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Abstract 

Many founding fathers of science have underscored the importance of beauty in 

mathematical representations of natural phenomena and their connection with the 

beauty of the objects they represent. Paul Dirac, for example, believed that the beauty 

of a mathematical equation might be an indication that it describes a fundamental law 

of nature; that it is a feature of nature in that fundamental physical laws are typically 

described in terms of great beauty. However, despite the growing body of research on 

beauty in nature and in mathematical representations of natural phenomena, we are 

unaware of studies in physics and mathematics devoted to the objective beauty induced 

by motion, regardless of the aesthetic qualities of the moving body. We undertake this 

objective by focusing on the Doppler formula, which describes the shifts in wave 

frequencies caused by the motion of the wave's source relative to a human observer or 

receiver. We underscore the apparent beauty of the equation and uncover several 

fascinating golden and silver ratios of the base formula and its mathematical moments. 

Furthermore, we allude to existing applications of the Doppler Effect and golden ratio 

aesthetics in computer-generated music, and sonar image-detection technology. We 

also propose a similar usage in the rapidly developing applications of Wi-Fi and 

smartphones to sense human motion. We point to appearances of the Doppler formula 

and its moments in quantum physics and the relativity of information, and contemplate 

the possibility of a deeper level of physical reality. 

 

Keywords: Doppler effect, Doppler formula, mathematical beauty, beauty in motion, 

golden ratio, silver ratio, metallic ratios, continued fractions, Penrose tiles, electronic 

music, Doppler radar.      
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1. Introduction 

Leading mathematicians, physicists, philosophers, and other scholars have underscored 

the importance of mathematical beauty. Isaac Newton, Paul Dirac [1], Hermann Weyl 

[2], and Bertrand Russell [3], for example, glorified the experience derived from such 

beauty, comparing it with appreciating the greatest works of art [4]. Semir Zeki, a 

founding father of neuroesthetics, demonstrated in an fMRI study that, when 

mathematicians’ brains see an equation they consider beautiful, it activates the same 

part of the brain as when they perceive a painting or music as beautiful [5] (see also 

[6]). 

       Paul Dirac, an advocate of the importance of mathematical beauty in physics, 

believed that the beauty of a mathematical equation might be an indication that it 

describes a fundamental law of nature. In describing his method in theoretical physics, 

he wrote: “A good deal of my research work in physics has consisted in not setting out 

to solve some particular problem but simply examining mathematical quantities of a 

kind that physicists use and trying to fit them together in an interesting way regardless 

of any application that the work may have. It is simply a search for pretty mathematics. 

It may turn out later that the work does have an application. Then one has had good 

luck” [7]. Dirac believed that it is a feature of nature that “fundamental physical laws 

are described in terms of great beauty and power” [1]. A similar opinion was also 

expressed by Zelinger [8] who argued that the “mathematical beauty of the theory is a 

strong argument for its robustness.” Zelinger further argued that “we might expect that 

physical and mathematical structures would share the characteristics that we call 

beauty, and from an evolutionary perspective, the human sense of beauty could have 

evolved to find natural patterns pleasing” ([8], p. 8373).  

 

2. Beauty in Motion 

       The bulk of research on beauty in motion comes from dance, film and video, and 

kinetic art [9] [10] [11] [12] [13] [14]. Although numerous scientific papers and books 

have been written on beauty in nature and in mathematical representations of natural 

phenomena [c.f., [15] [16] [17] [18] [19] [20]), this author is not aware of any study in 

physics, mathematics, or other science devoted to beauty in motion itself. This neglect 

is unjustified, given the fact that everything in the universe, at all scales, is in continuous 

motion. In cosmology and astrophysics, all observed structures are in continuous 
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motion relative to us; further, information about cosmological objects and phenomena 

is deduced from light and other types of emitted waves. At the nanoscale, most 

information on small particle physics and quantum phenomena is deduced by 

information-carrying waves. The same applies to all phenomena at all scales.  

      Here, we focus on the following question: Is there an intrinsic beauty in motion?  

Since the bulk of information about the motion of objects, relative to observers and 

their measurement devices, are carried by sound or light waves, we inquire about the 

aesthetics of motion as mirrored by the Doppler formula. Our analysis hereafter is 

theoretical, but all its results are experimentally testable.  

The rest of this paper is organized as follows: In Section 3, we give a brief reminder 

of the Doppler effect and its formula. In Section 4, we uncover hidden harmonious 

beauties of the Doppler formula, with special attention given to symmetry properties 

and the appearances of golden and silver ratios in the Doppler formula and its 

mathematical moments. In Section 5, we uncover another source of beauty by showing 

that Fourier transforms of the base formula and its moments are simple sinusoids and 

remark briefly on practical application of the results in the design of linear systems. In 

Section 6, we present two existing applications of the aesthetics embedded in the 

Doppler effect, i.e., in computer-generated music and in sonar image-detection 

technology. We also propose similar usage in the rapidly developing applications of the 

Doppler shift in Wi–Fi and smartphones for sensing human motion. In Section 7, we 

allude briefly to other manifestations of the Doppler formula and its moments in other 

fields of physics. In Section 8, we conclude and contemplate the possibility of a deeper 

level of reality, at which the various fields in which the same equation appears are 

connected.   

 

3. Doppler Formula   

The Doppler effect [21] [22] is the phenomenon by which the frequency of a wave 

emitted from a source appears to be increased when the source and observer approach 

one another and decreased when they are receding from one another (as compared with 

the frequency of the same source when it is at rest with respect to the observer). 

Herbert Dingle [23] argued, “It is doubtful if there is a serious rival to the Doppler 

effect, as the department of modern science in which the experimental basis is slightest 

in comparison with the structure raised on it. Most of our knowledge of stellar motions, 
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including the characteristics of binary stars, the evidence for the rotation of the galaxies, 

and the whole phenomenon known as ‘the expansion of the universe’ consists of 

deductions from this one principle. It would be fair to say that, without it, cosmology 

would scarcely exist as a scientific subject” ([23], p. 11). Since the above-cited 

paragraph was published in 1860, the volume of present research on the Doppler effect 

light, sound, seismic waves, and other forms of wave motion and its technological 

applications have soured up exponentially. Measurement of the Doppler redshift is now 

pivotal to cosmology and astrophysics. Redshift probes are essential in cosmological 

surveys, in measuring the rate of expansion of the accelerating universe, the structure 

and rotational velocities of galaxies and galaxy clusters (c.f., [24] [25] [26] [27] [28]). 

In technology, the Doppler shift is used in medical ultrasonography [29] [30] [31], 

radars [32] [33], sonars [34] [35], acoustic Doppler current profilers (ADCPs) [36] [37], 

and more. 

       For a receding source from an observer, the Doppler effect is captured by the 

Doppler formula 

𝑓𝑟 = 𝑓𝑠  
𝑐−𝑣

𝑐+𝑣
  ,                                                                  (1) 

where 𝑓𝑟 is the measured frequency at the receiver, 𝑓𝑠 is the measured frequency at the 

source, c is the velocity of the signal relative to the medium between the source and the 

receiver, and v is the velocity of the source relative to the receiver. For an approaching 

source, the negative and positive signs should be interchangeable.  

Equation (1) could be rewritten as 

𝑓𝑟

𝑓𝑠
  = 

1−𝛽

1+ 𝛽
  ,                                                                  (2) 

where β = 
𝑣

𝑐
. 

 

4. Hidden Beauty in the Doppler Formula  

The function in the right side of Eq. (2) has an apparent beauty. Interchanging the 

negative and positive signs in the nominator and denominator results in the inverse 

function 
1

(
𝑓𝑟
𝑓𝑠

)
. This apparent symmetry is the surfacing tip of more surprising beautiful 

symmetries. 
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       First, denote the ratio 
𝑓𝑟

𝑓𝑠
 by F(β), and allow 𝛽 to exceed unity, then for number α 

the function F(β) satisfies 

F(𝛽𝛼) = - F(𝛽− 𝛼).                                                        (3) 

Proof:  

- F(𝛽− 𝛼) = - 
1−𝛽− 𝛼

1+ 𝛽− 𝛼 = - 
𝛽𝛼−1

𝛽𝛼+1
 = 

1− 𝛽𝛼

1+ 𝛽𝛼 = F(𝛽𝛼) .                                (4) 

As examples, for 𝛼 =1: 

F(
1

2
) = 

1−
1

2

1+ 
1

2

  = 
1−

1

2

1+ 
1

2

 = 
1

3
 = - 

1−2

1+ 2
 = - F(2),                                        (5) 

F(
1

√2
) = 

1−
1

√2

1+ 
1

√2

 = 
√2−1

√2+1
 = - 

1−√2

1+ √2
 = - F(√2).                                      (6) 

     Second, it is easy to show that for any two real values a, and b of β: 

                             If F(a) = b, then F(b) = a                                                             (7)  

Examples, F(0) = 1, and F(1) =0; F(
1

3
) =

1

2
, and F(

1

2
) =

1

3
; F(

2

3
) = 

2

10
, F(

2

10
) = 

2

3
; and for a 

randomly picked number 0.214632, we have F(0.2146320) ≈  0.646589255, and 

F(0.646589255) ≈ 0.2146320.   

     Third, define ₮𝑛(β) ≜ F(F(F(F(…F(β)))))), where n is the number of 

embeddedness; then, it could be easily shown by induction that  

 

 

    

 m = 0, 1, 2, 3, …  

        Fourth, more surprising symmetries pop up when we look at the moments of the 

function F(β), defined as 

𝐹𝑛(β)  =  𝛽𝑛F(β)  = 𝛽𝑛 
1−𝛽

1+ 𝛽
,       β ≤ 1, n integer n, n ≥ 1.                        (9) 

{

𝛽,                 for  𝑛 = 2𝑚 
  

 
1 − 𝛽

1 +  𝛽
,             for 𝑛 = 2𝑚 + 1 

 

 

₮𝑛(β) =       (8) 
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Figure (1) depicts the moments 𝐹𝑛(β) for selected n values (n ≥ 1). As the figure shows, 

for all n ≥ 1, the functions {𝐹𝑛(𝛽)} are positively skewed with unique maxima 

acheived at points 𝛽∗
𝑛

. Also, as n increases, the points of maxima shift right-wise, with 

corresponding decrease in the maxima, such that for n→∞, 𝛽∗
∞

 → 1,  𝐹𝑛(𝛽∗) →0.   

 

Figure 1. 𝐹𝑛(β) for selected integers (n ≥ 1) 

 

To calculate the points of maxima and their corresponding maximum values, we derive  

𝐹𝑛(β) with respect to β and equate the derivative to zero, yielding 

 

                                 n 𝛽2 + 2 β  – n =0 ,                                                              (10) 

which solves for 

𝛽∗
𝑛

 = 
√𝑛2+1−1 

𝑛
   .                   (11) 

With corresponding maxima points equaling  

 

𝐹𝑛(𝛽∗
𝑛

) = (
√𝑛2+1−1 

𝑛
)

𝑛

 (
1−

√𝑛2+1−1 

𝑛

1+
√𝑛2+1−1 

𝑛

) = (
√𝑛2+1−1 

𝑛
)

𝑛

 (√𝑛2 + 1 − 𝑛) 

 

= 
1

𝑛𝑛
  (√𝑛2 + 1 − 1)𝑛 (√𝑛2 + 1 − 𝑛) = (𝛽∗

𝑛
)𝑛 (√𝑛2 + 1 − 𝑛) .                        (12)  
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Equations (11) and (12) reveal beautiful symmetries. For n = 1 𝛽∗
1
 = √2 − 1 = 𝛿𝑠 

(≈ 0.414213562373095), where 𝛿𝑠 is the silver ratio [38] [39] (1).  

 

The corresponding maximum is equal to 

 

𝐹1(𝛽∗
1
) = (√2 − 1)2  ≈  𝛿𝑠

2
 (≈ 0.1715728752538099) .                   (13) 

 

For n =2, Eq. (11) yields 

𝛽∗
2
 = 

√22+1−1 

2
  =  

√5−1 

2
  = φ ≈ 0.618033988749895,              (14) 

 

where φ is the famous golden ratio [40] [41]. The golden and silver ratios are two 

famous irrational numbers. Their simple continued fractions are, respectively,  

 

𝜑 =
√5−1

2
 =   

1

1+
1

1+
1

1+⋯.

                                                  (15) 

 

𝛿𝑠 = √2 − 1 = 
1

2+
1

2+
1

2+⋯.

                                                     (16) 

The golden ratio is intimately related to the Fibonacci sequence of numbers 1, 2, 3, 5, 

8, 13, 21, 34, 55, 89, 144, … , defined by the linear recurrence equation 

𝑓𝑛+1   = 𝑓𝑛 + 𝑓𝑛−1.                                                            (17) 

The golden ratio is the limit of the ratio 
𝑓𝑛−1

𝑓𝑛
 when n→ ∞, or  

 

𝜑 = lim
𝑛→∞

𝑓𝑛−1

𝑓𝑛
 = 

√5−1

2
                                                          (18) 

_____________________ 

(1) We prefer to use the symbol 𝛿𝑠 for the ratio √2 − 1 instead of the common use of this 

notation for its conjugate √2 + 1.  
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More fascinating mathematical properties of the two ratios and other metallic ratios are 

detailed in many sources (see, e.g., [42] and [43]). 

         Interestingly, the corresponding maximum of the second moment 𝐹2(𝛽) is equal 

to 𝜑5. To demonstrate, we substitute β = 𝜑 in Eq. (9):  

 

                   𝐹2(𝜑) =  𝜑2 
1−𝜑 

1+ 𝜑
.                                                (19)       

 

Using the property 
1

1+ 𝜑
 = 𝜑, we can write 1 −  𝜑 =  𝜑2. Substitutions in Eq. (19) give  

 

𝐹2(𝜑)  = 𝜑5 ≈ 0.09016994 .           (20) 

__---- for n =0 are:   

Other notable nice properties of the Doppler equation, corresponding to the golden and 

silver ratios, are    

1.     F(√2 − 1 ) =  
1−(√2−1 ) 

1+ (√2−1 ) 
  =  

2−√2 ) 

 (√2 ) 
 = √2 − 1                                      (21) 

2.       F(φ) =  
1−𝜑

1+ 𝜑
 = 

(1−
1

1+ 𝜑
) 

1+ 𝜑
 = 

𝜑

(1+𝜑)2  = 𝜑3 ≈ 0.236068…                         (22)                     

          3.   F(𝜑3) =  
1−𝜑3 

1+ 𝜑3 
 = 

1−
1−𝜑

1+ 𝜑
 

1+ 
1−𝜑

1+ 𝜑
 
 = 

2 𝜑

2
 = 𝜑 ≈ 0.618033…                                  (23) 

The areas under the functions 𝐹𝑛(𝛽) (n ≥ 0) are given by 

𝐴𝑛 = ∫ 𝐹𝑛(𝛽)  
1

0
 dβ = ∫ 𝛽𝑛 

1

0
 
1−𝛽

1+ 𝛽
 dβ .                                            (24) 

For n = 0, 1, 2, 3, we get, respectively, 2 ln (2) -1 (≈0.386294),  
3

2
 – 2 ln(2) (≈ 0.113706), 

2 ln(2) - 
4

3
  (≈ 0.052961), and 

17

12
 -2 ln(2) (≈ 0.030372). Table 1 depicts exact values and 

eight-digit decimal approximations for the points of maxima 𝛽∗
𝑛

 , the corresponding 

maxima  of 𝐹𝑛(β), and the integral ∫ 𝐹𝑛(𝛽) 
1

0
 dβ for integer n values in the range 0 ≤ n ≤ 

8. Note that all the maxima points and the corresponding maxima values are irrational 

numbers, with the first and second (for n = 1, 2) equaling the silver and golden ratio, 
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respectively. The emergence of the golden and silver ratios in the above analysis is 

quite striking given the fact that this ratio plays a key role in aesthetics, including in 

architecture and design [44] [45], music [46] [47] [48], quantum physics [49] [50] [51] 

[52] [53], neutrino mixing physics [54], astronomy [55] crystallography [56] [57], the 

structure of plants [58] [59] [60] [61] [62], functioning of the human brain [63] [64] 

[65], the social sciences [66] [67] [68] [69], and much more.     

Table 1 

Points of maxima 𝒙∗
𝒏 , maxima, 𝑮(𝒙∗

𝒏), and the integral ∫ 𝑮𝒏(𝜷)
𝟏

𝟎
 dβ for 1 ≤n ≤8 

 

 

 

n 

Point of maximum 

𝜷∗
𝒏
 

𝑴𝒂𝒙𝒊𝒎𝒂𝒍 𝒗𝒂𝒍𝒖𝒆 

𝑭𝒏(𝜷∗
𝒏
) 

Area 

𝑨𝒏 = ∫ 𝑭𝒏(𝜷)
𝟏

𝟎
 dβ 

Exact value Approximation Exact value Approximation Exact value Approximation 

0 0 0 1 1 2 ln(2) -1 0.386294 

1 √2 − 1 = 𝜹𝒔 

 

0.414214 
       (√2 − 1)2 = 𝜹𝒔

𝟐
 

0.171573 3

2
 – 2ln(2) 0.113706 

2 𝛗 0.618034 𝛗𝟓
 0.090170 2ln(2) - 

4

3
 0.052961 

3 1

3
 (√10 − 1) 0.720759 1

27
  (√10 − 1)3 (√10 − 3) 

0.060762 17

12
 -2ln(2) 0.030372 

4 1

4
 (√17 − 1) 0.780776 1

256
  (√17 − 1)4 (√17 − 4) 

0.045749 

 

2ln(2) - 
41

30
 0.019628 

5 1

5
 (√26 − 1) 0.819804 1

3125
  (√26 − 1)5 (√26 − 5) 

0.036667 -2ln(2) + 
7

5
 

 

0.013706 

6 1

6
 (√37 − 1) 0.847127 1

46656
  (√37 − 1)6 (√37 − 6) 

0.030586 2ln(2) - 
289

210
 

 

0.010104 

7 1

7
 (√50 − 1) 0.867295 1

823543
  (√50 − 1)7 (√50 − 7) 

0.026233 -2ln(2) 

+ 
1171

840
 

 

0.006136 

8 1

8
 (√65 − 1)      0.882783 1

16777216
  (√65 − 1)8 (√65 − 8) 

0.022963 2ln(2) - 
1739

1260
 

 

0.006136 

 

       As examples in quantum physics, Hardy’s nonlocality test shows a maximum 

nonlocality (in terms of a joint probability) of (−11 + 5√5)/2 = 5 φ -3 = 𝝋𝟓 ≈ 0.09017, 

over all possible states of two spin-
𝟏

𝟐
  particles, for all possible choices of observables 

[49]. More recently, Coldea et al. [50] demonstrated that applying a magnetic field at 

right angles to an aligned Ising chain of cobalt niobate atoms makes the cobalt enter a 
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quantum critical state in which the ratio between the first two resonances equals the 

golden ratio. In plants from vastly different origins, the golden ratio plays a key role in 

the arrangements of leaves, seeds, and spirals [62]. In a recent study on locomotion 

[70], it was reported that the Golden ratio plays a pivotal role in giving harmony to 

locomotion. In the social sciences, Suleiman [68] [69] showed that in ultimatum games, 

and in sequential bargaining games, agreements are reached when proposers offer a 

Golden Ratio division of the goods. The Golden Ratio fairness division of goods 

suggests that human's sense for fairness, and of visual and auditory beauty, are strongly 

correlated.  

      The silver ratio also has many manifestations in aesthetics and science, including in 

architecture [71], quantum mechanics [72], [73] [74], crystallography [75] [76], and 

more. The beauty of the golden and silver ratio is manifest, respectively, in Penrose 

fivefold golden ratio tiles [77] [78], and the Ammann–Beenker aperiodic tiles [79] [80]. 

Two examples of tiles for each symmetry are depicted in Figures 2 and 3.  

 

 

 

 

 

 

 

 

Figure 2. Two Penrose tiles with fivefold golden ratio symmetries 

 

 

 

 

 

 

 

 

 

Figure 3. Two silver ratio patterns 
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5. The Fourier transform of 𝑭𝒏(β)   

The Fourier transform of a function f(x) is defined as 

 

F(𝜔) = ∫ 𝑓(𝑥)𝑒−𝑖𝜔𝑥∞

−∞
 dx  .                                                          (25)   

 

Calculation of the Fourier transform of  𝐹𝑛(β)  (n ≥ 0) yields 

 

F {𝐹𝑛(𝛽)} = F {𝛽𝑛 
1−𝛽

1+𝛽
 } = (−1)𝑛𝑖 √2𝜋 𝑒−𝑖𝜔  

 

= (−1)𝑛√2𝜋 [cos(𝜔) - i sin (𝜔)]  .                                                          (26) 

 

       Thus, the Fourier transforms of the Doppler formula, and all its moments 𝐹𝑛(β), 

(n≥ 1), turn out to be simple sinusoids. 

       This result hints at possible applications of the Doppler family of moments in 

mathematics and engineering, particularly in linear dynamical systems, in which the 

output y(t) is the mathematical convolution between the input function, x(t) and the 

system response function h(t) defined or  

 

y(t) =  ∫ 𝑥(𝑡 − 𝜏) ) ℎ(𝜏)
∞

−∞
 dτ .                                      (27) 

 

For such systems, the Fourier transform of the output Y(ω) is the algebraic product of 

the Fourier transforms of  𝑥(𝑡) and ℎ(𝑡):  

 

Y(ω) = X(ω) . H(ω)                                                      (28) 

 

Thus, modeling the input wave packet (or the response function) by an appropriate 

moment of the Doppler formula could simplify the systems analysis, since the Fourier 

transforms of all moments of Doppler formulae are simple sinusoids. 
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6. Existing and future applications 

       Modulating frequencies in accordance with golden ratio symmetries have been 

used in music and electronic music systems for the last 40 years. Composer, scientist, 

and inventor John Chowning [81] was a pioneer in these two applications. He is best 

known as the developer of the frequency modulation (FM) synthesis algorithm [82] 

[83]. As a musician, in Stria and in other electronic compositions, he used the golden 

ratio as a strict theme that determines all aspects of the composition [84] [85]; further, 

in his music and audio systems, he utilized the Doppler formula to simulate sound 

received from moving sources [86] [87].   

      Another application utilizing the golden ratio symmetry in acoustic systems is in 

sonar image-detection technology, which is used extensively in marine exploration, 

research, and investigation. A serious problem in underwater sonar radars is 

environmental noise, where an inappropriate filtering parameter hampers the sonar’s 

denoising performance. An efficient method for denoising and detecting underwater 

sonar images based on the golden ratio has been recently proposed by [88], who 

developed an adaptive nonlocal spatial information denoising method based on the 

golden ratio. It was shown that the proposed method was successful in removing 

underwater sonar image noise more effectively than other methods. 

       Future applications, based on the beautiful properties of the Doppler formula, 

might be feasible in various applications involving radars, sonars, and other localization 

and motion detection technologies. A rapidly developing technology is the use of the 

Doppler shift in Wi–Fi and smartphones for sensing human motion (c.f., [89] [90] [91]). 

In principle, user gestures affect signal propagation and changes the sound signal 

waveform, thus rendering the echo signal different from the original signal. Hand 

gestures also alter the frequency of the received signal in a manner depicted by the 

Doppler effect. This effect, in addition to time of flight (ToF) and other detectable wave 

changes, is then used for the user’s localization and recognition of his or her hand 

gestures. It is proposed here that designing the filtering system’s impulse response 

function in a manner that incorporates the golden ratio and its moments might be 

effective in enhancing a system’s fidelity. 
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7. Other physical manifestations of the Doppler formula and its moments 

      The function F(x) =  
1−𝑥

1+ 𝑥
  shows much similarity with the exponential function, 

E(x) = (1-x) 𝑒−𝑥 (see Fig. 4a). The maximum difference, F(x) - E(x), is ≈ 0.030720, 

achieved at x ≈ 0.56210, and the mean square difference (MSD), over the support (0, 

1), is equal to 

 

MSD = ∫  [
1−𝑥

1+ 𝑥
  −  (1 − x) 𝑒−𝑥]

2
 𝑑𝑥   

1

0
≈ 0.0004.                      (29) 

 

       This similarity is maintained for the two families of moments, 𝑥𝑛F(x), and 𝑥𝑛F(x), 

as shown in Fig. 4b for the first two moments (n = 1, 2). Wide application of the family 

of exponential functions for modeling processes in many fields of science and 

technology gives promise that similar applications might be undertaken using the 

family 𝑥𝑛F(x). Moreover, the beauty of F(x) and its moments described in Section 3 

(see also Table 1 and Figures 4a and 4b) justify preferring the Doppler-type formulae 

over the exponential ones.      

 

 

  

Figure 4a. Functions F(x) and E(x) in the range (0, 1) 
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Figure 4b. First and second moments of F(x) and E(x) in the range (0, 1) 

 

       Notably, the first and second moments of F(x), 𝐹1(x) =  x 
1−𝑥

1+ 𝑥
, and 𝐹2(x) =  𝑥2 

1−𝑥

1+ 𝑥
  

emerge in other fields of physics. In information relativity theory (IRT) [92] [93] [94], 

for example, for a uniform body receding from the observer with constant rectilinear 

velocity v, IRT predicts that the observed length of a receding uniform rod of length 

𝑙0,aligned in the direction of motion equals  

 

l = 𝑙0,  
1−𝛽

1+ 𝛽
,      β  < 1                                    (30) 

where β = 
𝑣

𝑉𝑐
, where v is the recession velocity relative to the observer, and 𝑉𝑐 is the 

velocity of the information carrier, emitted from the receding body to the observer 

(measured relative to its source).  The observed matter density of the rod, relative to its 

rest-frame density 𝜌0, is given by  

 

𝜌𝑚

𝜌0
 = 

1−𝛽

1+ 𝛽
 ,                                                               (31) 

 

which is identical to the Doppler Formula. The relativistic momentum and energy 

densities in the theory are given, respectively, by the two moments 𝐹1(𝛽) and 𝐹2(𝛽), 

with maxima points equaling, respectively, the silver ratio (𝜹𝒔 = √2 − 1 ≈ 0.414213…) 
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and the golden ratio (𝜑 =
√5−1  

2
 ≈ 0.618033…) and corresponding maximal values of 

𝜹𝒔
2
 ≈ 0.171573 and  𝜑5 ≈  0.090170, respectively.  Interestingly, the function 𝐹2(x) =  

𝑥2 
1−𝑥

1+ 𝑥
 also appears in quantum mechanics [49] [53]. In Hardy’s model of 

entanglement, the probability distribution function, with 𝑝𝜏  entanglement variable, 

running from not entangled states to completely entangled ones, is given by  

 

P (𝑝𝜏) = 𝑝𝜏
2  

1−𝑝𝜏

1+ 𝑝𝜏
.                                              (32)  

                     

Maximized at 𝑝𝜏 = φ ≈ 0.618033…, with corresponding maximum equaling 𝜑5 ≈ 

0.09016994…. 

 

 8. Concluding remarks 

       Friedrich von Schiller (1759–1805), the German poet, playwright, writer, historian, 

and philosopher, defined “grace” (Anmut) as “beauty in motion” [95] [96]. The 

theoretical investigation of the Doppler shift, as depicted in the Doppler formula, lends 

strong support to Schiller’s definition. The “graceful” golden and silver ratios, 

embedded in the formula, prescribes that, irrespective of the beauty of an object’s wave 

source, the frequency modulation of waves emitted from a moving object has beauty in 

itself. Our analysis revealed that the silver and golden ratios, two extremely irrational 

numbers, with enormous appearances in aesthetics, mathematics, and the sciences, 

emerge more than once in the Doppler formula and its moments. Strikingly, the silver 

ratio is invariant under the Doppler frequency shift transformation, such that F(𝜹𝒔) = 

𝜹𝒔 = √2 − 1 [Eq.  (22)]. The golden ratio also exhibits a special symmetry in F(β) as 

well [see Eqs. (23), (24)]. Further, more silver and golden ratio symmetries appear in 

the first three moments of the Doppler formula (see Table 1 and Fig. 4b).  

       Paul Dirac posited, “As time goes on, it becomes increasingly evident that the rules 

that the mathematician finds interesting are the same as those that nature has chosen” 

[1]. We cannot think of better support for Dirac’s opinion than the results of the 

investigation undertaken here. After all, the simple and beautiful Doppler formula was 

dictated to Christian Doppler by nature itself. In the same line of reasoning, the fact that 

the base formula and its first and second moment (𝐹𝑛(x) =  𝑥𝑛 
1−𝑥

1+ 𝑥
, n = 0, 1, 2) emerge 
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in more than one field of physics suggests the existence of a deeper level of reality, in 

which the same equation appears in various fields, are connected has yet to be 

discovered. 

       In his keynote address at the ICMC | SMC (2014) conference, John Chowning 

reflected about how he came to use the Golden Ratio in his music and inventions. He 

said, "The golden ratio fell into my ‘ear lap’ simply because it was ‘in the air’" ([84], 

p. 11). The results of this study confirms Chowning's intuition literally.  
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