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Abstract 

Experiments were performed to measure the deflection of projectiles moving past rotating spheres. A theory of 

an inertial gravitational Co-Field, proposed by the author, predicted such deflections. Deep space mission 

spacecraft flybys of the earth revealed anomalous deflections of spacecraft. The present experiments explore 

such deflections as a function of experiment geometry, projectile velocity, sphere angular velocity, and solid or 

hollow spheres.  The Co-Field theory correctly predicted projectile deflections. It explained several unanticipated 

data results and revealed the need for a Co-Field Constant Multiplier to the model. 

 

I. INTRODUCTION 
 

The proposed gravitational Co-Field theory together with the spacecraft flyby anomalies prompted this 

experimental study. Upon completion of the Co-Field theory, it was unclear whether any corroborating data 

existed [1]. A literature survey revealed the Anderson et.al. paper [2] on spacecraft-earth flyby anomalies. 

Anomalous changes in velocity were measured during spacecraft-Earth flybys on deep space missions 

launched between 1990 and 2006. A semi-empirical description which is in agreement with results for the 

anomalous velocity deflections was developed by Anderson et al. Numerous attempts to explain the data were 

unsuccessful [3]. It was seen that the Co-Field theory provided a physical basis for the semi-empirical model 

and the observed deflections. The present experimental study further explores the interaction of objects moving 

in the field of rotating spheres. 

 

A theorem by Helmholtz [4] states that a complete field is defined by the combination of an irrotational, 

conservative field and a rotational, solenoidal field. Coulombs Law which defines the electric field and the 

magnetic field are such fields. The fundamental basis of the Gravity and Co-Field model is that the total force 

acting on a mass moving in a gravitational Co-Field is given by Newton’s law of universal gravitation field plus a 

rotational Co-Field. The generalized total field, Γ=F/m, used to develop the field equations of gravitation, is  
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with the gravitational constant G, replaced by G= 1/4πϵog.  The electromagnetic equivalent of Equation (1) is 
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Because the two equations are so similar, operations on either will yield functionally similar results. Maxwell's 

equations, as reduced to four vector equations by Heaviside [5], were deduced from the experimental data of 

that time. The same divergence and curl operators used on Equation (2) also produce Maxwell's equations.   

The Co-Field model generally uses the curl in differential form, expressed in cylindrical coordinates. This 

approach defined the Co-Field Ω, the acceleration of a mass having a velocity V in the Co-Field, and an Ω 

dipole. 

II. GRAVITATIONAL CO-FIELD MODEL 
 

Section II is a brief summary of the gravitational Co-Field model. It shows the derivation of results listed above. 

Results are also presented for the parallel analysis in electromagnetism.  
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A. Inertial and Electrical Co-Fields 
The fundamental assumption of the Gravity and Co-Field model is that the total force acting on a mass moving 

in a gravitational Co-Field is given by Newton’s inverse square force plus a rotational force. The generalized 

total field, Γ = F/m, used to develop the field equations of gravitation, with the traditional gravitational constant, 

G, replaced by G= 1/4πϵog is 

ˆˆg
2

og

..F M= = r + r θm 4πε r
θΓ

                                                     
(1)

 
This re-definition of G in Equation (1) is done to put the gravitational equation into the same format as for 

electrical force and to develop the gravitational equivalents of permeability and permittivity for the co-field dipole 

field. The electromagnetic analog of Equation (1) is 

ˆˆ
2
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(2)
 

The divergence and curl of Equation (2) and of its resulting co-field B results in Maxwell’s equations. In  

Equation (2), the first term is irrotational and therefore the curl is zero; the second, rotational term is non-zero.  

Conversely, the divergence of the first term is non-zero and the second term is zero. With xV expressed in 

cylindrical coordinates and considering the z component only, the differential form of the curl of Equation (1) 

results in: 

ˆ∂ ∂
︵2θ ︶  = ∂t ∂t



   Ωz
                                                                    

(3) 

Ω=2ω                                                               (4)
 

In E&M, B has the units of M/QT so xE yields 

m=
q

B ω
                                                             

(5)
 

Thus, both the B field and the inertial Ω field are angular velocity fields with the difference that the B field carries 

mass and charge. 

 

B. The Dimensional Constants ϵo and μ0; ϵog and μ0g 
In the case of Electromagnetism, ϵo is a universal constant, but only because a single particle is involved, the 

electron. Starting with Coulomb’s law and invoking dimensional analysis,  
2
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Noting that Equation (8) has the familiar form of 0
2= 1 / oε μ c  
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Let r0 equal the Thompson electron radius, M the electron mass, and q its charge. Re-arranging and setting  

ro/t = c, the speed of light, yields μ0 = 4ᴫ x 10-7.   Since both μ0 and c are constants, ϵ0 is a constant. 
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The derivation of μ0 and its value provides a basis for a similar approach to determining its gravitational 

counterpart μ0g.  For the gravitational case, a possible constant K was introduced as part of the dimensional 

analysis.  It was seen in the Gravitational & Co-Field theory [1] that K=2. 

2 2
0g

F M L=  =  
m K4πε L T

                                                     

(11)

 
Re-arranging and assigning L=R0 one has, dimensionally 

0

2

og 2 2
og

M T 1=
8 R R μ v

ε π 
 

  
 

                                                                                                             

(12)
 

 

o
og

8πRμ
M

                                                                                                                         

(13)

 

As is the case for μ0, μ0g is also a constant but is a constant for only the principal R0 and M of a given system. 

To illustrate, for the Earth-Moon system R0 is the Earths radius and M is its mass. For the Sun and its planets, 

R0 is the radius of the sun and M its mass. 

  

That ϵ0g  and G are constants is shown by re-formatting Equation (11) with its dimensional terms 

 

31 K'3

2 2
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(14) 

The final term in Equation (14) is recognized as Euler's 3rd Law which is a constant. The constant K' determines 

the system of units employed. This is a variation of the standard derivation of Kepler's 3rd law. 

 

C. The Inertial Dipole Field 
The following relationship was determined using the differential form of the curl: 

2
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(15) 

The first term of Equation (15) is the basis for an inertial version of the Biot-Savart equation for magnetism: 

0g
2

μ idl sinθ
dΩ =

4πR                                                                           
(16) 

Assuming a mass in a circular orbit, whose current is M/T, and integrating to obtain the value of Ω along the axis 

yields  
2

0g
2 2 3 2

μ iR
2 ︵R + Z ︶ 

 
                                                                       

(17) 

where R is the distance from a point on the circular orbit to a point on the axis and Z is the distance from the 

center of the orbit to a point on the axis. If R=0, the value of Ω at the orbit center is 2ω. Multiplying both 

numerator and denominator of Equation (17) by π and setting R=0 yields, with iA = iπR2 = μg, 

0g gμ μ
= 32πZ


                                                                                  

(18) 

The radial value, from the axis, Z=0, for a dipole in the equatorial plane is 1/2 the axial value.                                                     

0g gμ μ
Ω = 34πR                                                                                  

(19) 
 

 

In Equation (3), xΩ defined the inertial co-field Ω. The integral form of curl Γ is derived from  

 θ
d 2a ︵2πr ︶  = 2ωπr
dt                                                                        

(20) 
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Assuming an acceleration in a circular orbit, of radius r and area A, normal to the Ω field of 2ω.  

θ

• •

a = ︵ 2ωr+ ωr ︶ 
                                                                            

(21) 

Since both ω


 and ω are both normal to r and r


Equation (21) stated in vector form, is  

2 x x a ω r+ ω r
 

                                                                          
(22) 

The first term on the right in Equation (22) is interpreted as the acceleration of an object moving with velocity  

v= ṙ in an angular velocity field Ω = 2ω. The second term is the acceleration due to a time dependent angular 

velocity. Both terms in Equation (22) also appear in classical solid mechanics for the acceleration of an object 

moving in a rotating frame. The first term in the equation is recognized as the Coriolis acceleration.  Both terms 

of Equation (22) are designated as “fictitious" accelerations in classical mechanics. They are, in the                  

Co-Field formulation, terms of inertial induction. The first term on the right in Equation (22) is the inertial 

equivalent of the V x B acceleration in E &M, and ω is constant in the present application. Thus, the second   

term is zero. 

                                                                                θ 2 x x V Ω V  a ω =
                                                                       

(23) 
 
 

III. EXPERIMENT DESCRIPTION AND PROJECTILE VELOCITIES 
 

A. Experiment Description 
Experiments were conducted to measure the predicted deflection of a projectile due to the inertial dipole field of 

rotating spheres. Figure 1 is a schematic of the experiment setup. The experiment used 50.8 mm nominal 

diameter aluminum spheres spinning at 1676 radians/s. One 50.8 mm sphere was of solid aluminum. A second 

50.8 mm diameter sphere was hollow with a 3.2 mm wall thickness. The sphere/airmotor assembly mounted on 

a stand independent of the projectile barrel-target platform. A cardboard shield isolated the flight path of the 

projectile from aerodynamic effects of the spinning sphere. The sphere equator was in the same plane as the 

projectile barrel centerline. The distance between the sphere and airmotor rotor centers was about 130 mm.  

 

From the flyby semi-empirical model [2] and the Gravitational & Co-Field theory [1] a spinning sphere should 

produce an inertial dipole field normal to the diametric plane of the sphere. The field at its center should be 

equal to twice the angular velocity ω of the spheres and decrease as the inverse cube of the distance from the 

origin. A compressor driven, reversible, airmotor spun the spheres to 1676 radians/s. The airmotor switch 

opened the air to the airmotor from a compressor tank charged to 0.862 MPa.  Experiment dimensions are listed 

in Figure 1. A thick walled, nominal 3.2 mm ID stainless steel tube served as a launch tube. The launch tube 

center line was coincident with the equatorial plane of the rotating sphere. A 3.175 mm diameter, 23 mm long, 

pointed, tool steel projectile was launched using a second compressor. Projectiles of aluminum and brass were 

used in initial tests, but tips deformed after a few shots. The steel projectiles did not deform, and no magnetic 

effects were observed.  Deflections were essentially the same as for brass. Launch of the projectile was initiated 

by a momentary electrical switch which opened a solenoid valve. Projectile launch pressures of 276 and 724 

kPa were used in initial tests. The launch barrel length was 70 cm. The flight path from barrel exit to a plastic 

target was 95 cm. The vertical drop due to gravity, from the barrel exit to the target, provided the data for 

determining the projectile velocity. As in all ballistic tests there was a spread in impact points at the target.  

Thus, at least 10 shots were conducted at each launch pressure both for dynamic tests where the sphere was 

rotating and static tests where it was not. Vertical inertial field displacements of projectiles, compared to 

gravitational, were minimal and are therefore neglected.  
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Figure 1. Experiment Schematic For Testing Projectile Deflection by Rotating Spheres 

 

B. Projectile Velocity Calculated from Launch Pressure-Energy Gain 
The simplest estimate of projectile velocity is to equate the energy gained in the acceleration barrel to the kinetic 

energy on exit. 

B
1PAL   mV
2

 2

                                                       
(24) 

where P is the projectile driving pressure of 276 kPa or 724 kPa, A is the cross-sectional area of the launch 

barrel interior and LB is the acceleration length in the barrel. The tool steel projectile mass is m, and V is the 

projectile velocity. The calculated barrel exit velocities are 
V =46.5 m/s for P=276 kPa                                               (25) 

and 
 V= 75.7 m/s for P=724 kPa                                               (26) 

It is noted that these results for velocities do not include any losses during the projectile launch and therefore 

represent an upper bound.   

 

C. Velocity Calculated from Projectile Impacts 
The results of this section establish the values for the velocities of projectiles launched with barrel pressures of 

276 and 724 kPa, respectively. The resulting velocities were 40 m/s and 65 m/s, respectively. These velocities 

and quantities associated with them, will be designated by their velocity subscripts. For example, the velocity of 

a projectile launched with a barrel pressure of 276 kPa will be labeled V40, that for 724 kPa, V65. Similarly, 

coordinates associated with a given velocity will have the same subscript. The subsequent analysis derives the 

projectile velocities from the vertical displacements of projectile impacts on the target tiles. 

 

If gravity were not acting on a projectile after leaving the launch barrel, the vertical impact point, Y0C, on the 

target would be same regardless of velocity--a straight, horizontal path from the barrel exit. With gravity, faster 

SPHERE OFFSET D R0 L1 L2 L1+L2 Lp LB 

0.038 m 0.025 0.067 0.883 0.95 0.023 0.723 

0.070 m 0.025 0.067 0.883 0.95 0.023 0.723 

All dimensions above in meters;  LP = Projectile length 
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projectiles impact below Y0C but higher than slower ones. Without sphere and airmotor rotation for the two 

projectile velocities V40  and V65 
Y40 + ∆Y40 = Y0c                                                                                   (27) 
Y65 + ∆Y65 = Y0c                                                                                   (28) 

Where Y40 and Y65 are measured values of projectile impacts as shown in Fig.2 in Section IV.  ∆Y40 and ∆Y65 

are the difference between the measured and no gravity value Y0c. The displacement due to gravity from the 

barrel exit to the target is 
∆Y=1/2gt2                                                                                          (29) 

 
Where g is the gravitational acceleration 9.8 m/s2, t=L/V is the time of flight, the flight path length is L=L1+ L2, 

and V is the projectile velocity, assumed constant from barrel exit.  Equation (29) reduces to 

2
4.42Y
V

 
                                                           

(30)
 

2

65 40

40 65

Y V
Y V

 
                                                            

(31) 

Projectile velocity at barrel exit assuming losses are constant over the experiment range of drive pressures is 

2
B

1λPAL mV
2


     

(32) 

Then 
2

40 40

65 65

P V 276 0.381
P V 724

 
   
                                          

(33) 

 

65 40Y 0.381 Y        (34) 

 
From Equations (27) and (28) 

Y40 + ∆Y40 = Y65 + ∆Y65                                                                  (35) 
Substituting ∆Y65 from Equation (34) yields 

∆Y40 = 1.62(Y65 - Y40)                                             (36) 

 
Averages for Y65 and Y40 were Y65 = 23.68 x 10-3 m and Y40 = 21.96 x 10-3 m resulting in ∆Y40 =  2.79 x 10-3 m, 

and ∆Y65 = 1.06 x 10-3 m. Y0C = 24.75 x 10 -3 m. 

 
Final values for the projectile velocities based on tile impact data are: 

V40 = 40 m/s                                                                   (37) 
V65 = 65 m/s                                                                   (38) 

 
IV. DATA AND DATA ANALYSIS 

A. Data Measurements  
Each test started with a fresh plastic target tile.  Pressures were adjusted for both the airmotor and the projectile 

launch compressors. The compressor powering the airmotor was set to 0.862 MPa to produce 1676 radian/s 

rotation. The projectile launch compressor was set to either 276 or 724 kPa, yielding projectile velocities of 40 or 

65 m/s, respectively.  Due to the spread in impact points at the target, at least 10 projectile launches were 

conducted for a given pressure, both for dynamic and static tests as noted earlier. Each experiment yielded 

lateral displacements L0, LR, LL, and vertical displacements: Y0, YR, YL. The subscripts 0, R, and L refer, 

respectively, to No, Right (CCW), and Left (CW) rotations, of the sphere.  Figure 2 is a schematic of a target 

identifying the measured data. Table 1 presents L0, LR, and LL deflections of projectiles moving past an aluminum 

sphere in its equatorial plane. The L values were measured from the projectile impacts as indicated in Figure 2. 
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The L0 projectile deflections are for no sphere and airmotor rotation.  LR is the projectile deflection resulting from 

right hand rotation (CCW) of the sphere as viewed from above.  LL is the corresponding left-hand rotation 

induced deflection. The projectile impact deflections were measured with a digital caliper.  Each entry in the 

table represents the average of 10 data points.   

 

 
Figure 2. Target Tile Schematic Showing Measured Data 

 

B. Total Deflection Measurements  
In Table 1, ∆LR and ∆LL are the respective difference values from L0.  The values of ∆LR should be positive and 

those of ∆LL negative. This is required by the right and left respective sphere rotations. It is seen that the most 

prominent deflection data are for ∆LR for solid spheres, with 40 m/s projectile velocities. It was recognized that 

the measured total deflections are due not only to the inertial field produced by the spinning sphere, but a 

combination of the defections of the sphere and the airmotor rotor dipole fields.  The total deflections are 

measurements from the combined fields.  To determine the sphere-only contribution, it is necessary to measure 

the deflection produced by the airmotor alone.  Assuming a simple superposition of fields, the difference 

between the ∆LR and ∆LL values of Table 1 and corresponding values of the rotating airmotor alone should yield 

the deflections due to the field of the rotating sphere.  The ∆L values for the hollow spheres were smaller than 

the solid sphere values, as predicted by the Co-Field theory.  Because of the larger deflections, subsequent 

data will be for solid spheres only. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1. "L" Deflections as a Function of 50.8 mm Sphere Location, Geometry and Projectile Velocity 

 

 
 

Sphere Sphere Projectile        
Location* Type Velocity Raw Data mm LR -L0 LL -L0 

D m Al VP m/s L0 LR LL ∆LR ∆LL 

0.038 Hollow 40 29.89 28.53 29.82 -1.36 -0.07 

0.038 Hollow 65 30.38 30.35 29.64 -0.03 -0.74 

0.038 Solid 40 28.73 30.84 28.21 2.11 -0.52 

0.038 Solid 65 28.32 30.75 29.37 2.43 1.05 

0.070 Hollow 40 29.85 30.1 30.25 0.25 0.4 

0.070 Hollow 65 29.64 30.37 30.11 0.73 0.47 

0.070 Solid 40 27.67 30.25 28.32 2.58 0.65 

0.070 Solid 65 30.56 29.83 30.39 -0.73 -0.17 
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C. Separation of Sphere and Airmotor Dipole Field Deflections 
Measurements of L0 , LR , and LL ,  with the sphere removed, provided the data for the airmotor-only deflections. 

Figure 1 identifies the 38 and 70 mm sphere offset locations D. Table 2 provides results from the D-38 mm 

location; Table 3 from the 70 mm location. Results Include Total, airmotor-only, and sphere-only induced 

deflections for solid 50.8 mm diameter spheres for 40 and 65 m/s projectile velocities.  

   
  SOLID SPHERE DEFLECTIONS 

D=38mm Location  Deflections (mm) 

Deflections: V = 40m/s  ∆LR ∆LL  

Total   2.11 -0.52 

                Air Motor 1.04 1.8 

Sphere 1.07 -2.32 

Deflections: V = 65 m/s  ∆LR  ∆LL 

 Total    2.43 1.05 

Air Motor    1.89 1.42 

Sphere 0.54 -0.37 

Table 2. Al Sphere Data Showing Total, Airmotor (No Sphere), and Sphere Deflections (D=38 mm) 

 
  SOLID SPHERE DEFLECTIONS 

D=70mm Location  Deflections (mm) 

Deflections: V = 40m/s  ∆LR ∆LL 

                     Total   2.58 0.65 

Air Motor   0.58 0.85 

Sphere 2.00 -0.20 

Table 3. Al Sphere Data Showing Total, Airmotor (No Sphere), and Sphere Deflections (D= 70 mm) 

 

It is noted that deflections of 65 m/s projectiles at D = 38 mm are less than those for 40 m/s. This difference is 

explained by subsequent projectile analysis.  Where total ∆LL values are positive, the Air Motor contribution 

exceeds that of the sphere.  Some general  properties of dipoles are important in interpreting the above results. 

For a sphere, positioned with the projectile path in its equatorial plane, all field lines are normal to the projectile 

path. Their intensity is 1/2 the maximum dipole intensity and decreases as the inverse cube of the distance in 

the equatorial plane from the origin.  The field intensity along the vertical axis also decreases as the inverse 

cube distance from the origin.  The field intensity of the airmotor dipole on the sphere dipole equatorial plane is 

clearly more complicated. 
 
D. Sphere and Airmotor Dipole Fields  
Figure 3 presents schematics of Ω dipole fields for rotating spheres and airmotor rotor fields.  Figure 3A is 

schematic of the Ω field dipole due to a right (CCW) rotating sphere not including the driving airmotor field.  In 

Figure 3A, the projectile crosses the sphere in its equatorial plane and in front of it. The field lines are 

everywhere normal and downward (negative) to the equatorial plane.  In 3B, the airmotor rotor dipole appears 

without the attached sphere. The location of the detached sphere (dashed) is indicated schematically along with 

the projectile path location.  The distance between the sphere and airmotor centers is about 130 mm.  Only 

those field lines emanating from the top of the rotor dipole which have a vertical component normal to the 3A 

sphere's equatorial plane interact with the projectile. These lines occupy a space plus and minus about 45 

degrees from the axis at the center of the armature dipole.  All of the rotor field lines with a vertical component 

are positive and diminish the sphere's negative field direction along the projectile path in the equatorial plane. 
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Thus, depending on the rotor field strength, the resulting projectile acceleration vector Ω x V can be either 

positive or negative.  For solid spheres, the ∆LR field strength along the projectile path exceeds that of the 

airmotor dipole and yields a positive deflection of the projectile due to the spheres dipole field.  Similar results 

were obtained for left rotations except not all deflections are negative indicating that in some cases the airmotor 

contribution exceeds that of the solid sphere or creates a more complex field.  

 

Figures 3C and 3D are the corresponding dipoles for clockwise (left) rotations.  Figure 3C shows the Ω field 

dipole due to a clockwise rotating sphere not including the driving airmotor field.  In Figure 3C, the projectile 

again crosses the sphere in its equatorial plane and in front of it.  The field lines originate at the bottom of the 

rotating sphere and are everywhere normal to the equatorial plane pointing upward (positive). The resulting      

Ω x V projectile acceleration is negative.  In 3D, the airmotor rotor dipole appears without the attached sphere. 

The location of the detached sphere (dashed) is indicated schematically along with the projectile path location.  

Field lines emanating from the bottom of the rotor dipole cross the 3C equatorial plane from above, but only field 

lines having a vertical component at the 3C sphere's equatorial plane contribute to the Ω x V projectile 

acceleration.  These lines occupy a space plus and minus about 45 degrees from the axis at the center of the 

3C dipole.  All of the rotor field lines with a vertical component crossing the 3C equatorial plane are negative and 

diminish the sphere's positive field strength along the projectile path.  The positive Total ∆LL deflections in 

Tables 1 and 2 show that the airmotor contribution for two cases exceeds that of the solid sphere.  These are for 

the 65 m/s projectile and for the 40 m/s projectile for the D = 70 mm location.  

 
Figure 3. Generic dipole diagrams of right and left rotating spheres and airmotor rotors. 

Viewed from the side, 3A and 3B represent right rotations; 3C and 3D left rotations. 

 

E. Co-Field Theory Predicted Deflections and Resolution with Experimental Data 
Starting with the equation for inertial dipole as presented in Equation 19,   

0g g
3R

μ μ
4π

 
                                                            

(19) 
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The solid sphere is chosen as the baseline where μ0g is defined in Equation 13.     For μg, the inertial moment 

equals (M/T) A where M is a mass in circular orbit with period T and area A. This can be defined as Iω0/2 

where I is the moment of Inertia and ω0 is the angular velocity. 

0 0g

2mR
 = k

2
μ 

                          
(39) 

In Equation (39), for a solid sphere, m = M, K = 0.4. For the hollow sphere with wall thickness of 0.138 mm,   

k = 0.59, m = 0.33M.     

 
0g g 0 0

3m= 4πk R
M

μ μ 
                                                 

(40) 

 

The co-field along the axis of the dipole is, with Ω0 = 2ω0, 

3

3

2
0

0Rk mΩ =
M R

 
 
                                                                        

(41) 

  

The co-field in the equatorial plane of the dipole, and normal to it, is half that along the axis  

3

3

4
0

0Rk mΩ =
M R

 
  
                                                                       

(42) 

 

where R0 is the radius of the spinning sphere, and k is a constant which defines its moment of inertia, I= kmR0
2. 

For spheres such as used in this experiment, K = 0.4.  D is the sphere offset from the projectile path.  The 

angular velocity of the sphere is ω.  From Figure 1, the acceleration resulting from an object moving in the 

equatorial plane with velocity V is
a = Ω x V                                                             (43) 

 

Since Ω is normal to and V is in the sphere's equatorial plane, the deflecting acceleration, a, is normal to V and 

in the equatorial plane. 

 
 

(44) 

 

 

=a
 3/22 2

VA
D +L

                                                                  

(45) 

 

V a dt  
                                                                     (46)

 

 

Noting that L = Vt, and dt = dL/V, Equation (46) becomes 

 

 3/22 2

AdL=
D +L

v 
                                                               

(47) 

 
  (48) 

 

 
(49) 

 2 1/22 2

A LdLL =
VD D +L

 
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3

4 3/22 20
k m V= R

M D +L
a

 
 
 
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(50) 
 

 

    02

1/23 2 2
0

k mL = R D +L
4VD M

                                                  (51) 

 

 

 
(52) 

 

 

Equation (52) applies to both right and left rotations of the sphere.  The deflections should be equal in  

magnitude for the same displacement, projectile velocity, and sphere angular velocity, but the left rotation 

deflections should be negative.  Table 4 lists inputs for Equation (52). 

 

 

 

 

 

 

  

 

Table 4. Data for Evaluating Equation (52) 

Table 5 compares the ∆LR and ∆LL experimental results with calculations from Equation (52).  Quantities with R 

subscripts refer to a right rotating solid sphere; L subscripts to a left rotating solid sphere.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           Table 5.    Comparison of experimental data with Co-Field theory predictions 

 

Equation (52) predicts that, for the solid sphere at the D = 38 mm location with 40 m/s projectiles, ∆L = 77 mm.  

For the 65 m/s projectile at the same D = 38 position ∆L = 47.  For the solid sphere at the D = 70 mm location 

SOLID SPHERE INPUTS FOR EQUATION (52) 

D V m/s k Mass R0 m Ω0 Rad/s L1 m L2 m 

38 mm 40 0.4 M 2.54E-02 3352 6.70E-02 0.883 

38 mm 65 0.4 M 2.54E-02 3352 6.70E-02 0.883 
70 mm 40 0.4 M 2.54E-02 3352 6.70E-02 0.883 

V= 40 m/s   D1=38mm   Measured   Measured Calculated Multiplier Multiplier 

Deflections ∆LR (mm) ∆LL (mm) ∆L (mm) KR KL 

 Total         2.11 -0.52       

 Air-Motor 1.04 1.8       

 Sphere     1.07 -2.32 77 0.014 0.030 

      

V= 65 m/s   D1=38mm Measured   Measured Calculated Multiplier Multiplier 

Deflections ∆LR (mm) ∆LL (mm) ∆L (mm) KR KL 

 Total         2.43 1.05       
 Air-Motor 1.89 1.42       

 Sphere     0.54 -0.37 47 0.012 0.008 

            

V= 40 m/s   D2=70mm Measured   Measured Calculated Multiplier Multiplier 

Deflections ∆LR (mm) ∆LL (mm) ∆L (mm) KR KL 

 Total         2.58 0.65   
 Air-Motor 0.58 0.85       

 Sphere     2.00 -0.02 22 0.091 0.009 

 2

1/22 2AL = D +L
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with 40 m/s projectiles ∆L = 22 mm.  The respective measured deflections ∆LR were 1.07, 0.54, and 2.00 mm. 

Equation (52) thus greatly over predicts ∆LR projectile deflections at the D = 38  solid  sphere location by factors 

of 77 and 47, and that at the D = 70 location by a factor of 22.  

 

The large difference between experimental and calculated values requires a Co-Field Factor to bring the 

predicted values into agreement with experiment.  Such calculated Co-Field Factors, KR and KL, corresponding 

to right and left rotations, appear in Table 5. The factor  KR  for both 40 and 65 m/s for location D = 38 is similar. 

KR for the D = 70 location is a factor of 7 larger due to the lower airmotor contribution.  The Co-Field Factor, K , 

thus appears as a required multiplier of Co-Field theory predictions. 

                                                                                                                  

 

                             (53)  

                                                           

 

 

The Co-Field Factor is presented as separate for each result in Table 5.  Experiments not including an airmotor 

component might reveal it as a single fundamental constant.  

 

A second, independent, data set exists which requires a Co-Field Factor. That data set is the collection of 

anomalous deflections of spacecraft flybys of the earth. 

 

V. FLYBY ANOMALOUS DEFLECTIONS -- The Original Experimental Data   
The first data supporting the author's Co-Field theory [1] was discovered in the the Anderson, et al. paper [2].  

The semi-empirical interpretation of anomalous earth-spacecraft flyby deflections appeared similar to the 

predicted 2ω x V  acceleration of an object moving in an inertial dipole field.  In the flybys, the spacecraft 

followed a hyperbolic path essentially approaching and exiting the earth's gravitational influence along 

asymptotes connected with an arc having a distance H of closest approach.  Anderson, et.al. [2] analyzed the 

anomalous flyby data and found that the velocity change  for the spacecraft flybys of the earth can be described 

as 

 

                                                                   
  E

E i o
R2ω cos δ cos δ
c

   v v

                                              (54)                        

 

where ∆V∞ is the observed anomalous velocity deflection.  ωE is the earth's angular velocity.  V∞ is the 

spacecraft velocity along the incoming and outgoing asymptotic velocities.  The v∞ cos δ  terms are the 

respective components of the spacecraft's asymptotic incoming and outgoing velocities    normal to ωE, the 

earth's angular velocity.  The δ terms are the respective inertial declinations.   Equation (54) in vector form 

becomes 
 

                                                                      

                          
                                  (2 2 ) ERx x 

c
  

  E E 0∞ i ∞V ω v ω v∞                                        (55)  

The 2 ω x v terms are accelerations.  ∆V∞ is a velocity normal to the outgoing asymptotic velocity and to the 

earth's angular velocity.  RE/c is the effective time interval during which the change in velocity occurs. This ratio 

of the earth radius to the speed of light is 0.0212 sec.  The physical significance of the ratio is not obvious other 

than it is a time interval fit to the data.   The path of the spacecraft flying by the earth is hyperbolic.  The orbital 

path can be approximated by incoming and out-going straight line asymptotes connected by an arc whose apex 

is the point of closest approach, H.  The deflection, ∆V∞, occurs during the transverse of the arc.  The arc 
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resulting from the earth's gravity on the spacecraft connecting the asymptotes can be approximated by Rθ 

where R is the sum of RE, the earth's radius and H, the altitude of closest approach.  The angle θ is the angle of 

transition between the asymptotes.  The average velocity V in traversing Rθ Is between V∞ and the velocity at 

closest approach, Vf.  The average is assumed here.  The data from the NEAR Flyby are used for this example, 

although essentially the same results would be obtained using averages of corresponding points from all flybys.  

Using the values from the NEAR Flyby, which yielded the largest anomalous deflection:  RE = 6371 km,   

H = 539 km, the average R = 6910 km, θ = 1.07 radians, V∞ = 6.851 km/s, Vf = 12.739 km/s, VAve = 9.795 km/s.  

Preserving the RE/C time of 0.0212 sec, and noting that V is <<C, a constant multiplier KF  is introduced.   

 

                                                                          RE/C = KF Rθ / V                                                                      (56) 

 

Equation (56) provides a physical basis for the spacecraft deflection time.  It yields KF = 0.028; Rθ /V = 0.755 

sec for the Flyby spacecraft. Restating equation (55), the physical description of the Flyby anomalous 

deflections becomes  

                                                        
(2 2 )0i

RθK x x 
V   E EF V ω v ω v

                                                                (57) 

 

This interpretation of the Flyby experiment RE/C term defines a projectile path of the spacecraft in the transition 

region between the asymptotes. This is physically more plausible and makes the Flyby results fully compatible 

with the predictions of the Co-Field model.  This includes the identification of a Co-Field Factor whose value,  

KF = 0.028, is in the range of values found in the Co-Field experiments.  The anomalous velocity change 

described in the semi-empirical Equations (53) and (54), and in Equation (56), occurs at the end of the arc 

transition acceleration and remains constant as it proceeds along the receding asymptote. The subsequent 

deflection is given by ∆L = ∆V∞t.  A more detailed analysis of the Flyby Anomaly relative to the co-field model 

appears in a previous paper [6]. 

                                                                                                   

VI.  SUPPLEMENTAL SPHERE-ONLY DEFLECTION EXPERIMENTS  
  

The series of experiments reported above showed that a rotating sphere deflects a projectile moving in its 

equatorial plane.  The rotation direction determines the deflection direction.  In these co-field experiments, the 

sphere attached directly to the airmotor.  The data revealed that the airmotor rotor provided a significant part of 

the measured deflection.   Removal of the sphere permitted measurement of the airmotor induced deflection.  

Subtraction of the airmotor induced deflection from the total yielded the sphere-induced projectile displacement. 

A limited number of experiments were conducted with the sphere and airmotor at larger separation as a check 

on the results for the above sphere-only induced deflections. 
 

The Co-Field theory [1], predicts that a rotating object creates a surrounding inertial dipole field that interacts 

with a projectile moving past it. Since a dipole field strength diminishes as the inverse cube distance from the 

source, separating the airmotor from the sphere should reduce the effect of the airmotor rotor dipole field on the 

total projectile deflection. Such a separation with a 6.35 mm diameter fiberglass connecting rod, positioned the 

airmotor further below the sphere.  The resulting center-center sphere-airmotor rotor separation was 545 mm.  

The original separation was 130 mm. This separation reduces the rotor field at the sphere by a factor of about 

100.  Tests with the sphere removed revealed only small erratic projectile deflections identified as noise.  In 

tests with spheres attached, the measured deflections are thus due to projectiles interacting with only the sphere 

field.  

 

Table 6 summarizes the results from the original close-coupled geometry.  In Table 6, the deflections attributed 

to the airmotor rotor are comparable or larger than those of the sphere.  Table 7 summarizes data from the 

separated sphere-airmotor.  In Table 7, the deflections are larger than comparable ones in Table 6. This is 
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partially due to the lower projectile velocities in the separated geometry. The remaining difference is likely due to 

the more complicated interaction of the airmotor field in the close coupled experiments of Table 6. The essential 

properties of the data are still positive for right rotations, negative for left rotations of the sphere.  The deflections 

for left rotations are larger than those for right rotations in both cases.  The supplemental experiment thus 

supports the data analysis of the previous experiments and provides a more direct set of measurements.   

 

 

 

 

 

 

 

 

Table 6. Close Coupled Solid Sphere-Airmotor Data Summary 

 

   Separated Sphere-Airmotor 
Expt. Geometry Deflections Projectile Velocity 

D=41 mm;  ∆LR mm ∆LL mm VR m/s  VL m/s 

Sphere  2.61 -3.41 29 37 

Table 7. Separated Solid Sphere-Airmotor Data Summary 

 
Close Coupled/ Separated Spheres Measured     Measured Calculated Multiplier Multiplier 

Deflection ∆LR (mm) ∆LL (mm) ∆L (mm) KR KL 

Close C'pled Sph: V= 40m/s;D=38 mm 1.07 -2.32 77 0.014 0.030 

Separated Sph: VR = 29 m/s; D=41 mm 2.61   91 0.029   
 Separated Sph: VL= 37 m/s; D=41 mm   -3.41 71   0.048 

Table 8.  Experimental Deflections, Calculated Deflections, and Required Co-Field Factors  

 

Table 8 compares the measured values of the close coupled and separated sphere-airmotor deflections and 

their calculated values.  As in Table 5, the calculated values are again much larger than the measured 

deflections.  Thus, the calculated deflection values for all the co-field experiments require a Co-Field multiplier to 

agree with experiment.  For the 50.8 mm solid spheres of Table 8, with a range of, displacements, separations 

and projectile velocities, the Co-Field factors ranged from 0.014 to 0.048.  The comparable K value, KF, for the 

flyby experiments was 0.028. 

 

Table 9 averages the ∆LR and ∆LL values from the co-field experiments to obtain single average K values. 

Averaging the two values may actually be a better measure of the deflections than treating them separately. 

That they are different suggests that the left rotation result is asymmetric due to the airmotor connection.   

 

Close Coupled/Separated/Flyby     Measured Calculated Calculated   

Deflection Source ∆Lave ∆L (mm) Kave Vave  D 

Close Coupled Sphere     1.7 mm 77 0.022 40 m/s 38 mm 

Separated Sphere-Airmotor 3.01mm 80 0.038 33 m/s 41mm 

Flyby Deflection 13.46 mm/s - 0.028 9.8 km/s 539 km 

         Table 9. K values from averages of ∆LR and ∆LL Co-Field deflections compared to Flyby data. 

 

In Table 9, The K values are remarkably similar despite differences in average projectile velocities and 

distances, D, of closest approach.  The average of the three K values is 0.028. These results suggest that a 

Close-Coupled Sphere-Airmotor 
Expt. Geometry Deflections Projectile Velocity 

D=38 mm;  ∆LR mm ∆LL mm VR m/s  VL m/s 

Sphere+Air Motor 2.11 -0.52 40 40 
Air Motor 1.04 1.8 40 40 

Sphere 1.07 -2.32     
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universal Co-Field K constant might exist to bring calculated co-field projectile deflections into agreement with 

experimental data. 

VII. SUMMARY AND CONCLUSIONS 
Projectiles fired past rotating solid and hollow aluminum spheres, along their equatorial planes, produced 

projectile deflections. The majority of the experiments had the sphere attached directly to the airmotor. The 

deflections from these experiments included contributions from the rotor of the airmotor driving the rotation.  To 

get the deflections due to the spheres alone, it was necessary to subtract the rotor contributions. To support the 

validity of this analysis, limited auxiliary experiments separated the sphere and airmotor rotors by 545 mm. This 

eliminated airmotor contributions from the total deflections resulting in "sphere-only" deflections. A third data set, 

the spacecraft Flyby data, was analyzed in the context of the Co-Field model.  A summary of experimental 

results includes:  

 

Sphere-Only Deflections: (A) The projectile deflections for right (counterclockwise) sphere rotation ∆LR were 

positive; those for Left (clockwise) rotation, ∆LL, negative, as required by the Co-Field theory. (B) The most 

definitive data were for solid spheres and 40 m/s projectile velocities.  This configuration was chosen as the 

reference.  (C) Right and left deflections were not equal as predicted by the theory, probably due to 

asymmetries at the poles.  (D) The results of the separated sphere-airmotor experiments supported the close 

coupled results but with larger deflections. Differences are due, at least in part, to lower projectile velocity and 

larger distance of closest approach.  (E) Separation of the sphere and airmotor, as predicted by the Co-Field 

dipole model, effectively removed the airmotor rotor contribution consistent with the inverse cube prediction of 

field intensity with distance from its source. 

 

Co-Field Factors:  

Deflection values for ∆LR and ∆LL were in the range of a few millimeters. The calculated value was 77 mm for 

the base case and 91 and 71 mm, respectively, for ∆LR and ∆LL for the separated sphere-airmotor case. 

Averaging ∆LR and ∆LL values yields K values of 0.022 and 0.038 for the close coupled and separated sphere 

geometries, respectively. The Co-Field Factor for the Flyby experiments is KF = 0.028.  The closeness of the K 

factors for a wide range of conditions suggests a universal K factor. 

 

Correlation of Experiment and Co-Field Theory 

The Co-Field theory predicts an angular velocity dipole gravitational co-field surrounding a spinning body and 

the deflection of a projectile moving in that field. The following experimental results support the Co-Field model:  

 Measured right or left deflections depending on rotation direction of the sphere.  

 Larger deflections for more massive, solid spheres than for hollow spheres. 

 Field intensity decreases with distance from the source as shown by separation of the sphere and air-

motor thus eliminating the airmotor rotor-sphere interaction.  

 For the geometry of the present experiments, higher projectile velocities produced smaller deflections. 

 The spacecraft flyby data and its semi-empirical description are consistent with the Co-Field model.  A 

re-interpretation of its deflection time yields a similar K factor multiplier as the present experiments. 

 The deflection predictions of the Co-Field model for the present experiments and the Flyby data KF 

factor yield an average K factor multiplier of 0.029.  

 

In conclusion: This experimental study provided verification for the gravitational Co-Field of a spinning object 

and for the theory predicting its interaction with a moving projectile.  It provided an explanation for the Flyby 

Anomaly.  It revealed a requirement and range for a Gravitational Co-Field Factor. The Gravity and Co-Field 

theory combination also provides a method for describing gravitational waves in a classical format.  More 

speculatively, it may result in the development of Gravitational & Co-Field machines analogous to those of 

Electricity and Magnetism, perhaps on a nano scale.   
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