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Abstract

We determine the total energy of the Schwarzschild metric. We show use of divergence theorem

leads to a total energy inconsistency.

1 Schwarzschild metric

Units are chosen so that ¢ = G = 1. The Schwarzschild metric [1] is
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2 Energy-momentum tensor of gravitational field

The Einstein field equations are [1]
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Indices on hy,, R,(}l,), and 0/0z* are raised and lowered with n’s. For example h*, = n’h,, and
0/0zy = n0/0x”. We interpret t** as the energy- momentum tensor of the gravitational field [1]. We
have by (4) and (8) that R(%) = 0. Now for the Schwarzschild metric R, = 0 so by (4), (7), (8), and

R, = R,(}V) = 0 we have
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At a point (¢,z,0,0) with z > 0
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Using (9) and (10) we can calculate toy at (¢,2,0,0). Now ¢ is spherically symmetric so we can replace
x by 7 in tg calculated at (t,z,0,0) giving
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3 Total energy and divergence theorem

Since T, = 0 the total energy [1] of the Schwarzchild metric is then using (11)
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which is not finite. Alternatively let us calculate the total energy using the divergence theorem. We
have [1]
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The total energy using (6) and (13) is then
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where repeated Latin indices are summed over 1,2,3. We now assume we can apply the divergence
theorem to (15) giving
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where ny = 2% /r, dQ) = sin0dfdy, and the integral is over a large sphere of radius . Calculating this
for the metric (3) gives P® = M which is finite. Without using the divergence theorem P is not finite
but using the divergence theorem P° = M. This is an inconsistency.
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