented by a transverse
wave polarized in the x-axis passes through path 1 and the scalar potential A is divided
into both paths 1 and 2 with a phase difference 6 between the two paths. In this case, the
four-vector (= A.patn1)) along path 1 and four-vector (= A,.(patn2)) along path 2 of MZI

can be expressed as follows.

1 .
A/L:(pathl) = (5610/21407 Alu 07 O)

1 .
A,u:(path2) == (56719/2140’ 07 Oa 0) (29)

By replacing Fourier coefficients of the four-vector with operators A, = 375 _ a™ (k)elM (k)
and setting the commutation relations, the single photon interference can be calculated using
the potentials as an operator. According to the quantization, photon annihilation operators
corresponding to optical modes passing through MZI paths 1 and 2 are defined as AN;(patm)

and A“:(pathg) respectively. Here we must introduce the indefinite metric into the product of

16



the operator as follows.

AfA= g, AMAY = _gmAlA, (30)

Hence the photon number operator at the output of MZI can be obtained as following

expression by using the photon annihilation operator at the point Au:(pathl) + Au:(path2)-
A A A A 1 ~s 4 PN 1 A0 4
_g#V{Au:(pathl) + Au:(pathQ)}T{AV:(pathl) + Al/:(pach)} - _§AE{)A0 + AJ{AI — éAgAO cos 6 (31)

where, the following relations are used.

_gWAL;(patm)Aw(pathl) - _%LA(T)AO + A4
—g ”AL;(pathl)Av:(patM) = —je PAJA,
_gWAL:(pathz)Aw(pathl) = _leezﬁA(T)Ao
_gWAL:(pathQ)AV:(patm) = _%;AI)AO
From (31) and |1) with the Lorentz invariance, (I) o + — 3cosf can be calculated. By

selecting the proper reference point of the phase difference, (23) is reproduced.

<f)o<%+%cos€ (32)

Here, in order to clarify the motion of the scalar potential and the single photon as an
objective physical reality, we further study the setup of the single photon MZI experiment.
Since the electromagnetic field has time reversal invariance, there is no particular reason to
distinguish the input and output of the MZI. Therefore, the photon annihilation operator
at the confluence of the input of the MZI should be represented as the output of the MZI.
Then

" A " 0 . N
Au = A,u:(pathl) + Au:(pathQ) = (COS 51407 A17 07 0) (33)

It is physically reasonable to assume that there is clearly single photon at the input of the
MZI. If (28) is used to calculate the photon number with the single photon state at the
input of the MZI, the result is calculated to be (1|(—A} Ay + AT A;)[1) = 0. Therefore if we
erase the scalar potential as Ay = 0, we can not obtain the interference. On the other hand,
the photon number is 1 when § = N7 (NN : odd number) in (33). Therefore, we should
recognize the scalar potential at the input of the MZI is nonzero (not empty, i.e., Ay # 0)
but rather cancels each other out with opposite phase waves, i.e., cos(0/2) = 0. From this
study, it is possible to obtain a picture that the scalar potential generates an oscillatory field

like () - Ay when there is a division (geometrical arrangement) in the space. Where f(6)

17



is an oscillatory function of . The formation of the oscillatory field can be recognized as a
"hidden variable” associate with the EPR correlation, which will be dealt with in the next
section. It is possible to interpret that a substantial photon moves in the oscillatory field,
which interferes with each other. Therefore, the expected value of the field intensity at any
spatial position is calculated as (f ) o % + 3 cos§ using (33). From the discussion, no matter
where the substantial photon moves in the space, no photon can be observed at the position
where § = £ N7 (N : odd number) in the space.

In this way, if we accept the indefinite metric required from the covariant quantization
without probability interpretation, a clear image of objective physical reality is obtained.
That is to say, there is a scalar potential on both paths of the MZI, which forms an oscillatory
field caused by the path division of the MZI, and a single photon incident from one path
passes through while interfering with the oscillatory field. The formation of the oscillatory
field caused by the path division examined here corresponds to the fact that the phase term
depending on the potentials introduced on the electron wave function cannot be eliminated
in the spatially multiple-connected region in Aharonov-Bohm effect.3334

We can replace the above calculation and picture by an analogy of electronic circuits
that the scalar potential corresponds to the bias current (voltage) and the vector potential,
which represents a single photon, corresponds to a signal current (voltage) added to the
bias current (voltage). However, in this case, the bias current (voltage) is not direct current
(DC) (or voltage), but an alternating bias current (AC) (or voltage) that interferes with
the signal current (voltage), which causes output fluctuations. In summary, an observed
signal fluctuates when the signal is added on a fluctuating reference. In addition, if we
use the analogy of homodyne detection wireless communication or optical communication,
the scalar potential corresponds to a continuously oscillating local oscillator placed at the
receiving end and a single photon corresponds to a signal. This corresponds to extracting
the signal information by the interference between the continuous wave of the local oscillator
and the signal at the receiving end, and the image shows that each point in whole space-time
has a local oscillator.

In the above calculations, the scalar potential that requires the indefinite metric was
treated as an operator as a physical reality. Following the standard quantum theory, we call
the form Heisenberg picture in which the indefinite metric of the scalar potential is imposed

on an operator. Then, we can call the form Schrodinger picture in which the indefinite
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metric of the scalar potential is imposed on a state vector.

In Schrédinger picture, the expected field intensity can be calculated using the state
along path 1 and path 2, and the photon annihilation operator at the output in Schrédinger
picture As, which is proportional to the electric field operator E o Ag at the output 1 (or
2). For a more detailed definition is as follows. The operators A, Ag and state [1), |1)g
can be translated by using the Hamiltonian 7 as A = e™/1 Age=Hi/h and [1)g = e~ H/M|1)
respectively.

Here the state along path 1 can be expressed as e/2|1)go + |1)s1 according to (29),
where |1)go expresses the state which there is only scalar potential Ay along path 1, and
|1)s1 expresses the state which there is x-polarized single photon along path 1 respectively.

In the same way, the state along path 2 can be expressed as 2e=/2|1) g0 + |0) s according
to (29), where |0)s expresses the state which there is no photon along path 2. |0)s can be
identified as “ideal vacuum” as will be discussed in section IV A. However |0)s = 0 which

means g(0/0)s = 0 # 1. We can neglect the “ideal vacuum” in the calculation.

Then the state of the output can be calculated as following the sum of the both states.
0
COS 5’1>50 + ‘1)51 (34)

Therefore the expected value of the field intensity using the probability interpretation is also

reproduced by using Schrodinger picture as follows.

. 0 i 0
(I) o <cos- (1] +s1 <1|) Al Ag (cos§|1>50 + |1>51>

250
0 1 1 1 1
2 /
= — Z4l1=-_-= S
cos” 5 + 5 20059 5 + 2(3080 (35)

where 6" = 6 &+ m(the proper reference point of the phase difference), and according to (30),
—s0(1|ALAg|1) g0 =s1 (1| AL Ag[1)s1 = 1,50 (1]1)s1 =51 (1]1)50 = 0 are used.

In the above discussion, we have expressed the operators and states along path 1 and
2. However, an objective physical reality is that the oscillatory field of the scalar potential
is formed due to the geometrical arrangement that divides the space into two, and a single
photon passes through (or exists) in it. That is, in Heisenberg picture, the x-polarized single
photon A passes through (or exists) in the oscillatory field of the scalar potential cos g/lo.
In Schrédinger picture, the x-polarized single photon |1)g1 passes through (or exists) in the

oscillatory field of the scalar potential cos £|1)g; formed on the vacuum |0)go.
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It is convenient to calculate the single photon interference in Heisenberg picture by in-

troducing the following operator A{) instead of A, using the above operator Ay

~ 1 . A 1 . A
A6 _ 57610/2141 . 5,}/6719/2141
. TRV
Af = 3e 247 — e o2 A (36)
where 72 = —1 (i.e., v corresponds to the square root of the determinant of Minkowski

metric tensor 4 /|g,, | = /E=V-1=7)
By using the operator, the expected field intensity (I) oc (1](A) 4+ Ay)T(A} + Ap)[1) can

be calculated as follows.

A Ay =~ ALy - AL + P AL, + e AL,
= _%AL‘L + %1211/11 cos
/ﬁfl’ 1%1’6/21;11121 %76—19/241;1
A Ay = e AL Ay — e AL A, 5

Finally, we can obtain the following result.

(1A A1) =1

TN 1 1
(1| A ALy = —5 + 5 cost

2
At oA 1 i0/2 1 —i0/2
<1|A1A0’1> = 576 - 576
At A 1 —i 1 i
(1AF A1) = Je 6/2 _ Jve 6/2
o s e . 1 1
umpmm+ampmn+umpmn+am&uw=§+§mw (38)

This form is equivalent to using the following four-vector instead of (29).

Au:(pathl) = (07 Alu 07 0)

" 1 . A 1 ) A
A,u:(pach) = (éiewon — §Z-€719/2A0, O, 0, O) (39)

We call this expression “simple calculation method” in this paper. When this simple cal-
culation method is interpreted by physical reality, the single photon passes through only
path 1 and the oscillatory field caused by scalar potential exists only on path 2. Although
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the picture of oscillatory field formation by the scalar potential remains, we lost the natural
picture discussed based on the Gaussian light beam that the scalar potential exists in whole
space-time. Furthermore, as will be described later, it obscures the generalized picture of the
oscillatory field formation by arbitrary number paths. Therefore, we should understand that
it does not faithfully describe the objective physical reality, though this simple calculation
method is a convenient format for reproducing the calculation results.

The Schrodinger picture of the simple calculation method can be expressed as follows
according to (36) and (39).

The state along path 1 is [1)gq, the state along path 2 is (e — 1ye=#/2) |1)g,. Here

we define

1 . 1

€)= (57" = 57e % ) 1)so (40)
2 2

Then the expected value of the field intensity using the probability interpretation is also

reproduced by using Schrodinger picture of the simple calculation method.

(1) o< (s1(1] + (¢) A5 As (|11 +[C)
,0 1 1

:1+<C|ALAS|C>:1—811122:608 §=§—I—§COS«9 (41)

Because (€|¢) = —3 + 1 cos# and (¢|¢) < 0 when # # £N7(N: even number), () is an
indefinite metric vector. Therefore we can understand that the above calculation represents
Schrodinger picture in which the indefinite metric of the scalar potential is imposed on a

state vector.
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> Interference pattern
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FIG. 2. Schematic view of a typical setup for the single electron interference experiment. : The
electron emitted from the electron source passes through the two pinholes and is detected by the
electron detector on the screen, and the detection frequency is recorded as an interference pattern

on the screen.

B. Single electron interference
1. Calculation using probability interpretation

Figure 2 shows the schematic view of a typical setup for the single electron interfer-
ence experiment.!% This experimental setup is also the equivalent setup for single photon
interference which has the divided path.

In the quantum mechanical description using probability interpretation, the single-

electron interference in the figure 2 is calculated using the following probability amplitude

¢1 = (@[1)(1]s) , P2 = (2]2)(2]s) (42)

and probability (density) of finding the electron on the screen.3

Py = |1 + ¢2\2 (43)

Where ¢1 = (x|1)(1]s) and ¢o = (2|2)(2|s) are composed of probability amplitudes as
follows.

(1,;2|s) = ( electron arrives at pinhole 1 or 2 | electron leaves s (electron source) )

(x]|14:2) = ( electron arrives at screen x | electron leaves pinhole 1 or 2 )

When either pinhole 1 or 2 is closed, the each and total probabilities are calculated to be

Py = |¢2|, P, = |¢3| and P = P+ P, # Pio. In this case, the interference when both pinholes
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open at the same time will not be reproduced. Therefore the probability interpretation that
a single electron passes through both pinholes simultaneously has been introduced, though
it cannot be further divided.

This single electron interference also gives the same interference of the single photon
interference described in section IITA.

In probability interpretation, the charge operator is defined instead of the photon number
operator defined in the calculation of the single photon interference, and the states of the
single electron passing through path 1 and path 2 are introduced. The single electron
interference can be calculated by using the charge operator and the above two states.

Specifically, we replace the n-photon number state with the electron-number state |n)
where n electrons are present, and the photon number operator n = afa composed of the
operator a of the expression (21) is replaced by defining the charge operator Q = [ d®zjo(z).

Where jo(z) is the 0-th component of four-current j, = (g,1), 0"j, = % +V-.i=0
Because the charge operator satisfies Q|n) = ng|n), n electronic states are eigenstates of
Q2836

Here the state |1)1¢2 that a single electron simultaneously passes through both path 1
and 2 with probability 1/2 can be expressed as follows.

110 = —=[1) expif + —|1) (44)
V2 V2
where, 6 is the phase corresponding to the difference of the path length. Then expected
charge intensity (I) can be calculated as follows.

(I) (1|1&2Q|1>1&2:q(1+0089)o<q(%+%cos9) (45)

This is the same expression as the single photon interference in the previous section.

2. Calculation using alternate interpretation

In order to revise the probability interpretation to alternate interpretation with objective
physical reality, we start by reexamining the experimental setup in figure 2 with classical
electromagnetism.

In figure 2, an isolated charge ¢ moving with an arbitrary velocity v in free space generates
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the scalar and vector potentials called Liénald and Wiechert potentials as follows.3”

1 q Mo qv
¢_47r€07"(1—”f)’A_47rr(1—%) (46)

where €g, po and ¢ are the permittivity, permeability and the speed of light respectively. v,
is the component of charge velocity in the direction of the radius vector r drawn from charge
to observer. r = |r| is the distance in three-dimensional configuration space from the charge
to the observer.

Therefore the scalar and vector potentials definitely passes through (or exist) not only
the pinhole the electron passes through but also the opposite pinhole.

Thus, similar to the single photon interference described in the previous section, we can
obtain the picture that the electron as an objective physical reality propagates through the
pinhole on one side and the potentials exist on both side. The potentials are composed of
both existing potentials in whole space-time and generated potentials by the movement of

the charge. Hence, the electron wave functions should be expressed as follows in such a case.

Y] =1y - exp {z%/s (pdt — A - dx)}

—Pinholel—screen
Py = g - €Xp [zg/ (pdt — A - dx)} (47)
h s—Pinhole2—screen

where ] and v}, are the electron wave functions on the screen passing through pinhole
1 and 2 with the potentials respectively. ¢y and 1), are the electron wave functions heading
to pinhole 1 and 2 at the electron source without the effects of the potentials. Note that
because a single electron shows no effects of a “self-generated field”, the potentials should not
include the “self-generated potentials”. For example, when the two electron propagate from
the electron source to the detector via pinhole 1 and 2 respectively, the electron propagates
via pinhole 1 is affected the potentials generated by electron propagates via pinhole 2 and
vice versa.

The following expression is the probability of finding an electron on the screen by using
probability interpretation.

P o 0/ = 104+ 42 = ol + P = 2 (exp i f (out— A -] wiva) (a9

—1—screen—2—s

where 1 and 2 of the integration path denote pinhole 1 and 2 respectively.
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Although the probability interpretation insists the single electron passes through pinholes
1 and 2 simultaneously, the expression (48) is derived form the picture that the single electron
passes through a pinhole on one side assuming that there are potentials on both sides as
mentioned above. Hence this is considered to be the expected value of the charge intensity
observed on the screen.

However, (48) uses the wave function. We need to shift from the wave function to the
state vector to clarify the picture. Note that (48) is a formula equivalent to Aharonov-Bohm
effect.?® The phase term can be eliminated in a single connected region where the spatial
region can contract to a single point but cannot be eliminated in multiple-connected region
where the spatial region can not contract to a single point.

Here we first consider in the case of two electrons pass through pinhole 1 and 2 respec-
tively, and arrive at the detector. In this case, the whole state of the system can be described

as follows.

62’% fl(qﬁdth-dx)‘wl) + ei% f2(¢dt7A-dx)|1/}2> = €i91’w1> + ei92’¢2> (49)

where the subscript 1 or 2 of the integral means s— Pinholel or Pinhole2 — screen as same
in (47). Therefore the expected charge intensity of the electron interference by the two
electrons passed through each pinhole is calculated by applying the charge operator and
identifying the electron states as one number electronic state, i.e., [11) = [2) = [1), as

follows.

(Iy oc {e™ (| + e (4|} Q { e ) + 2[ah) }
= (1|Q[1) + (1| Qipa) + e ) (1)1 |Qlapa) + €O 702) (1| Qe )
= 2q + 2qcos(0, — 03) = 2q + 2q cos(% 7{ (pdt — A - dx)) (50)

where the trajectory of the line integral § is as same as (48). When there is no electro-
magnetic potentials there is no interference. Therefore, the interference of the electrons in
standard quantum theory has introduced the phase difference using quantum superposition
state with probability as in (44). However as described the previous chapter, there is scalar
potential in whole space even if there are no vector potentials A = 0. From the Maxwell’s
equations and Lorentz gauge (4), ¢ satisfies 3°¢ = 0 and A¢ = 0. Therefore we can select
¢ = a # 0 where « is an arbitrary scalar value. This selection corresponds to the bias

voltage described by analogy with electronic circuits in the previous chapter. Although «
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is an arbitrary scalar value, we can consider the constant scalar potential is formed by a
destructive interference of oscillatory fields for example ¢ = a(cos? X + sin® x).

Therefore the same interference of (45) can be obtained as follows.

(I) & 2q+2q cos(%a ]{ dt) = 2q+2q cos(%a#) = 2q+2qcosf x q(% + % cosf) (51)
where Ly, Lo and v are length of the trajectory the electron passes trough pinhole 1, 2 and
the velocity of the electron along the trajectories. Hence @ is a phase difference corresponding
to the difference in length between the two trajectories as described in previous chapter. In
this way, we can obtain the interference using the scalar potential in whole space without
introducing the probability interpretation and quantum superposition state.

In the above discussion does not include the potentials generated by the electron move-
ment such as (46). When we consider the effect of generated potentials by the movement of

the electrons, following two phase shifts should be calculated.

I fl (Dypdt — Ay, - dx) = b1y, the phase shift of the electron passed through pinhole 1
affected by the generated potentials from the movement of the electron passed through

pinhole 2

2. L[, (¢p,dt — Ay, - dX) = O3y, : the phase shift of the electron passed through pinhole 2
affected by the generated potentials from the movement of the electron passed through

pinhole 1

where ¢y, and Ay, , stand for the generated scalar and vector potentials by the movement
of the electron passed through pinhole 1 or 2 respectively. The subscript of the line integrals
“1” and “2” denote “s — Pinholel — screen” and “s — Pinhole2 — screen” respectively.
Because the detector detects the two electrons at the same time to show the interference,
the z-axis coordinates of the two electrons are the same during movement. The generated
potentials depend on the distance from an electron to the observer (the other electron) and
the component of charge velocity in the direction of the radius vector r drawn from charge
to observer (the other electron). This means the potentials affected by the other electron
are exactly the same as each other, i.e., 014, = Oy, = Ogp.

A more precise calculations are as follows. We assume the electron movement is in z — 2

plane on y = 0 as shown in figure2. Because the line integral from the electron source to the
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pinhole 1 and 2 of the 6,4, and 65,, are symmetrical to the z-axis around z = 0, then the

integrals from the electron source to the pinholes | and fs are the same.

s—Pinholel —Pinhole2

As for the integrals from pinholel and 2 to the screen (we abbreviate fPinholel screen 88

Jorge and foo oo @S [o, o), the z-axis coordinates of the electron which generates
the potentials and observer (the other electron) are always the same while movement. There-
fore the r of (46) is always parallel to the x-axis and can be calculated to be r = a(1—1t/T),
where a is the distance from pinhole 1 to pinhole 2, t and T are the travel time of the
electrons towards the screen with the pinhole position as 0 and the time required for the
electrons to travel from the pinhole to the screen. In addition, the sign of v, is + for the
direction in which the electron and the observer approach, then v, = |vy — va| = |[va — vq|.
Where v, and vy are the velocities of the electrons 1 and 2 of which directions are from
pinholel and 2 to the detected point of the electrons on the screen respectively. 