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Abstract

The aim of this paper is to generalize problem 3 of the 2019 PROMYS exam,
which asks to show that the last 10 digits (in base 10) of t,, are same for all
n > 10, where ty = 3 and ty,; = 3%. The generalization shows that given
any odd positive integer p, t,, = t,, (mod (p?+1)") for all m > n > 1, where
to = p and ty4q = p'.

1 Introduction

The aim of this paper is to generalize the result of Problem 3 of the 2019
PROMYS exam.

Problem definition

Define the sequence {ty }ren, as
to =P, Tk+1 :pt’“Vk €Ny

where p is odd, Ny = {0,1,2,...} and N = {1,2,...}. We shall show that
given any n,m € N, with m > n,

tm = t, (mod (p* +1)")



In the original question that was in PROMYS 2019, only the special case of
p =3 and n = 10 was considered.

Since the claim is trivially true for p = 1, we will be neglecting that case.
Henceforth it is assumed that p > 3.

The arguments used in this paper have their origins in the generalization of
several numerical patterns noticed on computing the values of the functions
involved for the special case of p = 3 and values of n as large as computational
limits allowed.

2 Some useful identities and definitions

Identity 1. ad = bd (mod ¢) = a =b (mod c), where d,c # 0 and d and
¢ are co-prime, for a,b,c,d € 7.

Identity 2. 1+x+22+.. . +2* 1 = (z4+1) (22 +1)(1+2* +28+. . 2 *D)

Proof.
4k_1
1+x—|—$2+...+$4k_1:x
r—1
ok
=7 (x+1)(z* +1)

=@+ )@+ D)1 +2 +25 . 2 O

Definition 1. Define mod,(b) (for integers a and b, with a # 0) to be the
smallest non-negative integer s.t. (such that)

mody(b) = b (mod a)
Definition 2. Define ¢(n) € N to be the smallest positive integer s.t.
0 =1 (mod (5 +1)7)
Claim. Such a ¢(n) must exist.

Proof. We know that the sequence {mod 241y (p), modyz41y= (p*), mod 211y (p*), ...}
is periodic. If we assume that its period is some a € N s.t. V positive integers
k greater than or equal to some positive integer A > 1, we have

P =p* (mod (p* +1)")
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Using Identity 1, we can ‘cancel’ p* from both sides (since p and p? + 1 are
co-prime), which yields that a = ¢(n). ]

3 Some lemmas about the setup

Lemma 1. ¢(n) is a multiple of 4 ¥n € N.

Proof. For a proof by contradiction, assume ¢(n) = 4a + b, where a,b € Ny
and 1 < b < 3. We will now show that this leads to the contradiction that
b+#1,2,3.

Since p?™ =1 (mod (p? +1)") (by definition), we have

4a+b
P —1
— N
P+l
p—1 2 datb—1
p2+1(1+p+p +...+p )eN (1)

Let ky = 14+p+p?+...+p* 1. Hence, Identity 2 guarantees that ;’Q;Jrll x ki €
N. Also define k5 as

4a+b—1

ky = Z P

r=4a

In order for (1) to hold, we must have 52;:1 X ko € N.

Case I :b=1

In this case, ks = p?®. Since p and p? + 1 are co-prime, this means that p — 1
must be a multiple of p?+1, which is clearly false. Hence, b = 1 isn’t possible.

Case II : b=2

In this case, ko = p**+p = p*(p+1). Since p*® and p*+ 1 are co-prime,
this must mean that (p — 1)(p + 1) = p> — 1 is a multiple of p? + 1, which is
clearly false. Hence, b = 2 isn’t possible.

da+1

Case IIT : b=3
In this case, ko = pio+ptatl 4 plat? = ple(p? 4+ 1). Since p® and p?+1 are
co-prime, this must mean that (p—1)(p*+p+1) = (p—-1)(P*+ 1)+ (p—1)p
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is a multiple of p> 4+ 1. Hence, (p — 1)p = p* — p is a multiple of p* + 1, which
is clearly false. Hence, b = 3 isn’t possible. O

Lemma 2. VneN 3 ke N s.t. p(n+1) =ko(n).
Proof. Assume that ¢(n + 1) = a¢(n) + b, where a,b € Ny and b < ¢(n).

Since p?™*Y = 1 (mod (p* + 1)"*1), that must also mean that p?™"+) =
1 (mod (p*+1)"). Hence, we have

P+t =1 (mod (p* +1)")
p*™ =1 (mod (p*+1)"), so we have
P’ =1 (mod (p*+1)")

which is only possible if b = 0, since any other value of b would contradict
the definition of ¢(n). O

Lemma 3. Vn e N 3 ke N st gp(n+1)=ko(n) and k| p* + 1 (k divides
2
p°+1).

Proof. Let ¢(n) = 4q for some ¢ € N (using Lemma 1), and hence, let
¢(n + 1) = 4kq (using Lemma 2). Hence, we have

4dq 1
p .
=j5€N 2
o’ @
dqk
P 1
(p2 + 1)n+1 € N

p4q -1 1 +p4q +p8q 4o +p4q(k71)
X
(p* + 1) p*+1

eN (3)

Since p = 1 (mod (p? + 1)"), that also means that p? = 1 (mod p* + 1).
Hence (3) gives us

€N
P+l

J X
— jL+p+p 4+ pr*DY =0 (mod p? +1)
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<= jk =0 (mod p* +1) (4)

Since k is the smallest positive integer s.t. (4) holds (since the existence
of some positive integer lesser than k with this property will violate the
definition of ¢(n + 1)), k must be a factor of p* + 1. O

Lemma 4. ¢(n) is a factor of (p* +1)""' ¥V n > 3.
We will perform a proof by induction on n.
(I) For n =3
Proof. We have
=@ +1)(p*—-1)+1=1 (mod p*+1)
Hence, ¢(1) = 4 (using Lemma 1 and the definition of ¢(1)).

Assume ¢(2) = 4k for some k € N (using Lemma 1). Also, we have k| p*+ 1
(using Lemma 3). Using (4) (from the proof for Lemma 3), we have

p' -1 2
p2+1><k5()(modp +1)
— (p* — 1) x k=0 (mod p*+1) (5)

Since p is odd, p* — 1 and p? + 1 are multiples of 2. More importantly, p* — 1
is a multiple of 4 (since all odd numbers leave a residue of 1 or 3 modulo 4),
whereas p? + 1 is an odd multiple of 2.

Hence, it suffices for k to be a factor of ’% for (5) to hold. Hence, ¢(2) is
a factor of 2(p? + 1).

Assume that ¢(3) = 4kk’, for some k' € N (using Lemma 3). Hence, (4)
(from the proof Lemma 3) yields
Ak 1

ka’zo(mod P>+ 1) (6)



Note that £’ is also the smallest positive integer which satisfies (6) (by defi-
nition of ¢(3)).

p is odd, so that must mean that p* (and hence, p**) leaves residue 1 modulo

16. Moreover, since p?+1 is an odd multiple of 2, this must mean that (gsz_l)lQ
is a multiple of 4. Hence, it suffices for k&’ to be a factor of ’# for (6) to
hold. Hence, 4kk’ = ¢(3) is a factor of (p® + 1)2, as desired. O

(II) For n + 1 assuming true for n > 3

Proof. Assume that ¢(n) is a factor of (p* + 1)"! for some n > 3. Hence,
Lemma 3 implies that ¢(n + 1) must be a factor of (p* 4+ 1)", as desired. [J

Lemma 5. t,, =t, (mod ¢(n+1)) Vm>n>0.

We will perform a proof by induction in n.

(I) For n=0
Proof. Consider the following pair of mutually exclusive cases which cover

all possibilities. Also, recall that ¢(1) = 4.

Case a : p=1 (mod 4)
In this case, t,, = 1 (mod 4) ¥ m > 0, hence proving the desired result.

Case b : p=—1 (mod 4)
In this case, ¢, = —1 (mod 4) ¥ m > 0 (since t; is odd V k € Ny), hence
proving the desired result. O

(IT) For n =1, by induction on m

Proof. 1t’s trivially true for m = 1. We shall now prove it for m+ 1 assuming
it’s true for some m > 1. The induction hypothesis guarantees that

tm =t (mod ¢(2))
= p'm =p" (mod (p* +1)7)
=ty =ty (mod (p* +1)%) (7)

#(2) is a factor of 2(p* + 1), so that must mean that it’s also a factor of
(p*® +1)? (since p? + 1 is even). Hence, the desired result is trivially implied
from (7). O



(IIT) For n > 2 assuming true for n — 1
Proof. The induction hypothesis guarantees that
tm =ty_1 (mod ¢(n)) Ym>n—1
= p'm =pt (mod (p*+1)")
= p'm =p'" ! (mod ¢(n+1)) (by Lemma 3.4)
— ty =t, (mod ¢(n+1)) Vm>n O

4 Proving the final result
Proof. Lemma 5 grants us
tm =t (mod ¢(n+1)) Vm>n>0

— pm =™ (mod (P> +1)"TH) Vm>n>0
trg1 = top1 (mod (PP +1)" ™) Vm>n>0
tm =t, (mod (P* + 1)) Vm>n>1 O



