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Abstract
A proof that there are infinitely many Twin Primes is presented in
5 sections. Section 1 is a brief statement of the problem and general
approach to the proof. Part 2 describes a concise condition that can be
used to prove or disprove that there are infinite Twins. Sections 3 and 4
show that the condition affirms infinite twins, and the last segment is a
short summary conclusion.

1 A Statement of the Problem and the Approach
to the Proof

The Twin Prime Conjecture is the well known topic within the field of mathe-
matics regarding whether or not there are an infinite number of prime numbers
separated by a difference of 2. This proof uses a strategy that is most generally
split into 2 halves. First, 2 surfaces are determined such that choosing any nat-
ural number which is not found on either surface generates a Twin Prime Pair.
Then, the proof shows that there are infinite such natural number generators.

As stated in the paper’s abstract, the proof is more specifically presented in
5 sections, this being the brief statement of the problem and general approach
to the solution. Part 2 describes a concise condition that can be used to prove or
disprove that there are infinite Twins. Sections 3 and 4 show that the condition
is true, and the last segment is a short summary conclusion.

2 Infinite Twins from 2 Surfaces

The proof begins with the given that all primes except the number 2 are odd.
This means that all primes, other than the number 2, can be expressed in the
form of 2n+1 for some natural number n. Next, use the fact that all odd
numbers except 1 are either prime or an odd composite. This means that all
odd numbers greater than 1, which are not odd composites, are prime. Thirdly,
use the fact that all odd composites are the product of 2 odd numbers greater
than 1. These 3 givens are expressed as equation 1, which is interpreted as
stating that primes are all odds greater than 1 that are not odd composites, for
positive natural number inputs n,a, and b.



primes = 2n+1# (2a+1) (2b+ 1) (1)

Since twin primes have a difference of 2, if 2n + 1 is the smaller prime of a
pair, then 2n + 3 is the larger. Using the same logic as equation 1 means that
2n 4+ 3 must also not be an odd composite. This is stated in equation 2 for
positive natural inputs n, ¢, and d.

upper twin = 2n + 3 # (2¢+ 1) (2d + 1) (2)

Simplifying equations 1 and 2 gives equations 3 and 4 respectively.

n# 2ab+a+b (3)

n#2cd+c+d—1 (4)

Equations 3 and 4 represent basic surfaces in 3 coordinates, or rather ” anti-
surfaces” due to the does not equal sign, stating what the values can not be.
Moreover, the second surface, eq.4, represents the same surface as the first, eq.3,
only slid down by a value of 1. Figures 1 and 2 show truncated tables of the
positive values of the surfaces, beginning outside the origin for natural inputs
> 1.

Figure 1: 2ab+4a+b

A B 5 D E F G H I J K L M N o
1 4 7 10 13 16 13 22 25 23 31 34 37 40 43 46
2 7 12 17 22 27 32 37 42 47 52 57 62 67 72 77
3 10 17 24 31 38 45 52 59 66 73 80 87 94 101 108,
4 13 22 31 40 49 58 67 76 85 94 103 112 121 130 139
3 16 27 38 49 60 7L 82 93 104 115 126 137 143 153 170
6 13 32 45 38 71 84 7 110 123 136 143 162 175 188 201
7 22 37 52 67 82 87 112 127 142 157 172 187 202 217 232
8 25 42 59 76 33 110 127 144 161 178 195 212 229 246 263
3 28 47 66 85 104 123 142 161 130 199 218 237 256 275 254
10 31 52 73 94 115 136 157 178 199 220 241 262 283 304 325
11 34 57 80 103 126 149 172 195 218 241 264 287 310 333 356
12 37 62 87 112 137 162 187 212 237 262 287 312 337 362 387
13 40 67 94 121 148 175 202 229 236 283 310 337 364 391 418
14 43 72 101 130 159 188 217 246 275 304 333 362 391 420 443
15 46 77 108 139 170 201 232 263 294 325 356, 387 418 443 4380

Figure 2: 2cd+c+d-1

A B & D E F G H I 1 K L M N o
1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
2 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
3 9 16 23 30 37 44 51 58 65 72 73 86 93 100 107
4 12 21 30 39 48 57 66 73 84 93 102 111 120 129 138
5 15 26 37 48 59 70 81 92 103 114 125 136 147 158 169
6 18 31 4 37 70 83 96 109 122 135 148 161 174 187 200
7 21 36 31 66 81 36 111 126 141 156 171 186 201 216 231
8 24 41 28 73 92 109 126 143 160 177 134 211 228 245 262
El 27 46 65 84 103 122 141 160 179 138 217 236 235 274 233
10 30 51 72 93 114 135 156 177 138 213 240 261 282 303 324
11 33 36 73 102 125 143 171 134 217 240 263 286 309 332 335
12 36 61 86 111 136 161 186 211 236 261 286 311 336 361 386
13 39 66 33 120 147 174 201 228 255 282 309 336 363 3390 417
14 42 71 100 129 158 187 216 245 274 303 332 361 390 413 443
15 45 76 107 138 169 200 231 262 293 324 355 386 417 443 478



What these 2 surfaces dictate is the following. Surface 1, eq.3, restricted to
the natural domain, is all n such that 2n+1 will be an odd composite. Therefore,
choosing any natural value for n that is not on that surface, i.e. values not from
the table represented by figure 1, will make 2n + 1 a prime number. In fact, the
natural numbers n that are not from the natural range of surface 1, generate all
the primes except the number 2, without exception, and when ordered, generate
them in order.

Similarly, surface 2 is all n such that 2n 4+ 3 will be an odd composite. So,
choosing a natural value n that is not found on either surface, ensures that
both 2n + 1 and 2n + 3 are prime, and it generates a Twin Pair. In fact, like
surface 1 does alone for the primes, choosing a number not on either, generates
all Twin Pairs without exception, and when ordered, generates them in order.
Since choosing a natural value n that is on neither surface will always generate a
unique Twin Pair, showing that there are infinite such generating values proves
the Twin Prime Conjecture.

At this point, it may intuitively seem that there are an infinite number
of Twin Primes, since one can always find another value not on either surface
2ab+a+b or 2ab+a+b—1, and this makes sense. As a quick initial verification,
try the first few values. The first value not on either chart is the number 1.
Applying 2n + 1 gives 3, corresponding to 3, 5, the first Twin Pair. The next
missing value is 2. This time 2n + 1 gives 5, corresponding to 5 and 7. Let’s do
2 more. Next is n = 5, since 3 and 4 do appear, and 2(5) + 1 is 11 for 11 and
13. The last example, is the next missing number n = 8, giving 2n + 1 = 17 for
17 and 19. Remember, these charts are only portions of the full surfaces which
extend infinitely, so you’ll have to consult expanded versions when using them
to confirm values beyond 45 in the first row.

To reiterate, in order to prove the Twin Prime conjecture, it must be shown
that there is an infinite number of natural numbers not in the range of either
surface when their domains are natural numbers. In concept it’s straightforward,
but for me, this is easier said than done. Over time, I have found a few similar
strategies to do so, some better in ways, or easier to explain than others, and it
is here that I describe what is currently the easiest of those for me to explain.
I suspect that others know, or can devise, more direct methods to show it
compared to the technique that I offer below.

3 The Values Within or Outside the Range of
the Surfaces

The general method that is used to show that there are infinite numbers outside
both ranges takes the following path. Hold one variable constant, in order to
decompose the surfaces into an infinite number of lines, and thus assign each line
to a row as shown in the tables. Show that there are infinite numbers outside
the range of each specific row/line. Next, show that there are infinite numbers
outside the range of any 2 adjacent rows. Finally, show that there are infinite



numbers outside the range of any number of consecutive rows.

Examine the form of the values generated in each row on both tables. These
are the result of choosing a row number and setting one variable for the input
of the surfaces to that value using equations 3 and 4. Notice that the surfaces
are symmetric from the variable’s standpoints, that is diagonalized, and so it
doesn’t matter which variable you use for this purpose. In this case, a and ¢
were chosen as rows, and b and d for columns. The values can be written as
1 line per row per table, such that an infinite family of lines represent all the
values on either surface.

Since the values on the 2nd surface are simply 1 less than those on the
first, the y intercepts are one less for the corresponding lines. Look at the
values in rows one, where a and c are held constant and set equal to 1. That
is, 2(1)b+1+b and 2(1)d+1+d—1. The surfaces simplify into the following lines.

All values appearing in row 1 of either surface.

3x+1 and 3z+0 (5)

This can be repeated for any row, and shows the following pattern. The
next 3 rows are shown as a reference.

All values appearing in row 2 of either surface.

5c+2 and bHr+1 (6)

All values appearing in row 3 of either surface.

Tx+3 and Tz +2 (7)

All values appearing in row 4 of either surface.

92 4+4 and 9243 (8)

Notice that the slopes are the set of odd numbers, that the y intercepts differ
by 1 between surfaces per row, and that they also increase by 1 down the rows.

Now take a look at the form of the values NOT generated in the rows by
the surfaces; that is, outside the range of the surfaces. There is an increasing
odd amount of lines and values per row, determined by the row number, which
represent all the values not appearing in that row on either surface.

All values not appearing in row 1 of either surface.

3z + 2 (9)

All values not appearing in row 2 of either surface.

5z + 3,50 +4,504+5 (10)

All values not appearing in row 3 of either surface.



Tv+4,7c+ 5,70+ 6,70+ 7,7¢ + 8 (11)

Notice that the slopes are again the set of odd numbers, that the y intercepts
span a consecutive range between surfaces per row, and that they increase by 1
for the elements of that range down the rows.

In order for an integer n to not be in the range of either surface, it must not
appear in any row on either table for the surfaces. Equations 9, 10, and 11 show
the general pattern for all values not in any specific row. The next step is to
use that pattern to find values that do not occur in any and all rows. Also note,
that due to the modular nature of the sets of lines, increasing the y intercept
further causes a congruence with an earlier line and set of values in that row.
For example, 5x + 6, which would be the next value in eq.10, generates the same
range of values as 5x + 1, eq.6, except the first value of course.

3.1 Values not Occurring on any Row or Rows

To find at least one set of values not in any row on either surface, and thus
not on either surface, begin by noticing for rows 1, that all the values greater
than the first elements of those rows, which do not appear in either row, are
all the natural values of the line 3z + 2, eq.9. That is, that the infinite set
{5,8,11,14,17,20,...}, and so on, are not on either row 1. Put that aside for the
moment and look now at the 2nd row.

Using eq.6, 5z + 1 and bz + 2 are excluded, because they produce values
on the 2nd rows. However, eq.10 shows that there are 3 sets of values that are
never on rows 2. The first set is 5z 4+ 3. Repeating this for rows 3, for the first
set of values never on the rows, yields 7z + 4, for rows 4, it yields 9z + 5, for
rows 5, 11z + 6, and so on.

This means that numbers in the intersection of the sets 3x + 2 and 5z + 3
are not on the first 2 rows of either surface. Numbers from that intersection
that are also in the set 7x + 4 are then not on the first 3 rows. Continuing the
process means that finding an infinite number of values in the intersection of
the sets of all those lines shows that there is an infinite number of values not on
any row, and therefore, not on either surface.

4 Infinite Values not Within the Range

Going forward, it is very handy when explaining, to have a table of the values
generated by these lines, in order to help visualize the relations between each
row or check some values. The general formula of the family of lines that were
chosen for each row r, showing values on neither surface for that row, is equation
12.

2r+1x+r+1 (12)



In Figure 3, values that would continue to the right have been broken into
2 more groups and moved below so that more values could be shown. The lines
for the rows are labeled on the left column.

Figure 3: (2r+1)x+r+1

A B 5 D E F G H 1 1 K L M N o P

1 3x+2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
2 |5x+3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78
3 | Tx+d 11 18 25 32 39 46 53 60 67 74 81 88 95 102 109
4 9x+5 14 23 32 a1 50 59 68 77 86 95 104 113 122 131 140
5 11x+6 17 28 39 50 61 72 83 94 105 116 127 138 143 160 171
6 |13x+7 20 33 46 59 72 85 98 111 124 137 150 163 176 189 202
7 |15x+8 23 38 53 68 83 98 113 128 143 158 173 188 203 218 233
8

9

10 [3x+2 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92
11 |5x+3 83 88 93 98 103 108 113 118 123 128 133 138 143 148 153
12 | Tx+4 116 123 130 137 144 151 158 165 172 179 186 193 200 207 214
13 |9x+5 149 158 167 176 185 194 203 212 221 230 239 248 257 266 275
14 |11x+6 182 193 204 215 226 237 248 259 270 281 292 303 314 325 336
15 |13x+7 215 228 241 254 267 280 293 306 319 332 345 358 371 384 397
16 |15x+8 248 263 278 293 308 323 338 353 368 383 398 413 428 443 438
17

18

19 [3x+2 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137
20 |5x+3 158 163 168 173 178 183 188 193 198 203 208 213 218 223 228
21 |Tx+4 221 228 235 242 243 256 263 270 277 284 291 298 305 312 319
22 |9x+5 234 293 302 311 320 329 338 347 356 365 374 383 392 401 410
23 |11x+6 347 358 369 380 391 402 413 424 435 445 457 468 479 430 501
24 |13x+7 410 423 436 449 462 475 488 301 514 527 540 553 566 579 592
25 |15x+8 473 488 503 518 533 548 563 578 593 608 623 638 653 668 683

4.1 Infinite Values in the Intersection of Adjacent Rows

When comparing 2 rows, the full intersection of the sets is of interest, requiring
each line to get its own variable. For the first 2 rows, the relationship is equation
13.

30+2=>5y+3 (13)

This has the integer solutions in eq.14 for an integer s.

r=5bs+2 y=3s+1 (14)

The integer solutions and adjacent row relation are used to calculate the
positions and values of the intersection between those rows. Starting with s =0
in eq.14, and using the resulting values in eq.13, shows that the first element of
row 2, 8 in this case, will map to the 2nd element of row one, again 8, and that
every 3rd element thereafter on row 2, will map to every 5th element thereafter
on row 1. Checking the s = 1 case gives y = 4 and « = 7, and we indeed see
the 4th element on row 2, value 23, mapping to the 7th element of row 1. The
next shared value in this instance would be s = 2 with row 2 element 7 value
38, and row 1 element 12 value 38.

This establishes an infinite number of values in the intersection of these 2
rows, 1 for each s, and therefore shows an infinite number of values not on the
first 2 rows of the surfaces. Using the general formula for rows from eq.12 allows
for the solution between any 2 adjacent rows. Using rows r and r + 1, in the
same way as was done in eq.13 for rows 1 and 2, gives eq.15.



r+Dz+r+l=0Cr+1)+1)y+(r+1)+1 (15)

This has the integer solutions in eq.16 for a row r and an integer s.

x=2r+3)s+r+1 y=2r+s+r (16)

This verifies that there is an infinite number of solutions in the intersection
of any two adjacent rows, and therefore an infinite number of values not on
those 2 rows of the surfaces.

4.2 Specific Shared Values For the First 3 Rows

The goal is to show an intersection common to all rows. To do this, it helps
to show the common values through the first 3 rows. When the term position
is used below, it generally refers to the ordinal value or location of a member
within a set, not the actual value of that element. This can also be thought
of as the column value in Figure 3, though not to confuse things, rather what
would be those column’s proper values were they not all offset by 1 to the right
due to the labels in column A as pictured.

It has already been shown that all values from the first row, 3z 4 2, are
not on the first rows of the surfaces. It was also shown that an infinite number
of elements will map between any row r and row r + 1. The question now, is
which specific elements map between rows? Start by examining the second row,
5+ 3. Eq.14 showed that the elements that map from 5x+ 3 in the second row,
into the first row, are in the 3s + 1 positions of the second row. That is, the
positions {1,4,7,10,...} of row 2 that correspond to the values {8,23,38,53,...}.

Now repeat the question, this time asking not only which values will map
from row 3 to row 2, but which values will map from row 3 to the specific values
in row 2 that were mentioned, and thus allow them to intersect with row 1 also?
Using eq.16 with r = 2 gives the location of the overall elements that map from
row 3 to row 2 as the elements in the y = 5s + 2 positions of the 3rd row. It
also shows that they map to x = 7s + 3 positions in the 2nd row. Since it was
shown that all 3s 4+ 1 locations in the 2nd row map to the first, this means that
whenever 3z + 1 = Ty + 3, eq.17, an element in a 5s 4 2 position of row 3 maps
to a position in row 2 that will then go on to map to row 1.

3r+1=Ty+3 (17)

This has the integer solutions in eq.18 for an integer s.

r=T7Ts+3 y=3s+1 (18)

Since there are integer solutions of x = 7s + 3 and y = 3s + 1, it also means
that there is an infinite number of such elements. However, because of the
3z + 1 = 7y + 3 requirement, it must now be noted that though an infinite
number do map, not all of those elements in 5s+ 2 positions on the 3rd row will
map to a location on the 2nd row that continues on to row 1.



As an example, the first integer solution for y is y = 3s + 1 with s = 0,
giving y = 1. Since the 5s + 2 positions on the 3rd row map to the 7s + 3 spots
on the 2nd, it means that the 5(1) + 2 = 7th element on row 3 maps to the
7(1) + 3 = 10th element on row 2. When checked, the value 53 maps between
those locations, and also continues on and is found in the first row. The next
solution, with s = 1, gives y = 4. This translates to the 5(4) 42 = 22nd element
on row 3 mapping to the 7(4) + 3 = 31st element on the 2nd row. Again, when
checked, the value 158 maps between those locations, and also continues on and
is found in the first row.

4.3 Intersections Across Subsequent Rows

In order to proceed to the 4th and subsequent rows, the question must first be
answered of which specific subset of elements from the 5s + 2 positions in the
3rd row map to the proper positions in the 2nd row. Also note that the s = 0
position actually represents the first member of a set, s = 1 the second, and so
on, and as such, that the ordinal location value of an element within a set is 1
greater than that integer s when spoken of in terms of being the first, second,
or "xth” element of that set. As shown in the above example, the first value
on row 3 that meets all the requirements is 53. Inserting the 5s + 2 positions
mapping from row 3 to row 2 into its row value of 7x + 4 for x, gives 35s + 18.
Set it equal to the first intersection of all 3 rows, 53, eq.19.

7(55+2) + 4 = 355 + 18 = 53 (19)

Solving for s gives s = 1, which corresponds to the 2nd member of the 5s+ 2
subset, which remember, are the positions of values that map from row 3 to row
2. Repeating the process for the next value of 158, gives s = 4, corresponding
to the 5th member of that subset. Solving for all values that map back to row
1 gives s = 3t + 1 for a generic integer t, which again could also be spoken of as
being the 3x+2 member of the 55 + 2 subset for an integer x. That is, in terms
of the members, that the 3z + 2 positions of the 5s + 2 locations in row 3, are
those that continue to row 2 in positions that will then continue on to row 1.
To help avoid confusion, and to make it more explicit, the 5s + 2 locations are
columns {2,7,12,17,22,27,32,37,42....}, and the 3z + 2 elements {2,5,8,11,...}, of
those locations, are then the corresponding columns {7,22,37,...}.

This can now be put in terms of the row 3, 7x + 4 set directly, and can
answer the question at the beginning of this section. Inserting the 3s+1 integer
relation that selects continuing 5s 4+ 2 positions into 5s + 2, which remember
represents all positions that map from row 3 to 2 in general, now puts directly
in terms of the 7z + 4 set, only those locations which also map to row 1. This
is equation 20.

5B8s+1)+2=15s+7 (20)

This states that the 15s + 7 elements of the 7z + 4 set are those that map
through row 2 to row 1; that is, row 3, columns {7,22,37,52,...}. Now that it is



known which values on row 3 intersect with both rows 1 and 2, the process can
be repeated asking which values on row 4 will map to those specific locations
on row 3.

4.3.1 Row 4

Using r = 3 in eq.16 gives the location of the overall elements that map from
row 4 to row 3 as the elements in the y = 7s+ 3 positions of the 4th row. It also
shows that they map to the x = 9s + 4 positions in the 3rd row. This means
that wherever 9x+4 = 15y + 7, an element in a 7s+ 3 position of row 4 maps to
a position in row 3 that will then go on to map through to row 1 and intersect
all 4 rows.

9z +4=15y+7 (21)

This has the integer solutions in eq.22 for an integer s.

r=5s+2 y=3s+1 (22)

Like before, the question is which specific subset of elements from the 7s+ 3
positions of the 4th row map to the proper positions in the 3rd row. For s =0
in eq.22 gives 4y = 1, and then 15y + 7 = 22. The 22nd value of row 3, and the
first value to intersect all 4 rows, is 158. Insert the 7s + 3 position value that
maps from row 4 to row 3 into its row 4 element value of 9z + 5 for x, and set
it equal to 158, eq.23.

9(7s +3) + 5 = 63s + 32 = 158 (23)

Solving for s in eq.23 gives s = 2, which corresponds to the 3rd member of
the 7s + 3 subset. Repeating the process for s = 1 in eq.22 gives the next value
of 473, and gives s = 7 when it’s used in eq.23, corresponding to the 8th member
of that subset. Solving for all values gives the relation s = 5¢ + 2, for a generic
integer t, which again could also be spoken of as being the 5x + 3 member of
the set for an integer x.

This can now be put in terms of the row 4, 9z + 5 set directly. Inserting the
5s + 2 integer relation that selects continuing 7s + 3 positions into 7s + 3, now
puts directly in terms of the 9z + 5 set, only those locations which also map to
row 1. This is equation 24.

7(55+2) +3 =355+ 17 (24)

This states that the 35s5+17 elements of the 9z+5 set are those that intersect
the first 4 rows. By now, you may begin to see the pattern, and/or, it begins
to emerge. Continue the technique for the transition from row 5 to row 4.



4.3.2 Row 5

Using 7 = 4 in eq.16 gives the location of the overall elements that map from
row 5 to row 4 as the elements in the y = 9s + 4 positions of the 5th row. It
also shows that they map to the z = 11s + 5 positions in the 4th row. This
means that whenever 11z +5 = 35y + 17, an element in a 9s + 4 position of row
5 maps to a position in row 4 that will then go on to map through to row 1 and
intersect all 5 rows.

11z +5 =36y + 17 (25)

This has the integer solutions in eq.26 for an integer s.

x=3bs+17 y=11s+5 (26)

As previously, the question is which specific subset of elements from the
9s + 4 positions of the 5th row map to the proper locations in the 4th row. For
s =0 in eq.26 gives y = 5, and then 35y + 7 = 192. The 192nd value of row 4,
and the first value to intersect 5 rows, is 1733. Insert the 9s + 4 position value
that maps from row 5 to row 4 into its row 5 element value of 11x + 6 for x,
and set it equal to 1733, eq.27.

11(9s + 4) + 6 = 995 + 50 = 1733 (27)

Solving for s in eq.27 gives s = 17, which corresponds to the 18th member
of the 9s 4+ 4 subset. Repeating the process for s = 1 in eq.26 gives the next
value of 5198, and gives s = 52 when it’s used in eq.27, corresponding to the
53rd member of that subset. Solving for all values gives the relation 35t + 17,
for a generic integer t, which again could also be spoken of as being the 35x+ 18
member of the set for an integer x.

This can now be put in terms of the row 5, 11z + 6 set directly. Inserting
the 35bs + 17 integer relation that selects continuing 9s + 4 positions into 9s + 4,
now puts directly in terms of the 11z + 6 set, only those locations which also
map to row 1. This is equation 28.

9(35s + 17) + 4 = 3155 + 157 (28)
This states that the 315s + 157 elements of the 11x + 6 set are those that
intersect the first 5 rows.
4.3.3 Row 6

At this point, the technique for finding the next set of values is established, and
a general formula can be described. When doing so, it is also helpful to have
the information from row 6, and rather than walk through the procedure again,
the associated equations for row 6 are simply provided as follows.

132 + 6 = 315y + 157 (29)

10



x=3155+157 y=13s+6 (30)
13(11s + 5) 4+ 7 = 22523 (31)

11(315s + 157) + 5 = 34655 + 1732 (32)

4.4 The General Formula for All Rows

To generate the formula for all rows, examine equations 17, 21, 25, and 29.
For ease, these are relisted as eq.33, which also includes the next corresponding
relation from row 7.

Row 3 3z+1=Ty+3
Row4 9x+4=15y+7
Row 5 1llz+5 =35y + 17 (33)
Row 6 13z + 6 = 315y + 157
Row 7 15z 4 7 = 3465y + 1732

Now ask, from where do the values in these equations emerge, and what is
being compared between the left and right side of the equations? The process
began with all values of 3x + 2 on the first row not being on the first rows of the
surfaces. From there, it was determined that the 3z + 1 values on row 2 were
the ones that intersected the first row. Using 7 = 2 with x in eq.16 showed the
members mapping in from row 3 to row 2 into the 7x+ 3 positions. In eq.17, the
set was arbitrarily assigned by me into the right side of the relation as 7Ty + 3
as to set the precedent going forward of the lesser valued parameters on the left
when comparing sets. These are the sets represented and compared in Row 3
of eq.33, and they went on to generate the 15y + 7 set, using equations 17-20,
as seen in the right side of Row 4 of eq.33.

From that point forward, the left equations of the comparisons are from
eq.16 for x with » = R — 1. That is, the left side of the Row 4 comparison in
eq.33 uses the r = 3 value with x in eq.16, the Row 5 uses r = 4, and so on.

As for the right sides of the comparisons, the Row 4 sets went on to generate
the 35y + 17 set, using equations 21-24, as seen in Row 5 of eq.33. From that
point forward, the right equations are generated using the right set from the
previous row as the input for the sets from eq.16, but this time for y and with
r = R—2. That is, the right side of the Row 6 comparison in eq.33 is generated
by inserting the right side of Row 5 into the y value in eq.16 with r = 4, the right
side of the Row 7 comparison in eq.33 is generated by inserting the right side of
Row 6 into the y value in eq.16 with » = 5, and so on. Because of the r to r +1
relation in eq.16, this turns out to be the same as inserting a given Right side
set into the previous Left side for x. For example, 9(35y +17) +4 = 315y + 157,
and 11(315y + 157) + 5 = 3465y + 1732.

11



The Left side sets for comparison in row R, from Row 4 onward, are simply
(2R + 1)z + R. For the Right side sets and Row 5 onward, the slopes m of the
sets are the products of the first R — 3 consecutive odd numbers beginning with
the number 5, and the y intercepts are (m — 1)/2. That is, the slope for Row
5 is 5x7, for Row 6 it’s bx7x9, for Row 7 it’s 5x729x11, and so on, and the
intercepts are half of 1 less than those slopes.

The left set for row R> 4.

2R+ 1z + R (34)
The right set for row R> 5.

R—2 F202k+1)) -1
(H(2k+1)>y+( = +)) (35)

2
k=2

The product can also be expressed as:
(2R — 3)!
3% 2R=2 % (R —2)!

Setting eq.34 equal to eq.35 has the following integer solutions in eq.37 for
Row R and an integer s.

(36)

R—2 B20k1+1)) -1
w=<H(2k+1)>s+( = 2+ )) y=(2R+1)s+R (37
k=2

Equation 38 is eq.37 in terms of the factorial expression.

(2R —3)! (3,21(%2—}2{7_(35)’!2)')—1
CE:(g*ng*(R.2)!)8—1- 2/ ' y=(2R+1)s+ R (38)

This shows that there is an infinite number of natural number solutions in
the intersection of any and all rows R. Note that it does not give the specific
elements in that set, but simply proves the existence of the set. It shows that
there is no row that exists such that an infinite subset can not be mapped from
the first row, through the intersection of all previous rows, to that row. Because
these are numbers that are not in the range of either surface, there is an infinite
amount of natural numbers not in the range of those surfaces. Therefore, since
all numbers not in the range of those surfaces generate unique Twin Pairs, there
is an infinite number of Twin Prime Pairs.
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4.4.1 Some Notes About the Integer Solutions

Some notes should be included about the nature of the integer solutions. The
first note involves the behaviors of eq.35 and eq.37/38. Eq.37/38 gives an infinite
set of integer solutions based on the integer s, which is enough for generating
infinite sets in a given Row, however, in cases where the slopes in comparison
between x and y have a common divisor, it does not give all integer solutions.
This happens every 3rd row. The full integer solutions for those Rows simplify
to have smaller slopes, and thus generate even more sets, however, adjusting
to include all of those complicates eq.35, and it is not necessary, since it’s still
using every 3rd solution from those infinite sets for those rows as stated; which
is of course still an infinite subset. It actually means that there are even more
elements in the infinite intersection than the ones shown by eq.37/38. This is
similar to the second note.

Remember that this entire process was done using only the first set of values
that were not in each row. Recall from equations 10 and 11 how each row has
an increasing number of sets not in that row. While the first row must use
3x + 2, there are an infinite number of other combinations with different sets
from other rows that generate their own infinite intersections.

Lastly, using a given row R for eq.37/38, and then generating integer solu-
tions with integers s for all rows < R, does significantly increase the chance that
the corresponding n will be a Twin Pair generator, but does not guarantee it.
However, because the set is diagonalized, for any n that is generated for a given
R, it is never needed to check values past row x, where x is the ceiling to the
solution for 222 + 2z + 1 = n, the equation for the diagonal.

5 Conclusion

In summary, the proof used the fact that all Prime numbers greater than 2 are
odd numbers that are not odd composites. It generated 2 surfaces from that
requirement, one for each member of a Twin Pair, and showed that numbers
not in the range of both surfaces always generate unique Twin Pairs. It then
showed that there is an infinite number of elements in the set outside of that
range, and therefore that there are infinite Twin Primes.

I hope you enjoyed the proof. If you know or find a more concise method to
show an infinite number of natural elements not on the surfaces, or would like
to discuss the proof in some other manner, such as improvements, corrections,
or errors, I would be interested to know.

Q.E.D.
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