
1 

 

The non-periodic solution of a truly nonlinear oscillator with 

power nonlinearity 

M. D. Monsia
1*

 

1-Department of  Physics, University of  Abomey-Calavi, Abomey-Calavi,   

01.B P.526, Cotonou, BENIN  

Abstract 

In this paper a well-known truly nonlinear oscillator with power nonlinearity 

mentioned to have only periodic solutions is investigated. It has been shown that 

such a proposition is not mathematically consistent as the equation may exhibit 

exact and general non-periodic solutions calculated for the first time using the 

generalized Sundman transformation. 
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Introduction 

In the literature the differential equation 
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1

=++ xxx&&                                                                                                        (1) 

has been studied for many years as a truly nonlinear conservative oscillator. The 

equation (1) is also mentioned to have only periodic solutions. However in a 

previous paper [1] we have shown that this equation admits exact non-periodic 

solutions so that the proposition following which its solutions are periodic is not 

consistent from mathematical point of view. For now, consider the differential 

equation with fractional nonlinearity 

  0=+ l
&& xcx                                                                                                           (2) 

where 1=c , 12 += nl , n  being a positive integer, which has been for a long time 

studied in the literature as a truly nonlinear conservative oscillator [2-10] under 

the conditions that Ax =)0( , and 0)0( =x& . As such the preceding authors and 

several others claimed that the equation (2) has only periodic solutions. In his 

study Gottlieb [6] generalizes the Mickens equation (2) by including the sign 

function as  
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where 1<<0 α , and gives the so-called exact expression for various values of  
α  of the angular frequency. Later the equation (3) has been investigated in the 

form [11-20] 

0
12 =+
−α

α xxcx&&                                                                                                     (4) 

for 0≥α , and 2
αc  is a real constant. These authors and many others claimed on 

the basis of phase plane analysis that all the solutions of the equation (4) are 

periodic. In this regard, Cveticanin [12] investigated the periodic properties of 

(4) and claimed to have computed its exact time period and approximate 

solution. In [14], Cveticanin and Poigany claimed to have solved the equation 

(4) by periodic Ateb function as discovered earlier by Rosenberg [21]. Such a 

solution as a periodic Ateb function is also computed by Cveticanin and Kovacic 

in [17]. In [15], Belendez and coworkers claimed to have determined the Fourier 

series expansion for the exact solution of (4). Using the so-called 

symmetrization method, Ghose Choudhury and his group claimed to have 

recovered the time period expression given by Cveticanin [12]. It is important to 

recall that the explicit solution obtained by Cveticanin and coworkers by means 

of the first integral of energy using initial conditions has been calculated under 

the hypothesis that all solutions of the equation (4) are periodic for 0≥α . The 

question is thus to ask whether there exists 0≥α  such that the solution of (4) is 

non-periodic. If such a value exists, then the calculation of the so-called exact 

periodic solutions performed previously in the literature for 0≥α , is not valid. 

In this way the proposition following which the equation (4) is a truly nonlinear 

conservative oscillator and has only periodic solutions, becomes non consistent 

from mathematical point of view. The present work predicts the existence of 

such a value of 0≥α , leading to non-periodic solutions of (4). To demonstrate 

this prediction we establish that the equation (2) where  c   and l  are now 

arbitrary parameters belongs to a general class of nonlinear differential 

equations previously formulated by Koudahoun et al. [22] (section 2) and 

calculate the exact and general solution of (2) (section 3) from which we show 

that for 3,
3

5
,

3

1
=α , the equation (4) exhibits non-periodic solutions (section 4). 

Finally a conclusion of the work is given. 

2- Statement of equation (2) 
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In their study Koudahoun et al. [22] applied the generalized Sundman 

transformation 
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where l   and m   are arbitrary parameters, to the second-order linear differential 

equation 

byay =+ )()('' ττ                                                                                              (6) 

to obtain the general second-order nonlinear differential equations 
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Setting 1=m , leads to 

( ) 0)()()( =−+ ∫ xgbdxxgxgax lll
&&                                                                         (8) 

For xxg =)( , the equation (8) turns into 
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where 1−≠l . 

Applying 0=a , the equation (9) reduces to 

0=− l
&& xbx                                                                                                      (10) 

which is identical to (2) for bc −= , and 12 += nl , with 0<b . Now we may 

calculate the exact and general solution of (10) in the next section. 

3- Exact and general solution of (10) 

From (5) one may compute the solution )(tx  as follows 
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For 0=a , the solution of (6) may read  
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where 1K  and 2K  are arbitrary parameters so that the solution (11) becomes 
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where τ  satisfies the quadrature 
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where 3K  is an arbitrary parameter.  

From the relation (14) we may show our prediction in the following section. 

4- Exact and general solution for 3,
3

5
,

3

1
=α . 

In this section we show the existence of non-periodic solutions of equation (4) 

for 3,
3

5
,

3

1
=α .   

In the case 
3

1
=α , the equation (4) reduces to 
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The equation (15), as mentioned previously, is an interesting equation since it 

has been investigated for many years in the literature as a truly nonlinear 

oscillator [1-9] for 1=c , which leads to 
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The equation (16) has been also the subject of the thesis dissertation by 

Wilkerson [10]. The cases 
3

5
=α , and 3=α , have been solved in [12]. Let us 

now consider the equation (14). Given that 1K  and 2K  are arbitrary constants, it 

is always possible to write (14) as 

( ) 3

1
1

2

1
2

Kt
b

d +




















 +=
+

+
−

∫
l

l

l

l

lττ                                                                          (17) 

where 021 == KK . 

Integrating the left hand side of (17) leads to obtain 
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where 34
1

1
KK 
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l , and the exact and general solution (13) becomes  
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where K  is a new arbitrary constant. 

Substituting 
3

1
=l , yields the solution (19) of (10) as 
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Applying cb −= , the solution of (15) reads 

( ) ( )3
2

3

2

3

6
1)( Kt

c
tx +







−=                                                                                   (21) 

from which the desired solution of (16) takes the form 
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that is  
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where  i   is the pure imaginary number. 

Case 
3

5
=α . 

In this case the equation (4) gives 
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Using the exact and general solution (19) for 
3

5
=l  , one may obtain the solution 

of (24) in the form 
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Case 3=α . 

This case yields as equation 

03 =+ xx&&                                                                                                          (26) 

From (19), applying 3=l , one may obtain the solution of (26) as 
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It is worth to note that for 1=α , the equation (4) gives the equation of the 

harmonic oscillator 

02
1 =+ xcx&&                                                                                                        (28) 

for which the present theory gives as solution 
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In this situation, the real part of (29) that is  

[ ] [ ]011 sin)(Re Ktcctx +−=                                                                                  (30)     

is also solution of (28), where KcK 10 = . As can be seen, the amplitude of 

solution (30) depends on the frequency 1c  of the harmonic oscillator as found in 

a previous work [23]. It is easy to observe that the solutions (23), (25) and (27) 

are not periodic but consist of complex-valued functions. In this context we have 

shown the existence of 0≥α , such that the supposed and well-known truly 

nonlinear conservative oscillator (4) may exhibit non-periodic solutions. That 

being so a conclusion for the work may be given. 

Conclusion 

A well-known truly nonlinear oscillator mentioned in the literature to have only 

periodic solutions is investigated in this work. It has been shown that such a 

proposition is not consistent from mathematical point of view by exhibiting 
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exact and general non-periodic solutions for this equation using the generalized 

Sundman transformation. 
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