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ON CHOWLA’S CONJECTURE

T. AGAMA

Abstract. In this paper, using the area method, we show that there exist

some 0 < ǫ < 1 such that
∑

n≤x

λ(n)λ(n+ 1)≪ x
1+ǫ

e
−2c(log x)

4

5 (log log x)
−1

5
.

The Chowla conjecture which asserts that
∑

n≤x

λ(n)λ(n+ 1) = o(x)

as x −→∞ then follows from this estimate.

1. Introduction and statement

Let λ : N −→ R be the Liouville function, defined by λ(n) = (−1)Ω(n), where

Ω(n) :=
∑

pα||n

α

is the number of prime factors counting multiplicity function. It is a well-known

conjecture of chowla that
∑

n≤x

λ(n)λ(n+ 1) = o(x)

as x −→∞. A recent progress on this conjecture affirms that

∑

n≤x

λ(n)λ(n+ 1)

n
= o(log x)

as x −→∞ [1]. Using a different method, we establish the upper bound

∑

n≤x

λ(n)λ(n+ 1)≪ x1+ǫe−2c(log x)
4

5 (log log x)
−1

5

for some ǫ ∈ (0, 1). The chowla conjecture therefore follows from this estimate as

x −→∞.
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2. The area method

In this section we introduce and develop a fundamental method for solving problems

related to correlations of arithmetic functions. This method is fundamental in the

sense that it uses the properties of four main geometric shapes, namely the triangle,

the trapezium, the rectangle and the square. The basic identity we will derive is

an outgrowth of exploiting the areas of these shapes and putting them together in

a unified manner.

Theorem 2.1. Let {rj}
n
j=1 and {hj}

n
j=1 be any sequence of real numbers, and let

r and h be any real numbers satisfying
n
∑

j=1

rj = r and
n
∑

j=1

hj = h, and

(r2 + h2)1/2 =

n
∑

j=1

(r2j + h2
j )

1/2,

then

n
∑

j=2

rjhj =
n
∑

j=2

hj

( j
∑

i=1

ri +

j−1
∑

i=1

ri

)

− 2
n−1
∑

j=1

rj

n−j
∑

k=1

hj+k.

Proof. Consider a right angled triangle, say < ABC in a plane, with height h and

base r. Next, let us partition the height of the triangle into n parts, not neccessarily

equal. Now, we link those partitions along the height to the hypothenus, with the

aid of a parallel line. At the point of contact of each line to the hypothenus, we

drop down a vertical line to the next line connecting the last point of the previous

partition, thereby forming another right-angled triangle, say < A1B1C1 with base

and height r1 and h1 respectively. We remark that this triangle is covered by the

triangle < ABC, with hypothenus constituting a proportion of the hypothenus of

triangle < ABC. We continue this process until we obtain n right-angled triangles

< AjBjCj , each with base and height rj and hj for j = 1, 2, . . . n. This construction

satisfies

h =
n
∑

j=1

hj and rj =
n
∑

j=1

rj

and

(r2 + h2)1/2 =
n
∑

j=1

(r2j + h2
j )

1/2.

Now, let us deform the original triangle < ABC by removing the smaller triangles

< AjBjCj for j = 1, 2, . . . n. Essentially we are left with a rectangles and squares

piled on each other with each end poking out a bit further than the one just above,

and we observe that the total area of this portrait is given by the relation

A1 = r1h2 + (r1 + r2)h3 + · · · (r1 + r2 + · · ·+ rn−2)hn−1 + (r1 + r2 + · · ·+ rn−1)hn

= r1(h2 + h3 + · · ·hn) + r2(h3 + h4 + · · ·+ hn) + · · ·+ rn−2(hn−1 + hn) + rn−1hn

=
n−1
∑

j=1

rj

n−j
∑

k=1

hj+k.
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On the other hand, we observe that the area of this portrait is the same as the

difference of the area of triangle < ABC and the sum of the areas of triangles

< AjBjCj for j = 1, 2, . . . , n. That is

A1 =
1

2
rh−

1

2

n
∑

j=1

rjhj .

This completes the first part of the argument. For the second part, along the

hypothenus, let us construct small pieces of triangle, each of base and height (ri, hi)

(i = 1, 2 . . . , n) so that the trapezoid and the one triangle formed by partitioning

becomes rectangles and squares. We observe also that this construction satisfies

the relation

(r2 + h2)1/2 =
n
∑

i=1

(r2i + h2
i )

1/2,

Now, we compute the area of the triangle in two different ways. By direct strategy,

we have that the area of the triangle, denoted A, is given by

A = 1/2

( n
∑

i=1

ri

)( n
∑

i=1

hi

)

.

On the other hand, we compute the area of the triangle by computing the area of

each trapezium and the one remaining triangle and sum them together. That is,

A = hn/2

( n
∑

i=1

ri +

n−1
∑

i=1

ri

)

+ hn−1/2

( n−1
∑

i=1

ri +

n−2
∑

i=1

ri

)

+ · · ·+ 1/2r1h1.

By comparing the area of the second argument, and linking this to the first argu-

ment, the result follows immediately. �

Theorem 2.2. Let f : N −→ R be an arithmetic function. Suppose there exist

some constant 0 < K(x, l0) < x such that

K(x, l0)

x

∑

n≤x−1

∑

j≤x−n

f(n)f(n+ j) =
∑

n<x

f(n)f(n+ l0),

where 1 ≤ l0 < x, then

∑

n<x

f(n)f(n+ l0) =
K(x, l0)

x

∑

2≤n≤x

f(n)
∑

m≤n−1

f(m).

Proof. By Theorem 2.1, we obtain

∑

n≤x

f2(n) = f2(1) +
∑

2≤n≤x

f(n)

(

∑

m≤n−1

f(m) +
∑

m≤n

f(m)

)

− 2
∑

n≤x−1

f(n)
∑

s≤x−n

f(n+ s)

for f : N −→ R by taking rj = hj = f(j). We find from this identity that
∑

n≤x−1

∑

j≤x−n

f(n)f(n+ j) =
∑

2≤n≤x

f(n)
∑

m≤n−1

f(m).
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Under the hypothesis, there exist some constant x > K(x, l0) > 0 for a fixed

1 ≤ l0 < x such that
∑

n<x

f(n)f(n+ l0) =
K(x, l0)

x

∑

n≤x−1

∑

j≤x−n

f(n)f(n+ j).

It follows that
∑

n<x

f(n)f(n+ l0) =
K(x, l0)

x

∑

2≤n≤x

f(n)
∑

m≤n−1

f(m),

thereby ending the proof. �

3. Application to the chowla conjecture

In this section we apply the area method developed in the previous section to the

two-point chowla conjecture. We obtain the following weaker result, in the following

sequel.

Theorem 3.1. There exist some 0 < ǫ < 1 such that
∑

n<x

λ(n)λ(n+ 1)≪ x1+ǫe−2c(log x)
4

5 (log log x)
−1

5 .

Proof. Applying the area method, It follows that there exist some constant 0 <

K(x, 1) < x such that we can write

∑

n<x

λ(n)λ(n+ 1) =
K(x, 1)

x

∑

2≤n≤x

λ(n)
∑

m≤n−1

λ(m).

Using the estimate
∑

n≤x

λ(n)≪ xe−c(log x)
4

5 (log log x)
−1

5 ,

we find that
∑

2≤n≤x

λ(n)
∑

m≤n−1

λ(m)≪ x2e−2c(log x)
4

5 (log log x)
−1

5 .

It follows that we can write
∑

n≤x

λ(n)λ(n+ 1)≪ K(1, x)xe−2c(log x)
4

5 (log log x)
−1

5 .

Since K(x, 1) < x, we can write K(x, 1) := xδ for some 0 < δ < 1. Thus we find

that
∑

n<x

λ(n)λ(n+ 1)≪ x1+δe−2c(log x)
4

5 (log log x)
−1

5 ,

thereby ending the proof. �

An immediate consequence of this result is that of the chowla conjecture, which

asserts:
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Corollary 1. The estimate
∑

n≤x

λ(n)λ(n+ 1) = o(x)

holds as x −→∞.

Proof. The result follows from Theorem 3.1. �

4. Final remarks

In this paper we have established an upper bound for the two-point correlation of

the Liouville function λ(n) given by
∑

n≤x

λ(n)λ(n+ 1)≪ x1+ǫe−2c(log x)
4

5 (log log x)
−1

5

for some 0 < ǫ < 1. This allowed us to establish the chowla conjecture. This

method may also have an independent interest in relation to other open problems

involving two-point correlations.
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