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Abstract

The aim of this paper is to generalize problem 3 of the 2019 PROMYS exam,
which asks to show that the last 10 digits (in base 10) of tn are same for all
n ≥ 10, where t0 = 3 and tk+1 = 3tk . The generalization shows that given
any odd positive integer p, tm ≡ tn (mod (p2 + 1)n) for all m ≥ n ≥ 1, where
t0 = p and tk+1 = ptk .

1 Introduction

The aim of this paper is to generalize the result of Problem 3 of the 2019
PROMYS exam.

Problem definition

Define the sequence {tk}k∈N0 as

t0 = p, tk+1 = ptk ∀ k ∈ N0

where p is odd, N0 = {0, 1, 2, . . .} and N = {1, 2, . . .}. We shall show that
given any n,m ∈ N, with m ≥ n,

tm ≡ tn (mod (p2 + 1)n)
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In the original question that was in PROMYS 2019, only the special case of
p = 3 and n = 10 was considered.

Since the claim is trivially true for p = 1, we will be neglecting that case.
Henceforth it is assumed that p ≥ 3.

The arguments used in this paper have their origins in the generalization of
several numerical patterns noticed on computing the values of the functions
involved for the special case of p = 3 and values of n as large as computational
limits allowed.

2 Some useful identities and definitions

Identity 1. ad ≡ bd (mod c) =⇒ a ≡ b (mod c), where d, c 6= 0 and d and
c are co-prime, for a, b, c, d ∈ Z.

Identity 2. 1+x+x2+. . .+x4k−1 = (x+1)(x2+1)(1+x4+x8+. . .+x4(k−1))

Proof.

1 + x+ x2 + . . .+ x4k−1 =
x4k − 1

x− 1

=
x4k − 1

x4 − 1
(x+ 1)(x2 + 1)

= (x+ 1)(x2 + 1)(1 + x4 + x8 + . . .+ x4(k−1))

Definition 1. Define moda(b) (for integers a and b, with a 6= 0) to be the
smallest non-negative integer s.t. (such that)

moda(b) ≡ b (mod a)

Definition 2. Define φ(n) ∈ N to be the smallest positive integer s.t.

pφ(n) ≡ 1 (mod (p2 + 1)n)

Claim. Such a φ(n) must exist.

Proof. We know that the sequence {mod(p2+1)n(p), mod(p2+1)n(p2), mod(p2+1)n(p3), . . .}
is periodic. If we assume that its period is some a ∈ N s.t. ∀ positive integers
k greater than or equal to some positive integer A ≥ 1, we have

pk+a ≡ pk (mod (p2 + 1)n)
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Using Identity 1, we can ‘cancel’ pk from both sides (since p and p2 + 1 are
co-prime), which yields that a = φ(n).

3 Some lemmas about the setup

Lemma 1. φ(n) is a multiple of 4 ∀n ∈ N.

Proof. For a proof by contradiction, assume φ(n) = 4a + b, where a, b ∈ N0

and 1 ≤ b ≤ 3. We will now show that this leads to the contradiction that
b 6= 1, 2, 3.

Since pφ(n) ≡ 1 (mod (p2 + 1)n) (by definition), we have

p4a+b − 1

p2 + 1
∈ N

=⇒ p− 1

p2 + 1
(1 + p+ p2 + . . .+ p4a+b−1) ∈ N (1)

Let k1 = 1+p+p2+. . .+p4a−1. Hence, Identity 2 guarantees that p−1
p2+1
×k1 ∈

N. Also define k2 as

k2 =
4a+b−1∑
r=4a

pr

In order for (1) to hold, we must have p−1
p2+1
× k2 ∈ N.

Case I : b = 1
In this case, k2 = p4a. Since p and p2 + 1 are co-prime, this means that p− 1
must be a multiple of p2+1, which is clearly false. Hence, b = 1 isn’t possible.

Case II : b = 2
In this case, k2 = p4a + p4a+1 = p4a(p+ 1). Since p4a and p2 + 1 are co-prime,
this must mean that (p− 1)(p+ 1) = p2 − 1 is a multiple of p2 + 1, which is
clearly false. Hence, b = 2 isn’t possible.

Case III : b = 3
In this case, k2 = p4a+p4a+1+p4a+2 = p4a(p2+p+1). Since p4a and p2+1 are
co-prime, this must mean that (p− 1)(p2 + p+ 1) = (p− 1)(p2 + 1) + (p− 1)p
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is a multiple of p2 + 1. Hence, (p− 1)p = p2− p is a multiple of p2 + 1, which
is clearly false. Hence, b = 3 isn’t possible.

Lemma 2. ∀n ∈ N ∃ k ∈ N s.t. φ(n+ 1) = k φ(n).

Proof. Assume that φ(n+ 1) = a φ(n) + b, where a, b ∈ N0 and b < φ(n).

Since pφ(n+1) ≡ 1 (mod (p2 + 1)n+1), that must also mean that pφ(n+1) ≡
1 (mod (p2 + 1)n). Hence, we have

paφ(n)+b ≡ 1 (mod (p2 + 1)n)

paφ(n) ≡ 1 (mod (p2 + 1)n), so we have

pb ≡ 1 (mod (p2 + 1)n)

which is only possible if b = 0, since any other value of b would contradict
the definition of φ(n).

Lemma 3. ∀n ∈ N ∃ k ∈ N s.t φ(n+ 1) = k φ(n) and k | p2 + 1 (k divides
p2 + 1).

Proof. Let φ(n) = 4q for some q ∈ N (using Lemma 1 ), and hence, let
φ(n+ 1) = 4kq (using Lemma 2 ). Hence, we have

p4q − 1

(p2 + 1)n
= j ∈ N (2)

p4qk − 1

(p2 + 1)n+1
∈ N

⇐⇒ p4q − 1

(p2 + 1)n
× 1 + p4q + p8q + . . .+ p4q(k−1)

p2 + 1
∈ N (3)

Since p4q ≡ 1 (mod (p2 + 1)n), that also means that p4q ≡ 1 (mod p2 + 1).
Hence (3) gives us

j × 1 + p4q + p8q + . . .+ p4q(k−1)

p2 + 1
∈ N

⇐⇒ j(1 + p4q + p8q + . . .+ p4q(k−1)) ≡ 0 (mod p2 + 1)
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⇐⇒ jk ≡ 0 (mod p2 + 1) (4)

Since k is the smallest positive integer s.t. (4) holds (since the existence
of some positive integer lesser than k with this property will violate the
definition of φ(n+ 1)), k must be a factor of p2 + 1.

Lemma 4. φ(n) is a factor of (p2 + 1)n−1 ∀ n ≥ 3.

We will perform a proof by induction on n.

(I) For n = 3

Proof. We have

p4 = (p2 + 1)(p2 − 1) + 1 ≡ 1 (mod p2 + 1)

Hence, φ(1) = 4 (using Lemma 1 and the definition of φ(1)).

Assume φ(2) = 4k for some k ∈ N (using Lemma 1 ). Also, we have k | p2 + 1
(using Lemma 3 ). Using (4) (from the proof for Lemma 3 ), we have

p4 − 1

p2 + 1
× k ≡ 0 (mod p2 + 1)

=⇒ (p2 − 1)× k ≡ 0 (mod p2 + 1) (5)

Since p is odd, p2− 1 and p2 + 1 are multiples of 2. More importantly, p2− 1
is a multiple of 4 (since all odd numbers leave a residue of 1 or 3 modulo 4),
whereas p2 + 1 is an odd multiple of 2.

Hence, it suffices for k to be a factor of p2+1
2

for (5) to hold. Hence, φ(2) is
a factor of 2(p2 + 1).

Assume that φ(3) = 4kk′, for some k′ ∈ N (using Lemma 3 ). Hence, (4)
(from the proof Lemma 3 ) yields

p4k − 1

(p2 + 1)2
× k′ ≡ 0 (mod p2 + 1) (6)
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Note that k′ is also the smallest positive integer which satisfies (6) (by defi-
nition of φ(3)).

p is odd, so that must mean that p4 (and hence, p4k) leaves residue 1 modulo

16. Moreover, since p2+1 is an odd multiple of 2, this must mean that p4k−1
(p2+1)2

is a multiple of 4. Hence, it suffices for k′ to be a factor of p2+1
2

for (6) to
hold. Hence, 4kk′ = φ(3) is a factor of (p2 + 1)2, as desired.

(II) For n+ 1 assuming true for n ≥ 3

Proof. Assume that φ(n) is a factor of (p2 + 1)n−1 for some n ≥ 3. Hence,
Lemma 3 implies that φ(n+ 1) must be a factor of (p2 + 1)n, as desired.

Lemma 5. tm ≡ tn (mod φ(n+ 1)) ∀ m ≥ n ≥ 0.

We will perform a proof by induction in n.

(I) For n = 0

Proof. Consider the following pair of mutually exclusive cases which cover
all possibilities. Also, recall that φ(1) = 4.

Case a : p ≡ 1 (mod 4)
In this case, tm ≡ 1 (mod 4) ∀ m ≥ 0, hence proving the desired result.

Case b : p ≡ −1 (mod 4)
In this case, tm ≡ −1 (mod 4) ∀ m ≥ 0 (since tk is odd ∀ k ∈ N0), hence
proving the desired result.

(II) For n = 1, by induction on m

Proof. It’s trivially true for m = 1. We shall now prove it for m+1 assuming
it’s true for some m ≥ 1. The induction hypothesis guarantees that

tm ≡ t1 (mod φ(2))

=⇒ ptm ≡ pt1 (mod (p2 + 1)2)

=⇒ tm+1 ≡ t2 (mod (p2 + 1)2) (7)

φ(2) is a factor of 2(p2 + 1), so that must mean that it’s also a factor of
(p2 + 1)2 (since p2 + 1 is even). Hence, the desired result is trivially implied
from (7).
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(III) For n ≥ 2 assuming true for n− 1

Proof. The induction hypothesis guarantees that

tm ≡ tn−1 (mod φ(n)) ∀ m ≥ n− 1

=⇒ ptm ≡ ptn−1 (mod (p2 + 1)n)

=⇒ ptm ≡ ptn−1 (mod φ(n+ 1)) (by Lemma 3.4 )

=⇒ tm ≡ tn (mod φ(n+ 1)) ∀ m ≥ n

4 Proving the final result

Proof. Lemma 5 grants us

tm ≡ tn (mod φ(n+ 1)) ∀ m ≥ n ≥ 0

=⇒ ptm ≡ ptn (mod (p2 + 1)n+1) ∀ m ≥ n ≥ 0

tm+1 ≡ tn+1 (mod (p2 + 1)n+1) ∀ m ≥ n ≥ 0

tm ≡ tn (mod (p2 + 1)n) ∀ m ≥ n ≥ 1
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