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ABSTRACT. The permutation group Sy has a quantum analogue Sj;, which is infinite
at N > 4. We review the known facts regarding S]J{,, and its versions S;C, with F being
a finite quantum space. We discuss then the structure of the closed subgroups G C S]f,
and G C S;C, with particular attention to the quantum reflection groups.
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INTRODUCTION

The compact quantum Lie groups were introduced by Woronowicz in [147], [148]. The
idea is very simple, namely looking at the compact Lie groups G C Uy, and removing
the commutativity assumption on C(G). Assume indeed G C Uy. The multiplication
m:Gx G — G, unit u:{.} — G and inversion map i : G — G are given by:

UV)iy = UnVi
k

1ij - 51
Uiy =Uji
Now let C(G) be the algebra of continuous functions f : G — C, which by Stone-

Weierstrass is generated by the coordinates u;; : U — U;;. The transposes of m,u, 1,
denoted A, e,S and called coumultiplication, counit and antipode, are given by:

Alugy) = Z Uik & Up;
k

e(uij) = 0
S(uyg) = uj;

With these observations in hand, Woronowicz considered pairs (A, u) consisting of an
arbitrary C*-algebra A, not necessarily commutative, and a unitary matrix v € My(A),
whose coefficients generate A, having maps A, e, S given by the above formulae. In this
situation we can write A = C'(G), and call G a compact Lie quantum group. As explained
in [147], [148], these quantum groups enjoy the existence of a Haar measure, a full analogue
of the Peter-Weyl theory, and a Tannakian duality result as well.

Following Wang [140], we will be interested here in the quantum permutation group
S%. In order to construct this quantum group, let us look first at Sy. We can regard Sy
as being the group of permutations of the N coordinate axes of RY, and we obtain an
embedding Sy C Oy, with the coordinates of Sy being given by:

wi (o) = {1 if o(j) =i

0 otherwise

These coordinates u;; are projections (p? = p = p*), and the matrix u = (u;;) that they
form is “magic”, in the sense that these projections sum up to 1, on each row and each
column. With a bit more work, by using basic operator algebra theory, we are led in this
way to a simple presentation result for the algebra C'(Sy), as follows:

C(Sy)=C ((uij)i7j:17_,,7N‘u = magic)

To be more precise, here C  means universal commutative C*-algebra, and all this

follows from the above remarks, and from the Gelfand theorem.
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We can now go ahead, and construct Sj;. The definition is very simple, just by lifting
the commutativity property from the above picture of Sy, as follows:

C(Sm =C" ((uij)i,jzl,..A,N)U = magic)

Observe that S3 is by definition a compact quantum group, and that we have an
embedding Sy C Sy. Quite remarkably, this embedding is not an isomorphism at N > 4,
where S5 is non-classical, and infinite. This latter result can be proved as follows:

N = 2. The fact that S5 is indeed classical, and hence collapses to Sy, is trivial, because
the 2 x 2 magic matrices are as follows, with p being a projection:

~(2, '7)
I—p p

Indeed, this shows that the entries of U commute. Thus C(S5) is commutative, and
so equals its biggest commutative quotient, which is C'(S,). Thus, Sy = Ss.

N = 3. By using the same argument as in the N = 2 case, and the symmetries of the
problem, it is enough to check that u;q, uss commute. But this follows from:
Unitge = UpUga(ury + w2 + ug3)
= Up1lU2U11 + U11U22U 3
Uy UoaUy1 + w11 (1 — ugr — uss)uss

= U11U22U11

Indeed, by applying the involution to this formula, we obtain as well ugou1; = u11U9u11.
Thus, we have u1iu = usoui1, and so the entries of v commute, as desired.

N = 4. Consider the following matrix, with p, ¢ being projections:

P 1—-p O 0
_|(1=p» p 0 0

U= 0 0 g 1—gq
0 0 1—gq q

This matrix is magic, and we can choose p, q as for the algebra < p,q > to be non-
commutative and infinite dimensional. We conclude that C(S)) is noncommutative and
infinite dimensional as well, and so S is non-classical and infinite, as claimed.

N > 5. Here we can use the standard embedding S} C S}, obtained at the level of the
corresponding magic matrices in the following way:

_ U 0
YN0 1w

Indeed, with this in hand, the fact that S} is a non-classical, infinite compact quantum
group implies that S3; with N > 5 has these two properties as well.
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There has been a lot of work, in trying to understand what the quantum permutations
really are. At N = 4 one can prove that we have an isomorphism as follows:

S = 505"

In the general N > 4 case, the quantum group S} still appears as a kind of deformation
of the group SOs, in the sense that the fusion rules for its irreducible representations
coincide with the usual Clebsch-Gordan rules for SO3, namely:

T QT =Tk~ + Tjk—t)4+1 T - - + Tyt

At N = 4 the dimensions of these representations are the same as those for SO3. In
general they are bigger, the formula being as follows, with ¢ + ¢! = N — 2:
B+ gk
dim(rg) =
qg—1
This latter result is of particular interest in connection with the Kesten amenability cri-
terion, because it shows that at N > 5 the compact quantum group S5 is not coamenable,

in the sense that its discrete quantum group dual Sy is not amenable.

All the above has deep connections with the Temperley-Lieb algebra [134], with Jones’
subfactor theory [101], and with Voiculescu’s free probability theory [135]. One way of
viewing things, which is now something standard, coming from the work in [2], then [27],
and then finally [43], is via the notion of “easiness”. The idea here is that the partitions
7 € P(k,1) act on the vectors from the tensor powers of C as follows:

T,r(eh@...@eik)zz(sﬂ(ji j’;)eh@...@ejl

The point now is that for the symmetric group Sy, these maps span the intertwiners
between the tensor powers of the fundamental representation:

Hom(u®* u®") = span (T,r

ﬂEPMﬁ)

Regarding now the quantum group S}, the situation is perfectly similar, but this time
with only the noncrossing partitions 7 € NC(k,[) being involved:

Hom(u®* u®") = span (T7r

weNO%ﬁ)

Thus, the conclusion is that the liberation operation Sy — Sy, which was constructed
in [140] by a somewhat ad-hoc procedure, corresponds to something conceptual, namely
the passage P — NC', at the level of the associated Tannakian categories.
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As a concrete result now, best explaining the liberation operation Sy — Sy, let us look
at the law of the main character, which is the following variable:

X:ZUii

In the classical case x counts the number of fixed points, and by a well-known result,
coming from inclusion-exclusion, with N — oo this variable becomes Poisson:

1 O

T laql
k
In the free case the computation is more complicated, using the easiness methods above,
and with N — oo we obtain the Marchenko-Pastur, or free Poisson law:

1
X ~ 2—\/43:*1 — 1ldx
s

Thus, as a conclusion, our liberation operation Sy — Sy corresponds to the standard
liberation operation from free probability, in the N — oo limit [46].

More generally now, we can talk about closed quantum subgroups G C Sf, in the
obvious way, and a whole theory of “quantum permutation groups” can be developed. As
a basic result here, selected from the massive number of known facts on the subject, let
us mention that such quantum subgroups G C S}, are in one-to-one correspondence with
the planar subalgebras P C Sy of Jones’ spin planar algebra [105].

Even more generally now, we can talk about the quantum symmetry groups S7 of the
finite noncommutative spaces F', and their closed subgroups G C S}.. Let us recall indeed
that, according to the general operator algebra philosophy, a finite noncommutative space
F is the dual of a finite dimensional C*-algebra, and so appears via:

O(F) = My,(C) @ ... ® My, (C)

The construction of S, can be generalized in this setting, and we obtain a quantum
symmetry group of F', which appears as a certain closed subgroup, as follows:

+
This generalization often provides good explanations for results regarding the quantum

groups S¥ themselves. As an example, the above-mentioned result S¥, ~ SOj is best
understood in the quantum symmetry group setting, via a pair of results, as follows:

(1) The fusion rules for S} with |F| > 4 are independent of F.
(2) For F' = Ms, coming via C(F) = My(C), we have S} = SO;.

As it was the case with the previous results, this was just a basic example of what can
be done with the quantum symmetry groups S}, and their subgroups G C Si.
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Summarizing, we will be interested here in S% and its closed subgroups G C Sy, and
more generally in S} with |F| < oo, and its closed subgroups G C S;. We will discuss
the basic theory of such quantum groups, ranging from elementary to advanced, from
theoretical to applied, from mathematical to more quantum and uncertain, and with
results regarding algebraic, geometric, analytic and probabilistic aspects.

The present book is somewhat self-contained, but remains quite technical, with the
main aim of being complete, rather than elementary, and the prior reading of a basic
quantum group book is recommended. The organization is in 4 parts, as follows:

(1) Sections 1-4 contain quick operator algebra and quantum group preliminaries, then
the basic algebraic theory of the quantum groups S}, and their generalizations S}, with
emphasis on representation theory, easiness, and planar algebra aspects.

(2) Sections 5-8 discuss various probabilistic aspects of S¥ and S}, with the Weingarten
integration formula, standard character and truncated character computations, and then
De Finetti theorems, hypergeometric and hyperspherical laws, and more.

(3) Sections 9-12 discuss the quantum automorphism groups G (X) C S} of the finite
graphs X, and their generalizations GT(X) C S}, and then focus on the various types of
quantum reflection groups, namely real, arithmetic, complex, twisted.

(4) Sections 13-16 contain more advanced theory, of analytic nature, regarding the tran-
sitive or quasi-transitive subgroups G C Sy and G C S}, and various matrix modelling
questions for them, notably with results on the Weyl and Fourier models.

Acknowledgements.

The theory presented here heavily relies on operator algebra philosophy, and in par-
ticular on methods from subfactors and free probability. I would like to thank Vaughan
Jones and Dan Voiculescu for their wonderful mathematics, and for encouragements.

This book is based on a number of joint papers on quantum permutations and reflec-
tions, and I am very grateful to Julien Bichon, Benoit Collins and Steve Curran.

I would like to thank as well, for substantial joint work on the subject, Alex Chirvasitu,
Uwe Franz, Amaury Freslon, Sonia Natale, Ion Nechita, Jean-Marc Schlenker, Adam
Skalski, Roland Speicher and Roland Vergnioux.

Finally, many thanks go to my cats. Their square and cartesian point of view on various
matters has been highly influential, when preparing the present book.



QUANTUM PERMUTATIONS 7

1. Quantum groups

We first need a good formalism of “compact quantum spaces”. There are several such
formalisms, and a particularly simple and beautiful one, which is exactly what we need,
is provided by the C*-algebra theory. The starting definition here is as follows:

Definition 1.1. A C*-algebra is a complex algebra A, having a norm ||.|| making it a
Banach algebra, and an involution x, related to the norm by the formula

llaa’|| = |al?
which must hold for any a € A.

As a basic example, the usual matrix algebra My (C) is a C*-algebra, with the usual
matrix norm and involution, namely |[M|| = sup, -, |[|Mz]| and (M*); = M;;. More
generally, any *-subalgebra A C My(C) is automatically closed, and so is a C*-algebra.
In fact, in finite dimensions, the situation is as follows:

Theorem 1.2. The finite dimensional C*-algebras are exactly the algebras of type
A=Myn,(C)@...® My, (C)
with norm ||(ay, ..., ax)|| = sup; ||ai]|, and involution (ay,...,ax)* = (af,...,a}).

Proof. In one sense this is clear, either by standard direct sum arguments, or because
with N = Ny + ... + N; we have an embedding of x-algebras A C My(C). In the other
sense, this is something more subtle, coming by breaking the unit of our finite dimensional
C*-algebra A as a sum of central minimal projections, as follows:

l=p1+...+p;

Indeed, when doing so, each of the x-algebras A; = p; Ap; follows to be a matrix algebra,
A; ~ My, (C), and this gives the direct sum decomposition in the statement. i

In general now, the main theoretical result about the C*-algebras, due to Gelfand,
Naimark and Segal, and called GNS representation theorem, is as follows:

Theorem 1.3. Given a Hilbert space H, the algebra B(H) of linear bounded operators
T:H — H is a C*-algebra, with norm and involution given by:

Tl = sup ||Tz|

||| |=1
<Tx,y>=<uz,Ty >
More generally, and norm closed x-subalgebra of this full operator algebra
AC B(H)

is a C*-algebra. Any C*-algebra appears in this way, for a certain Hilbert space H.
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Proof. There are several statements here, with the first ones being standard operator
theory, and with the last one being the GNS theorem, the idea being as follows:

(1) First of all, the full operator algebra B(H) is a Banach algebra. Indeed, given a
Cauchy sequence {T,,} inside B(H), we can set Tz = lim,_,, Tp,x, for any = € H. Tt is
then routine to check that we have T € B(H), and that 7,, — T in norm.

(2) Regarding the involution, the point is that we must have < Tx,y >=< z,T*y >,
for a certain vector T*y € H. But this can serve as a definition for 7™, and the fact that
T* is indeed linear, and bounded, with the bound ||T*|| = ||T||, is routine. As for the
formula ||TT*|| = ||T||?, this is elementary as well, coming by double inequality.

(3) The assertion about the subalgebras A C B(H) which are closed under the norm
and the involution is clear from definitions.

(4) Finally, the fact that any C*-algebra appears as A C B(H), for a certain Hilbert
space H, is advanced. The idea is that each a € A acts on A by multiplication, T, (b) = ab.
Thus, we are more or less led to the result, provided that we are able to convert our algebra
A, regarded as a complex vector space, into a Hilbert space H = L?(A). But this latter
conversion can be done, by using advanced functional analysis techniques. O

As a third and last basic result about the C*-algebras, which will be of particular
interest for us, we have the following well-known theorem of Gelfand:

Theorem 1.4. Given a compact space X, the algebra C(X) of continuous functions
f: X — C s a C*-algebra, with norm and involution as follows:

£l = ig}gﬁ(:v)!
frx) = flz)

This algebra is commutative, and any commutative C*-algebra A is of this form, with

X = Spec(A) appearing as the space of Banach algebra characters x : A — C.

Proof. Once again, there are several statements here, some of them being trivial, and
some of them being advanced, the idea being as follows:

(1) First of all, the fact that C(X) is indeed a Banach algebra is clear, because a uniform
limit of continuous functions must be continuous.

(2) Regarding now for the formula || f f*|| = || f]|?, this is something trivial for functions,
because on both sides we obtain sup,.y | f(z)|?.

(3) Given a commutative C*-algebra A, the character space X = {x : A — C} is
compact, and we have an evaluation morphism ev : A — C(X).

(4) The tricky point, which follows from basic spectral theory in Banach algebras, is to
prove that ev is indeed isometric. This gives the last assertion. U
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In what follows, we will be mainly using Definition 1.1 and Theorem 1.4, as general
theory. To be more precise, in view of Theorem 1.4, let us formulate:

Definition 1.5. Given an arbitrary C*-algebra A, we agree to write
A=C(X)
and call the abstract space X a compact quantum space.

In other words, we can define the category of compact quantum spaces X as being
the category of the C*-algebras A, with the arrows reversed. A morphism f : X — Y
corresponds by definition to a morphism ® : C(Y) — C(X), a product of spaces X x Y
corresponds by definition to a product of algebras C'(X) ® C(Y'), and so on.

Finally, no discussion here would be complete without a word about von Neumann
algebras. These are operator algebras of more advanced type, that we will use later on,
in connection with more advanced questions. Their basic theory is as follows:

Theorem 1.6. For a x-algebra A C B(H) the following conditions are equivalent, and if
they are satisfied, we say that A is a von Neumann algebra:

(1) A is closed with respect to the weak topology, making each T'— Tx continuous.
(2) A is equal to its algebraic bicommutant, A = A”, computed inside B(H).

As basic examples, we have the algebras A = L*(X), acting on H = L*(X). Such algebras
are commutative, any any commutative von Neumann algebra is of this form.

Proof. There are several assertions here, the idea being as follows:

(1) The equivalence (1) <= (2) is the well-known bicommutant theorem of von
Neumann, which can be proved by using an amplification trick, H — CV @ H.

(2) Given a measured space X, we have indeed an emdedding L>(X) C B(L*(X)),
with weakly closed image, given by Ty : g — fg, as in the proof of the GNS theorem.

(3) Given a commutative von Neumann algebra A C B(H) we can write A =< T >
with 7" being a normal operator, and the Spectral Theorem gives A ~ L>(X). O

In the context of a C*-algebra representation A C B(H) we can consider the weak clo-
sure, or bicommutant A” C B(H), which is a von Neumann algebra. In the commutative
case, C(X) C B(L*(X)), the weak closure is L>(X). In general, we agree to write:

A" = L%(X)

We are ready now to introduce the compact quantum groups. The axioms here, due to
Woronowicz [147], and slightly modified for our purposes, are as follows:
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Definition 1.7. A Woronowicz algebra is a C*-algebra A, given with a unitary matriz
u € My(A) whose coefficients generate A, such that the formulae

A(uij) = Z Uik & Uk
k

e(uij) = 0y
S(UZJ) =Uu
define morphisms of C*-algebras as follows,

A:A-ARA

e: A—=C
S A— APP

called comultiplication, counit and antipode.

*
Jt

In the above definition the tensor product used in the definition of A can be any C*-
algebra tensor product. In order to get rid of redundancies, coming from this and from
amenability issues, we will divide everything by an equivalence relation, as follows:

Definition 1.8. We agree to identify two Woronowicz algebras, (A,u) = (B,v), when we
have an isomorphism of x-algebras as follows,

< Uy > Uy >
mapping standard coordinates to standard coordinates, w;; — v;;.

We say that A is cocommutative when YA = A, where ¥(a ®b) = b® a is the flip. We
have then the following key result, from [147], providing us with examples:

Proposition 1.9. The following are Woronowicz algebras:
(1) C(G), with G C Uy compact Lie group. Here the structural maps are:

A(p) = (g,h) — »(gh)
e(p) = »(1)

S(p) =g — (g™
(2) C*(T"), with Fy — T finitely generated group. Here the structural maps are:

Alg)=9g®yg
e(g) =1
S(g)=g"

Moreover, we obtain in this way all the commutative/cocommutative algebras.
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Proof. In both cases, we have to exhibit a certain matrix u, and then prove that we have
indeed a Woronowicz algebra. The constructions are as follows:

(1) For the first assertion, we can use the matrix u = (u;;) formed by the standard
matrix coordinates of GG, which is by definition given by:

ui(g) ... wn(9)
9= : :
uni1(g) .. unn(9)
(2) For the second assertion, we can use the diagonal matrix formed by generators:
g1 0
U= .
0 gn

Finally, regarding the last assertion, in the commutative case this follows from the
Gelfand result, Theorem 1.4 above. In the cocommutative case this is something more
complicated, requiring as well an amenability discussion. We will be back to this. O

In order to get now to quantum groups, we will need as well:

Proposition 1.10. Assuming that G C Uy is abelian, we have an identification of Wo-
ronowicz algebras C(G) = C*(I'), with T' being the Pontrjagin dual of G:

'={x:G—T}

Conversely, assuming that Fy — T is abelian, we have an identification of Woronowicz
algebras C*(I") = C(QG), with G being the Pontrjagin dual of I':

G={x:T—-T}

Thus, the Woronowicz algebras which are both commutative and cocommutative are exactly
those of type A = C(G) = C*(I'), with G,T" being abelian, in Pontrjagin duality.

Proof. All this follows from Gelfand duality, Theorem 1.4 above, because the characters
of a group algebra are in correspondence with the characters of the group. U

We have the following definition, complementing Definition 1.7 and Definition 1.8:

Definition 1.11. Given a Woronowicz algebra, we write it as follows, and call G a
compact quantum Lie group, and I a finitely generated discrete quantum group:

A=C(G)=C*I)
Also, we say that G,T" are dual to each other, and write G = f, r=aG.

Summarizing, we have a nice framework, for both the compact and discrete quantum
groups. Let us discuss now some tools for studying the Woronowicz algebras, and the
underlying quantum groups. First, we have the following result:
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Proposition 1.12. Let (A, u) be a Woronowicz algebra.
(1) A e satisfy the usual axioms for a comultiplication and a counit, namely:

(A ®id)A = (id® A)A
(e®id)A = (id®e)A =id
(2) S satisfies the antipode aziom, on the x-algebra generated by entries of w:
m(S ®id)A = m(id ® S)A = ¢(.)1
(3) In addition, the square of the antipode is the identity, S* = id.

Proof. As a first observation, the result holds in the commutative case, A = C(G) with
G C Uy. Indeed, here we know from Proposition 1.9 that A, e, S appear as functional
analytic transposes of the multiplication, unit and inverse maps m, u, i:

A=mt | e=u" |, S=1¢

With these remark in hand, the various conditions in the statement on A, e, .S come by
transposition from the group axioms satisfied by m, u, 7, namely:

m(m x id) = m(id x m)
m(u X id) = m(id X u) = id
m(i x id)d = m(id x )6 = 1

Observe that the condition S? = id is satisfied too, coming by transposition from the
formula 2 = id, which corresponds to the following formula, for group elements:

(9 =y
The result holds as well in the cocommutative case, A = C*(I") with Fiy — T, trivially.
In general now, the two comultiplication axioms follow from:

(A @id)Auy) = (id © A)A(uy;) =Y g ® g O wy
kl

(e ®id)Auij) = (id ® €) Awij) = uy;
As for the antipode axiom, the verification here is similar. First, we have the following
computation, by using the fact that the matrix u = (u;;) is unitary:

m(S @ id)A(u;;) = Zu}gzuk] = (u*u);j = 0y
k

On the other hand, we have as well the following computation:

k

Finally, we have S?(u;;) = u;j, and so S? = id everywhere, as claimed. O



QUANTUM PERMUTATIONS 13

In the compact Lie group case, in order to reach to advanced results, one must do either
representation theory, or Lie algebras [145]. In what regards the compact quantum Lie
groups, there is no Lie algebra that can be defined, at least in some elementary sense, and
we are left with doing representation theory. Following [147], let us start with:

Definition 1.13. Given a Woronowicz algebra A, we call corepresentation of it any uni-
tary matriz v € M, (A) satisfying the same conditions are those satisfied by u, namely:

A(vi;) = ZU"’“ Quk; , elvy) =465 , Slvy) = U;i
k

We also say that v is a representation of the underlying compact quantum group G, and
a corepresentation of the underlying discrete quantum group I'.

In the commutative case, A = C(G) with G C Uy, we obtain in this way the finite

dimensional unitary smooth representations v : G — U,,, as follows:

vii(g) - via(9)

vg) =1 :
Un1(g) -+ vnn(g)

In the cocommutative case, A = C*(I") with Fy — I', we will see in a moment that we
obtain in this way the formal sums of elements of I', possibly rotated by a unitary. As a
first result now regarding the representations, we have:

Proposition 1.14. The corepresentations are subject to the following operations:
(1) Making sums, v+ w = diag(v,w).

(2) Making tensor products, (v ® w)ia jb = VijWab-

(3) Taking conjugates, (v);; = vj;.

(4) Rotating by a unitary, v — UvU*.

Proof. We first check the fact that the matrices in the statement are unitaries:
(1) The fact that v 4+ w is unitary is clear.

(2) Regarding now v ® w, this can be written in standard leg-numbering notation as
v ® w = v13ws3, and with this interpretation in mind, the unitarity is clear as well.

(3) In order to check that v is unitary, we can use the antipode. Indeed, by regarding
the antipode as an antimultiplicative map S : A — A, we have:

(@) = > Vv = D S(viyve) = S((070);1) = 65
k k
We have as well the following computation:

(') = > _vwaviy; = > S(uwviy) = S((v0);1) = 6
k k



14 TEO BANICA

(4) Finally, the fact that UvU* is unitary is clear. As for the verification of the comul-
tiplicativity axioms, involving A, ¢, S, this is elementary and routine, in all cases. O

As a consequence of the above result, we can formulate:

Definition 1.15. We denote by u®*, with k = o e @ o ... being a colored integer, the
various tensor products between u,u, indexed according to the rules

=1, u®=u , ¥ =u
and multiplicativity, u®* = u®* @ u®', and call them Peter-Weyl corepresentations.

Here are a few examples of such corepresentations, namely those coming from the
colored integers of length 2, to be often used in what follows:

WP =u®u , u¥*=u®u

WP =uou , u*=uRu
In order to do representation theory, we first need to know how to integrate over G.
And we have here the following key result, due to Woronowicz [147]:

Theorem 1.16. Any Woronowicz algebra A = C(G) has a unique Haar integration,

</G®id>A:(z'd®/G>A:/G(.)1

which can be constructed by starting with any faithful positive form ¢ € A*, and setting

. 1 - xk
f= i3

where ¢ x 1p = (¢ @ )A. Moreover, for any corepresentation v € M,(C) @ A we have

(@-m/(;)UZP

where P is the orthogonal projection onto Fix(v) = {£ € C"|v§ = &£},
Proof. Following [147], this can be done in 3 steps, as follows:

(1) Given ¢ € A*, our claim is that the following limit converges, for any a € A:

1 n
a=lim =Y ¢*(a)

Indeed, by linearity we can assume that a is the coefficient of certain corepresentation,
a = (T ® id)v. But in this case, an elementary computation gives the following formula,
with P, being the orthogonal projection onto the 1-eigenspace of (id ® p)v:

(id@[p)v:P@
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(2) Since v€ = ¢ implies [(id ® ¢)v]¢ = £, we have P, > P, where P is the orthogonal
projection onto the following fixed point space:

Fiz(v) = {g eCr

ve =¢}

The point now is that when ¢ € A* is faithful, by using a standard positivity trick,
one can prove that we have P, = P. Thus our linear form fg{J is independent of ¢, and is

given on coefficients a = (7 ® id)v by the following formula:

(id@/gj)v:P

(3) With the above formula in hand, the left and right invariance of | c = f(p is clear
on coefficients, and so in general, and this gives all the assertions. See [147]. U

With these integration results in hand, we can now develop a Peter-Weyl type theory
for the corepresentations, in analogy with the theory from the classical case. We will need
a number of straightforward definitions and results. Let us begin with:

Definition 1.17. Given two corepresentations v € M, (A),w € M,,(A), we set
Hom(v,w) = {T € men(C)‘Tv = wT}

and we use the following conventions:
(1) We use the notations Fixz(v) = Hom(1,v), and End(v) = Hom(v,v).
(2) We write v ~w when Hom(v,w) contains an invertible element.
(3) We say that v is irreducible, and write v € Irr(G), when End(v) = C1.

In the classical case, where A = C(G) with G C Uy being a closed subgroup, we obtain
the usual notions concerning the representations. Observe also that in the group dual case
we have g ~ h when g = h. Finally, observe that v ~ w means that v, w are conjugated
by an invertible matrix. Here are a few basic results, regarding the above Hom spaces:

Proposition 1.18. We have the following results:
(1) T € Hom(u,v),S € Hom(v,w) = ST € Hom(u,w).
(2) S e Hom(p,q), T € Hom(v,w) = S®T € Hom(p ® v,q @ w).
(3) T € Hom(v,w) = T* € Hom(w,v).
In other words, the Hom spaces form a tensor x-category.
Proof. The proofs are all elementary, as follows:
(1) Assume indeed that we have Tu = vT, Sv = Ws. We obtain, as desired:
STu = SvT = wST
(2) Assume indeed that we have Sp = ¢S, Tv = wT. We have then:

(S®T)(p@wv) = S1Topr1svas = (Sp)13(T)a3
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On the other hand, we have as well the following computation:
(q2w)(S®T) = q3waSiTs = (¢5)13(wT)a3
The quantities on the right being equal, this gives the result.
(3) By conjugating, and then using the unitarity of v, w, we obtain, as desired:
Tv=wlT = v'T"=T"Ww"
= T 'w = vT"w*w
= Trw=0uT"

Finally, the last assertion follows from definitions, and from the obvious fact that, in
addition to (1,2,3) above, the Hom spaces are linear spaces, and contain the units. Il

Finally, in order to formulate the Peter-Weyl results, we will need as well:

Proposition 1.19. The characters of the corepresentations, given by
Xv = Z'Uii
behave as follows, in respect to the various operations:
Xv+w = Xv + Xw Xvew = XoXw > Xo = XZ

In addition, given two equivalent corepresentations, v ~ w, we have Xy = Xw-

Proof. The three formulae in the statement are all clear from definitions. Regarding now
the last assertion, assuming that we have v = T~'wT, we obtain:

Yo = Tr(v) = Tr(T'wT) = Tr(w) = Yu
We conclude that v ~ w implies x, = X, as claimed. U

Consider the dense *-subalgebra A C A generated by the coefficients of the fundamental
corepresentation u, and endow it with the following scalar product:

<a,b >:/ab*
G

With this convention, we have the following fundamental result, from [147]:

Theorem 1.20. We have the following Peter-Weyl type results:

(1) Any corepresentation decomposes as a sum of irreducible corepresentations.
(2) Each irreducible corepresentation appears inside a certain u®®.

(3) A =D,errr(4) Maim@)(C), the summands being pairwise orthogonal.

(4) The characters of irreducible corepresentations form an orthonormal system.
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Proof. All these results are from [147], the idea being as follows:
(1) Given a corepresentation v € M, (A), consider its interwiner algebra:
End(v) ={T € M, (C)|Tv =vT}
We know from Proposition 1.18 that this is a finite dimensional C*-algebra, and by
using Theorem 1.2 above, we have a decomposition as follows:
End(v) = M,,(C)® ... ® M,,(C)

To be more precise, such a decomposition appears by writing the unit of our algebra as
a sum of minimal projections, as follows, and then working out the details:

l=pi+...+p

But this decomposition allows us to define subcorepresentations v; C v, which are
irreducible, so we obtain, as desired, a decomposition as follows:

V= +...+0,

(2) Consider indeed the Peter-Weyl corepresentations, u®* with k colored integer, de-
fined by u® = 1, u® = u, u® = @ and multiplicativity. The coefficients of these
corepresentations span the dense algebra A, and by using (1), this gives the result.

(3) Here the direct sum decomposition, which is technically a *-coalgebra isomorphism,
follows from (2). As for the second assertion, this follows from the fact that (id ® [,)v is
the orthogonal projection P, onto the space Fixz(v), for any corepresentation v.

(4) Since the character x, = Tr(v) is a coefficient of v, the orthogonality assertion
follows from (3). As for the norm 1 claim, this follows once again from (id® [,)v = P,. O

Observe that in the cocommutative case, we obtain from (4) above that we must have
A = C*(I') for some discrete group I', as mentioned in Proposition 1.9. As another
consequence of the above results, following [147] and then [59], we have the following
result, dealing with amenability and functional analysis aspects:

Theorem 1.21. Let A,y be the enveloping C*-algebra of A, and let A,.q be the quotient
of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Ay is faithful.

(2) The projection map Aguy — Apea is an isomorphism.

(3) The counit map € : Apy — C factorizes through Aeq.

(4) We have N € o(Re(xy)), the spectrum being taken inside Ay eq.

If this is the case, we say that the underlying discrete quantum group I' is amenable.

Proof. This is well-known in the group dual case, A = C*(T"), with I" being a usual discrete
group. In general, the result follows by adapting the group dual case proof:

(1) <= (2) This simply follows from the fact that the GNS construction for the
algebra Ay,; with respect to the Haar functional produces the algebra A,.q.
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(2) <= (3) Here = is trivial, and conversely, a counit map ¢ : A,.q — C produces
an isomorphism ® : A,.q — A, via a formula of type & = (¢ ® id)A'.

(3) <= (4) Here = is clear, coming from ¢(N — Re(x(u))) = 0, and the converse
can be proved by doing some functional analysis. See [59], [147]. O

With these results in hand, we can formulate, as a refinement of Definition 1.11:
Definition 1.22. Given a Woronowicz algebra A, we formally write as before
A=C(G)=C*I)
and by GNS construction with respect to the Haar functional, we write as well
A" = L*(G) = L(T)
with G being a compact quantum group, and I' being a discrete quantum group.

Now back to Theorem 1.21, as in the discrete group case, the most interesting criterion
for amenability, leading to some interesting mathematics and physics, is the Kesten one,
from Theorem 1.21 (4). This leads us into computing character laws:

Proposition 1.23. Given a Woronowicz algebra (A, u), consider its main character:
X = Z WUi;

(1) The moments of x are the numbers M, = dim(Fiz(u®)).
(2) When u ~ u the law of x is a real measure, supported by o(x).
(3) The notion of coamenability of A depends only on law(x).

Proof. All this is elementary, the idea being as follows:
(1) This follows indeed from Peter-Weyl theory.
(2) When u ~ u we have xy = x*, which gives the result.
(3) This follows from from Theorem 1.21 (4), and from (2) applied to u + @. O

All this is quite interesting, because it tells us that, regardless on whether we want to
understand the representation theory of our compact quantum group G, or the analytic
aspects of its discrete dual I', we must compute the fixed point spaces Fiz(u®*).

The computation of these spaces is a delicate algebra problem, related to results of
Schur-Weyl, Brauer and Tannaka. In order to get started, the first idea is to replace the
series of fixed point spaces Fj, = Fiz(u®*) by the double series of Hom spaces:

Cr = Hom(u®* u®')

Indeed, by Frobenius duality, computing the sequence of spaces {F}y} is the same as
computing the family of spaces {Cy}. But computing the spaces {Cy;} is simpler than
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computing the spaces {Fy}, because these former spaces form a category. And we can
use here the following version of Tannakian duality, due to Woronowicz [148]:

Theorem 1.24. The following operations are inverse to each other:

(1) The construction A — C, which associates to any Woronowicz algebra A the
tensor category formed by the intertwiner spaces Ciy = Hom(u®*, u®').

(2) The construction C — A, which associates to any tensor category C the Worono-
wicz algebra A presented by the relations T € Hom(u®*, u®'), with T € C.

Proof. This is something quite deep, going back to [148] in a slightly different form,
and to [116] in the simplified form presented above. The idea is that we have indeed a
construction A — C' as above, whose output is a tensor C*-subcategory with duals of the
tensor C*-category of Hilbert spaces. We have as well a construction C' — A as above,
simply by dividing the free *-algebra on N? variables by the relations in the statement.
Regarding now the bijection claim, some elementary algebra shows that C' = C4, implies
A = Ac,, and also that C' C Cjy,, is automatic. Thus we are left with proving Cy, C C.
But this latter inclusion can be proved indeed, by doing a lot of algebra, and using von
Neumann’s bicommutant theorem, in finite dimensions. See [116]. O

As a last piece of general theory, let us discuss fusion rules, and Cayley graphs:

Proposition 1.25. Let (A,u) be a Woronowicz algebra, and assume, by enlarging if
necessary u, that we have 1 € u = u. The formula

d(v, w) :min{k:EN‘l C6®w®u®k}

defines then a distance on Irr(A), which coincides with the geodesic distance on the
associated Cayley graph. Moreover, the moments of the main character,

/ x* = dim (Fiz(u®"))
a
count the loops based at 1, having lenght k, on the corresponding Cayley graph.

Proof. Observation first the result holds indeed in the group dual case, where A = C*(I)
with I' =< S > being a finitely generated discrete group. In general, the fact that the
lengths are finite follows from Peter-Weyl theory. The symmetry axiom is clear as well,
and the triangle inequality is elementary to establish as well. Finally, the last assertion,
regarding the moments, is elementary as well. O

Let us discuss now the basic examples of compact and discrete quantum groups. We
know so far that the compact quantum groups include the usual compact Lie groups,
G C Uy, and the abstract duals G = I' of the finitely generated groups Fn — I
Equivalently, we know that the discrete quantum groups include the finitely generated
groups Fy — I', and the abstract duals I' = G of the compact Lie groups, G C Uy. We
can combine these examples by performing basic operations, as follows:
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Proposition 1.26. The class of Woronowicz algebras is stable under taking:

(1) Tensor products, A = A" @ A”, with u = v’ +u". At the quantum group level we
obtain usual products, G =G x G" and ' =T1" x I"”.

(2) Free products, A= A'x A", with u = u'+u". At the quantum group level we obtain
dual free products G = G' *G" and free products I' =T" x T'".

Proof. Everything here is clear from definitions. In addition to this, let us mention as
well that we have f Ao = f 2w ® f 4 and f eAr = f ¥ f e Also, the corepresentations
of the products can be explicitely computed. See [139]. O

Here are some further basic operations, once again from [139]:

Proposition 1.27. The class of Woronowicz algebras is stable under taking:

(1) Subalgebras A" =< wuj; >C A, with v’ being a corepresentation of A. At the

quantum group level we obtain quotients G — G’ and subgroups I C T
(2) Quotients A — A" = A/I, with I being a Hopf ideal, A(I) C AR T+ 1® A. At
the quantum group level we obtain subgroups G' C G and quotients I' — I”.

Proof. Once again, everything is clear, and we have as well some straightforward supple-
mentary results, regarding integration and corepresentations. See [139]. U

Finally, here are two more operations, which are of key importance:

Proposition 1.28. The class of Woronowicz algebras is stable under taking:

(1) Projective versions, PA =< wjq j, >C A, where w = u® u. At the quantum group
level we obtain projective versions, G — PG and PT" C T
(2) Free complexifications, A =< zu;; >C C(T) « A. At the quantum group level we

obtain free complezifications, denoted G and I.
Proof. This is clear from the previous results. For details here, we refer to [139]. U

Once again following [139], as well as [43], let us discuss now a number of truly “new”
quantum groups, obtained by liberating and half-liberating. We first have:

Theorem 1.29. The following universal algebras are Woronowicz algebras,
C(OJJ\;) = " ((uij)i,jzl,...,N‘U:ﬂ,Ut u_1>

cuy) = C* <<Uz’j)i,j:1,...,N‘U* =u ' = Tfl)

and the same goes for the following quotient algebras,

coy) = C(OX,)/ <abc = cba|Va, b, c € {Um}>

Va,b, c € {u;, ufj}>

so the underlying spaces Ok, Uy and Ok, U} are compact quantum groups.

C(Uy) = C’(U;\;)/ <abc = cba
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Proof. The first assertion follows from the elementary fact that if a matrix u = (u;;) is
orthogonal or biunitary, then so must be the following matrices:

A 2 : e _ S _
k

Thus, we can define morphisms A, ¢, S as in Definition 1.7, by using the universality

property of C(OF), C(Uy). As for the second assertion, the proof here is similar, based on

the fact that if the entries of u satisfy abc = cba, then so do the entries of v, v, v°. O

Our first task is to verify that Theorem 1.29 provides us indeed with new quantum
groups. For this purpose, we can use the notion of diagonal torus, from [45]:

Proposition 1.30. Given a closed subgroup G C Uy, consider its diagonal torus, which
is the closed subgroup T' C G constructed as follows:

(1) = C(G) [ (wy = 0fvi # )
This torus is then a group dual, T = K, where A =< g1, ...,gn > is the discrete group

generated by the elements g; = wu;;, which are unitaries inside C(T)).

Proof. Since u is unitary, its diagonal entries g; = u;; are unitaries inside C'(T"). Moreover,
from A(u;;) =Y, wik ® ug; we obtain, when passing inside the quotient:

A(gi) = 9: @ gi
It follows that we have C(T") = C*(A), modulo identifying as usual the C*-completions
of the various group algebras, and so that we have T'= A, as claimed. O

We can now distinguish between our various quantum groups, as follows:

Theorem 1.31. The diagonal tori of the basic unitary quantum groups, namely

Un Uy Uy

On Oy of
are the following discrete group duals,

7 7 7

with o standing for the half-classical product operation for groups.
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Proof. This is clear for Uy, where on the diagonal we obtain the biggest group dual,
namely Fl. For the other quantum groups this follows by taking quotients, which corre-
sponds to taking quotients as well, at the level of the diagonal torus dual A =T O

Let us discuss now the representation theory of these quantum groups. In order to
formulate our results, we use the modern notion of “easiness”, from [43]:

Definition 1.32. A closed subgroup G C Uy; is called easy when we have

Hom(u®* u®") = span (T7r

Te D(k:,l))

for any colored integers k,l, for certain sets of partitions D(k,l) C P(k,l), where

T,r(eh@...@eik)zz(sﬂ(ji j’;)eh@...@ejl

with the Kronecker type symbols 0, € {0,1} depending on whether the indices fit or not.

To be more precise here, let P(k,[) be the set of partitions between an upper row of
k points, and a lower row of [ points. Our claim is that given N € N, any partition
7 € P(k,l) produces a linear map between tensor powers of CV, as follows:

T7r . ((CN)@JI: N ((CN)®Z

Indeed, if we denote by e, ..., ey the standard basis of CV, we can define T, by the
formula in Definition 1.32, with the Kronecker symbols appearing there being computed
by putting the multi-indices 7, 7 on the legs of 7, in the obvious way. If all the blocks of
7 contain equal indices we set 6, = 1, and if not, we set §, = 0. We have then:

Theorem 1.33. The basic unitary quantum groups are all easy, with

Un Uy Uy P P NC,

On Oy 0% P, Py NGy
being the associated categories of partitions D C P.

Proof. This is something that requires some work, the idea being as follows:

(1) Of. Consider the set NCy of all noncrossing pairings. It is routine to check that
span(T,|m € NCy) is a Tannakian category, and also that this category is the smallest
possible one allowed by the Tannakian axioms, in the u = u setting. Thus, the associated
quantum group must be the biggest subgroup G C Oy, which is Oy itself.
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(2) Oy. Since Oy C Oy appears by adding the commutation relations ab = ba between
coordinates, which are implemented by the linear map T}y coming from the basic crossing
X, we obtain here the category < NCy, X >= P, of all pairings.

(3) Ox. Here we obtain the category < NCs, { >= Py of pairings having the property
that, when legs are labelled clockwise c @ o e ..., each string connects o — e.

(4) Uy, Uy,U%. The situation is similar here, but due to u # u everything is now
colored, and we obtain in all cases pairings which are “matching”, in the sense that the
vertical strings connect o — o or @ — e, and the horizontal ones connect o — e. Il

Here are some concrete consequences of the above result, following [1], [26]:

Theorem 1.34. The quantum groups Oy, Uy have the following properties:

(1) We have an isomorphism as follows, up to the standard equivalence relation:

Of = U3
(2) We have as well an isomorphism as follows, once again up to equivalence:
PO} = PUY;

(3) The fusion rules for O are the same as the Clebsch-Gordan rules for SUs:
T @1y =Tp—t] + Tp—tj42 + - T Trpa

(4) Those for Uy, are as follows, with the representations being indexed by N N:

rE QT = E Trz

k=xy,l=yz
(5) The main characters follow the Wigner semicircle and Voiculescu circular law:
v for Of , N >2
Y0t UL, N>2
(6) With N — oo, the truncated characters follow the t-versions of these laws:

v for OF , N = o0
Xt I, for Uy, N—

Proof. All this follows from our Brauer type results, via standard techniques. There is
actually quite some work ot be done here, the idea being as follows:

(1) As a first observation, by using the universal property of Uy, as being the biggest
N x N compact matrix quantum group, we have an inclusion as follows:

oL c Uy
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Now by using the easiness results from Theorem 1.33, we can compute the tensor
categories for both these quantum groups, with the conclusion that these tensor categories
are equal. Thus, our inclusion is an isomorphism, up to the equivalence relation.

(2) This follows from (1) above, via the following computation:
PUY = PO}, = PO}

(3) This is something more complicated, the idea being that from the Brauer result for
O}; we obtain, after some work, the following formula, valid at any N > 2:

dim(End(u®*)) = |NCy(k, k)|

B 1 2k
 k+1\k
Now since the same formula is well-known to hold for the fundamental representation
of SU,, we obtain the same combinatorics, as claimed. We will be back to this.

(4) This follows from (1) and (3). Indeed, the fusion rules for the quantum group

Uy = OF can be computed starting from the knowledge of those of O3, and we end up
with a “free complexification” of the Clebsch-Gordan rules, namely:

TE QT = E Tzz

k=xy,l=yz

(5) This follows once again from (1) and (3). Indeed, in what regards O}, we can
convert our combinatorial results into a moment formula, as follows:

1 /2%
2k
/O X _k+1(k)

+
N
But this shows precisely that y must follow the Wigner semicircle law ~;, and by
complexifying, we obtain the result for Uy as well. We will be back to this.

(6) This is something more technical. Given a parameter ¢ € (0,1], we can define a
truncation of the main character, as follows:
[tN]

Xt = Z Ui
i=1

The point now is that our Brauer theorems allow us to explicitely integrate over Oy, U},
via a combinatorial formula, and in the N — oo limit the combinatorics simplifies, and
in what regards y;, we obtain the laws ~v;, I';. We will be back to this. U

The above presentation was of course quite short, but all this can be found in any good
quantum group book. Some similar results regarding Oy, Uy, are available as well, and
we can twist everything at ¢ = —1 too. We will be back to this.
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2. QUANTUM PERMUTATIONS

Welcome to quantum permutations. The rest of this book is dedicated to them. And,
good news, the presentation will be far less intense than that in the previous section,
which was meant to be a quick introduction to the quantum groups, survey style. In
order to get started, let us look at the usual symmetric group Sy. We have:

Proposition 2.1. Consider the symmetric group Sy, viewed as the permutation group of
the N coordinate axes of RY. The coordinate functions on Sy C Oy are then given by

Uij = X <0 € G’a(j) = z)

and the matriz w = (u;;) that these functions form is magic, in the sense that its entries
are projections (p? = p* = p), summing up to 1 on each row and each column.

Proof. Everything here follows from definitions. The formula of the coordinates w;; is
obviously the good one, and the fact that u = (u;;) is magic is clear too. U

With a bit more effort, we obtain the following nice characterization of Sy:

Theorem 2.2. The algebra of functions on Sy has the following presentation,
C(Sn) = Crpmm ((Uz’j)uj:l,...,N‘u = magic)
and the multiplication, unit and inversion map of Sy appear from the maps

Auy) = Zuzk Qur; , eluy) =205 , Suy)=uy
3

defined at the algebraic level, of functions on Sy, by transposing.

Proof. This is something elementary as well. Indeed, the universal algebra A in the
statement is a commutative C*-algebra, so by the Gelfand theorem it must be of the
form A = C(X), with X being a certain compact space. Now since we have coordinates
u;; © X — R, we have an embedding X C My(R). Also, since we know that these
coordinates from a magic matrix, the elements g € X must be 0-1 matrices, having
exactly one 1 on each row and each column, and so:

X =Sn

Thus we have proved the first assertion, and the second assertion is clear as well, by
using the general theory from section 1. To be more precise, the multiplication, unit and
inverse map of Sy C Oy are the standard ones for the orthogonal matrices, namely:

(9h)ig =Y gahiy Ly =0y (97" = gy
k

Now by transposing, we obtain the formulae of A, e, S in the statement. O
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Following now Wang [140], we can liberate Sy, simply by lifting the commutativity
condition in Theorem 2.2. To be more precise, we have the following result:

Theorem 2.3. The following universal C*-algebra, with magic meaning as usual formed
by projections (p* = p* = p), summing up to 1 on each row and each column,

C(SX/) =C" ((uij)i,jzl,..A,N)U = magic)
is a Woronowicz algebra, with comultiplication, counit and antipode given by

A(uij) = Zuzk Q Uk, 5(%‘;‘) =0 S(“ij) = Uji
k

and so the underlying compact quantum space S3; is a compact quantum group, called
quantum permutation group.

Proof. As a first observation, the universal C*-algebra in the statement is indeed well-
defined, because the conditions p? = p* = p satisfied by the coordinates give:

[Jug|| <1

In order to prove now that we have a Woronowicz algebra, we must construct maps
A e, S given by the formulae in the statement. Consider the following matrices:

A 2 : e _ S _
k

Our claim is that, since u is magic, so are these three matrices. Indeed, regarding u®,
its entries are idempotents, as shown by the following computation:

A2
(uij) = E Ui Uy @ Upj Uy
kl

= E OkiUir @ Ol
kl

A

These elements are self-adjoint as well, as shown by the following computation:
(u)" =D ui @iy = 3wk ® wg = g
k k

A

The row sums for the matrix u= can be computed as follows:

J jk k

As for the computation of the column sums, this is similar, as follows:

ZuiAj:Zuik(gukj:Zl@Ukj:l
i ik k
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Thus, u® is magic. Regarding now u®,u®, these matrices are magic too, and this for
obvious reasons. Thus, all our three matrices u®,u®,u” are magic, and so we can define
A, &, S by the formulae in the statement, by using the universality property of C'(S5).

As a conclusion, the algebra C'(Sy) satisfies Woronowicz’s axioms from section 1 above,
and so its abstract spectrum S} is a compact quantum group, as claimed. U

Our first task now is to make sure that Theorem 2.3 produces indeed a new quantum
group, which does not collapse to Sy. Following [140], we have here:

Theorem 2.4. We have an embedding Sy C Sy, given at the algebra level by:
Uij —> X (a‘a(j) = z)
This is an isomorphism at N < 3, but not at N > 4, where S, is not classical, nor finite.

Proof. The fact that we have indeed an embedding as above follows from Theorem 2.2.
Observe that in fact more is true, because Theorem 2.2 and Theorem 2.3 give:

C(Sy) = C(S%) / <ab - ba>

Thus, the inclusion Sy C S is a “liberation”, in the sense that Sy is the classical
version of S}, We will often use this basic fact, in what follows. Regarding now the
second assertion, we can prove this in four steps, as follows:

Case N = 2. The fact that Sy is indeed classical, and hence collapses to Sy, is trivial,
because the 2 x 2 magic matrices are as follows, with p being a projection:

(2
L=p p
Indeed, this shows that the entries of U commute. Thus C(S5) is commutative, and
so equals its biggest commutative quotient, which is C(Sz). Thus, S5 = Ss.

Case N = 3. By using the same argument as in the N = 2 case, and the symmetries of
the problem, it is enough to check that u;q, uss commute. But this follows from:

Ul = UppUge(Ury + Uz + Uis)
U11U22U11 + U1 U22UL3
U1 U22U11 + Un(l — U21 — U23)U13

= U11U22U11

Indeed, by applying the involution to this formula, we obtain from this that we have
as well usou1; = uj1uguyy. Thus, we obtain wuyquse = uguqq, as desired.
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Case N = 4. Consider the following matrix, with p, ¢ being projections:

P 1—»p 0 0
1—-p p 0 0
0 0 q 1—¢q
0 0 1—gq q
This matrix is magic, and we can choose p,q as for the algebra < p,q > to be non-

commutative and infinite dimensional. We conclude that C(S}) is noncommutative and
infinite dimensional as well, and so S is non-classical and infinite, as claimed.

U:

Case N > 5. Here we can use the standard embedding Sj C S]J\“,, obtained at the level
of the corresponding magic matrices in the following way:

_ U 0
YN0 1w

Indeed, with this in hand, the fact that S} is a non-classical, infinite compact quantum
group implies that S}, with N > 5 has these two properties as well. U

The above result is quite surprising, and understanding all this will be our next goal.
As a first observation, we are not wrong with our formalism, because as explained once
again in [140], we have as well the following alternative picture for Sj:

Theorem 2.5. The quantum permutation group Sy, acts on the set X = {1,..., N}, the
corresponding coaction map ® : C(X) — C(X) @ C(Sy) being given by:

(I)(GZ) = Z €; & Ugjs
J

In fact, S5, is the biggest compact quantum group acting on X, by leaving the counting
measure invariant, in the sense that (tr ® id)® = tr(.)1, where tr(e;) = +, Vi.

Proof. Our claim is that given a compact matrix quantum group G, the following formula
defines a morphism of algebras, which is a coaction map, leaving the trace invariant,
precisely when the matrix u = (u;;) is a magic corepresentation of C'(G):

@(62) = Z €; (24 Uyj
J
Indeed, let us first determine when @ is multiplicative. We have:
D(e;)P(ex) = Z eje @ ujuy, = Z e; & Ui
Jl J
On the other hand, we have as well the following computation:

O(eer) = opud(e;) = 0 Y ej ® uyy

J
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We conclude that the multiplicativity of ® is equivalent to the following conditions:
Ujitjr = Oigtyi Vi, 7,k

Regarding now the unitality of ®, we have the following formula:

@(1) = Z CID(eZ) = Z €; ® Uj; = Z €; ® (Z Uji)
7 i J %

Thus @ is unital when ), uj; = 1, Vj. Finally, the fact that ® is a *-morphism translates

into w;; = wuj;, Vi,j. Summing up, in order for O(e;) = Zj e; ® uj; to be a morphism of

C*-algebras, the elements u;; must be projections, summing up to 1 on each row of w.

Regarding now the preservation of the trace condition, observe that we have:

(tr @ id)®(e;) = % Z (o

Thus the trace is preserved precisely when the elements wu;; sum up to 1 on each of
the columns of u. We conclude from this that ®(e;) = ;€5 ® uj; is a morphism of C*-
algebras preserving the trace precisely when u is magic, and since the coaction conditions
on ® are equivalent to the fact that u must be a corepresentation, this finishes the proof
of our claim. But this claim proves all the assertions in the statement. O

In order to study now Sy;, we can use our various methods developed in section 1 above.
Let us begin with some basic algebraic results, as follows:

Theorem 2.6. The quantum groups Sy have the following properties:
(1) We have S %Sy, C S\ a for any N, M.
(2) In particular, we have an embedding Do, C Sy .
(3) Sy C S are distinguished by their spinned diagonal tori.
(4) The half-classical version Sk = S N O% collapses to Sy.

Proof. These results are all elementary, the proofs being as follows:

(1) If we denote by u,v the fundamental corepresentations of C(S};),C(S5;), the fun-
damental corepresentation of C'(Sy % S;;) is by definition:

But this matrix is magic, because both u, v are magic. Thus by universality of C'(Sy, /)
we obtain a quotient map as follows, as desired:

C(S;\LHM) — C(S% %53



30 TEO BANICA

(2) This result, which refines our N = 4 trick from the proof of Theorem 2.4, follows
from (1) with N = M = 2. Indeed, we have the following computation:
Sy Sy = Sy%Sy = Zo# Loy~ Lyi Ly = Ly % Ly = Doy
(3) As a first observation here, the quantum groups Sy C S} are not distinguished by
their diagonal torus, which is {1} for both of them. However, according to the general
results of Woronowicz in [147], the group dual D,, C S; that we found in (2) must
be a subgroup of the diagonal torus of the following compact quantum group, with the
standard unitary representations being spinned by a certain unitary F' € Uy:

(S, FuF*)

Now since this group dual l/); is not classical, it cannot be a subgroup of the diagonal
torus of (Sy, FuF™). Thus, the diagonal torus spinned by F' distinguishes S, C S}

(4) Consider the following compact quantum group, with the intersection operation
being taken inside Uy, whose coordinates satisfy abc = cba:

= S5 N0

In order to prove that we have S}, = Sy, it is enough to prove that S} is classical.
And here, we can use the fact that for a magic matrix, the entries in each row sum up to
1. Indeed, by making ¢ vary over a full row of u, we obtain abc = cba = ab =ba. U

Let us discuss now the representation theory of S, which will eventually lead to a
clarification of all this. Our main result here, which is quite conceptual, will be the fact
that Sy C S5 is a liberation of easy quantum groups. Following [43], let us formulate:

Definition 2.7. Let P(k,l) be the set of partitions between an upper row of k points, and
a lower row of | points. A collection of sets

D =| |D(k,1)

kol
with D(k,1) C P(k,l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (m,0) — [wo].
(2) Stability under the vertical concatenation, (mw,0) — [2].

(3) Stability under the upside-down turning, ™ — w*.

(4) Each set P(k,k) contains the identity partition || ...||.

(5) The set P(0,2) contains the semicircle partition N.

As a basic example, we have the category of all partitions P itself. Other basic examples
include the category of pairings P, or the categories NC, NC5 of noncrossing partitions,
and pairings. There are many other examples, and we will be back to this. Following
[43], the relation with the Tannakian categories and duality comes from:
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Proposition 2.8. Fach partition m € P(k,l) produces a linear map
T7r . (CN)(X)k N (CN)®I

given by the following formula, with ey, ..., ex being the standard basis of CV,

Tﬂ(€i1®"'®€ik): Zéﬂ(2.1 Z.k)ejl®...®€jl

J -

and with the Kronecker type symbols 6, € {0,1} depending on whether the indices fit or
not. The assignement m — T, is categorical, in the sense that we have

T. 1, = T[ﬂa] , 1T, = NC(T(7U)T[Z] ; T; =T.

where c(m,0) are certain integers, coming from the erased components in the middle.

Proof. This follows from the elementary computations, as follows:
(1) The concatenation axiom follows from the following computation:

(T, @T,)(€, ®..Q¢€, ey, ®...R ex,)

= Y 5ﬂ<;.1 ;'p>5"(l11 ZT)eﬁ@...@ejq@eh@...@els
g )

Ji-Jg li.ds

= E E 5[m}<,1 P ll l>€j1®---®€jq®€ll®~-®els
: / Jro--. jq 1 e s
J1-Jg li.dls

= ﬂwa](eil ®"'®6ip®6k:1 ®®6kr)
(2) The composition axiom follows from the following computation:

TWTU(&L‘l ®X...Q 61',,)

3 i Ao Ja
CTafs D E el Baeon

J1--Jq k1.
_ Z Nemo) s o Oy 2 %
(7] k ... k Chy &+ & Chy
K1k "

— NC(”’U)T[%(% ®... e,
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(3) Finally, the involution axiom follows from the following computation:
T:(Gjl ®... ejq)
— Z <THejp ®...0¢,),eu®...0€, >e; ®...0¢,

i1..ip

i1 ... 1
11...0p
= Tp(en ®...®¢,)
Summarizing, our correspondence is indeed categorical. U

In relation with the quantum groups, we have the following result, from [43]:

Theorem 2.9. Each category of partitions D = (D(k,l)) produces a family of compact
quantum groups G = (Gy), one for each N € N, via the formula

Hom/(u®* u®) = span (Tw T E D(k,l))

which produces a Tannakian category, and the Tannakian duality correspondence.

Proof. This follows indeed from Woronowicz’s Tannakian duality, in its “soft” form from
[116], as explained in section 1 above. Indeed, let us set:

C(k,1) = span (TW € D(k, l))

By using the axioms in Definition 2.7, and the categorical properties of the operation
m — Ty, from Proposition 2.8 above, we deduce that C = (C(k,l)) is a Tannakian
category. Thus the Tannakian duality applies, and gives the result. U

We can now formulate the following key definition:

Definition 2.10. A compact quantum group Gy is called easy when we have

Hom/(u®*, u®") TE D(k,l))

= span (T,r
for any colored integers k,l, for a certain category of partitions D C P.

In other words, a compact quantum group is called easy when its Tannakian category
appears in the simplest possible way: from a category of partitions. The terminology is
quite natural, because Tannakian duality is basically our only serious tool.

Observe that the category D is not unique, for instance because at N = 1 all the
categories of partitions produce the same easy quantum group, namely G; = {1}. We
will be back to this issue on several occasions, with various results about it.

In relation now with our quantum permutation groups, and with the orthogonal quan-
tum groups too, here is our main result, coming from [1], [2] and then [26], [27], [43]:
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Theorem 2.11. The quantum permutation and rotation groups are all easy,

SN

o, NC

NC,

SN

o P

Py
with the corresponding categories of partitions being those on the right.
Proof. This is something quite fundamental, the proof being as follows:
(1) Of.. Consider the Tannakian category of O}, formed by the following spaces:
Cr = Hom(u®* u®')
By using Proposition 2.8, consider as well the following Tannakian category:

D = span (T7r

T e NC’2>

We want to prove that we have C' = D. In one sense, this follows from:
u=u — TheCl
= <Th>CC

— span(Tﬂw€<ﬂ>)CC

— DcC

In the other sense, Tannakian duality tells us that associated to D is a certain closed
subgroup G C Of,. But since Tannakian duality is contravariant, at the level of categories
G C OF; translates into C' C D. Thus we have C = D, and we are done.

(2) On. Since Oy C OF; appears by adding the commutation relations ab = ba between
coordinates, which are implemented by the linear map 7} coming from the basic crossing
X, this group is indeed easy, coming from the following category:

<NCQ,X>: b

Alternatively, if this argument was too fast, the above proof for OF can be simply
rewritten, by adding at each step the basic crossing X, next to the semicircle N.

(3) S¥. We know that the algebra C'(Sy;) appears as follows:

C(S}) = C(O})/<u = magic>
In order to interpret the magic condition, consider the fork partition:

Y € P(2,1)
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The linear map associated to this fork partition Y is then given by:
Ty (e; ® ej) = 0;j€;
Thus, in usual matrix notation, this linear map is given by:
Ty = (0ijk)ijn

Now given a corepresentation u, we have the following formula:

(Tyu™)i e = Y (T )i (U™ im i = izt

lm

On the other hand, we have as well the following formula:
<UTY>i,jk = Zuil(TY)l,jk = (Sjkuij
!

We conclude that we have the following equivalence:
Ty € Hom(u®* u) < wuy, = 6;5u4, Vi, j, k
The condition on the right being equivalent to the magic condition, we obtain:
C(SH) = C(O%) / <Ty e Hom(u®2,u)>

Thus S} is indeed easy, the corresponding category of partitions being:

D=<Y >=NC
(4) Sy. Here there is no need for new computations, because we have:

Sy =S5 N0y
At the categorial level means that Sy is easy, coming from:

<NC,P,>=P

Alternatively, we can rewrite if we want the proof for S3; or Oy, by adding at each step
the basic crossing/fork next respectively to the fork/basic crossing. O

As explained in section 1, in the context of the unitary quantum groups, this kind of
easiness result has a massive number of applications. We will explore these applications
in what follows, gradually. Let us start with something philosophical:

Theorem 2.12. The inclusions Oy C OF, and Sy C Sy are liberation operations in the
easy quantum group sense, given by

Dg+ = DN NC

at the level of the associated categories of partitions.
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Proof. This is clear indeed from Theorem 2.11 above, and from the following trivial equal-
ities connecting the categories found there:

Indeed, these equalities correspond to the formulae in the statement. O

Let us get now into the real thing, namely classification of the irreducible representa-
tions, fusion rules, Cayley graphs, laws of characters, and other probabilistic questions.
As explained in section 1, all these problems are related, and their solution basically
requires the knowledge of the associated Tannakian category, given by:

Cr = Hom(u®* u®')

But in the easy case, where our quantum group G comes from a category of partitions
D, and which covers our 4 main examples, this problem is half-solved, because:

Cr = span (T7r T e D(k‘,l))

The remaining half-problem to be solved is that of investigating the linear independence
properties of the maps T,. Let us begin with some standard combinatorics:

Definition 2.13. Let P(k) be the set of partitions of {1,...,k}, and let m,0 € P(k).

(1) We write m < o if each block of 7 is contained in a block of o.
(2) We let mV o € P(k) be the partition obtained by superposing 7, .

Also, we denote by |.| the number of blocks of the partitions = € P (k).
As an illustration here, at k = 2 we have P(2) = {||,M}, and we have:
<
Also, at k = 3 we have P(3) = {|||,M],f, |I1,IT}, and the order relation is as follows:
< np, m,n < rm
Observe also that we have m,0 < 7V ¢, and that 7 V ¢ is the smallest partition with

this property. Due to this fact, 7 V o is called supremum of 7, .

Now back to quantum groups, and to the questions that we want to solve, by Frobenius
duality it is enough to study the partitions having no upper legs. We have:

Proposition 2.14. The vectors &, = T, with m € P(k) are given by
fﬂ- = Z (57T(Z.1,...,7;k)62'1 ®®€Zk
i1k
and their scalar products are given by the formula
< 57” fo >= NIWVU'

where V is the superposition operation, and |.| is the number of blocks.
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Proof. According to the formula of the vectors &, we have:

<& > = Y balin, k)0, (i, i)

i1

_ Z Onve (i1, - - -5 ix)

i1
_ N|7TVO’|
Thus, we have obtained the formula in the statement. U

In order to study the Gram matrix Gy (7, o) = NI™°l and more specifically to compute
its determinant, we will use several standard facts about the partitions. We have:

Definition 2.15. The Mébius function of any lattice, and so of P, is given by

1 itr=o0
(o) =< = o u(m7) if <o
0 if rLo

with the construction being performed by recurrence.
As an illustration here, let us go back to the set of 2-point partitions, P(2) = {||,M}.
We have by definition:
plll 1) = p(m,m) =1
Also, we know that we have || < M, with no intermediate partition in between, and so
the above recurrence procedure gives:

pdll, 1) = —pd) 1) = -1

Finally, we have M £ ||, and so we have as well the following formula:

p(m, ) =0

Thus, as a conclusion, we have computed the Mobius matrix My(m, o) = p(w, o) of the
lattice P(2) = {||,M}, the formula being as follows:

1 -1
=)

The computation for P(3) = {|||,M],M,|M, M1} is similar, and leads to the following
formula for the associated Mcbius matrix:

1 -1 -1 -1 2

0 1 0 0 -1
My=|0 0 1 0 -1
0o 0 0 1 -1
0O 0 0 0 1
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Back to the general case now, the main interest in the Mébius function comes from the
Mobius inversion formula, which states that the following happens:

flo)=> g(m) = glo)=) u(m a)f(m)

<o <o
In linear algebra terms, the statement and proof of this formula are as follows:

Theorem 2.16. The inverse of the adjacency matriz of P(k), given by

1 fn<o
Ak(ma):{() ifrLo

is the Mébius matriz of P, given by My(w, o) = p(mw, o).

Proof. This is well-known, coming for instance from the fact that A, is upper triangular.
Indeed, when inverting, we are led into the recurrence from Definition 2.15. O

As a first illustration, for P(2) the formula M, = A;' appears as follows:
1 -1\ (1 1\
0 1) \01

Also, for P(3) = {]||,N|, M, |r1,rT1} the formula M; = A3 " reads:

-1

1 -1 -1 -1 2 11111
o 1 0 0 -1 01 001
0o 0 1 0 —-1]=1001P0T1
o 0 0 1 -1 00011
o o0 0 0 1 00001

In general, the inversion formula M, = A,;l is something of similar nature. Now back

to our Gram matrix considerations, we have the following key result:
Proposition 2.17. The Gram matrixz of the vectors &, with m € P(k),
GTE‘O’ — N|7rVo'|

decomposes as a product of upper/lower triangular matrices, Gy, = Ay Ly, where

Li(m.0) NIN-1)...(N—|n|+1) ifo<nm
T,0) =
M 0 otherwise

and where Ay, is the adjacency matriz of P(k).
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Proof. We have the following computation, using Proposition 2.14:
Gp(m,0) = NI™vel
- #{zlzk e {1,...,N}‘keri27r\/a}

_ #{h,...,ike{1,...,N}‘keri:r}

T>7m\Vo
= ) N(N-1)...(N—|r|+1)
T>m\Vo
According now to the definition of Ay, Ly, this formula reads:

Gi(m,o) = ZLk(T,O')

T>T

= Z Ay(m, 7)Lg(T,0)

= (AxLy)(m,0)
Thus, we are led to the formula in the statement. U

As an illustration for the above result, at k = 2 we have P(2) = {||,M}, and the above
decomposition Gy = Ay Ly appears as follows:

N2 N\ (1 1\ (N?-N o0
N NJ) \0 1 N N
At k = 3 now, we have P(3) = {|||,M|,m, |, M1}, and the Gram matrix is:

N3 N? N2 N2 N
N2 N2 N N N
Gs=|N> N N2 N N
N: N N N? N
N N N N N
Regarding L, this can be computed by writing down the matrix Es(m, o) = do<z|7|,

and then replacing each entry by the corresponding polynomial in N. We reach to the
conclusion that the product AsLs is as follows, producing the above matrix Gj:

11111 N3 —3N? +2N 0 0 0 0
01001 N2 - N N2 —N 0 0 0
AsLs=|0 0 1 0 1 N2 - N 0 N?2—N 0 0
00011 N? - N 0 0 N2—N 0
00001 N N N N N

In general, the formula G, = A, L, appears a bit in the same way, with A, being binary
and upper triangular, and with L, depending on N, and being lower triangular.
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We are led in this way to the following formula, due to Lindstom [114]:

Theorem 2.18. The determinant of the Gram matriz Gy, is given by

N!
det(Gy) = —_—
ﬂel;[(k) (N — [m|)!
with the convention that in the case N < k we obtain 0.

Proof. 1f we order P(k) as usual, with respect to the number of blocks, and then lexico-
graphically, then A is upper triangular, and Ly is lower triangular. Thus, we have:

det(Gk) = det(Ak)det(Lk)

= HLk(ﬂ',ﬂ')

= [NV =1 ... (N = x| +1)

Thus, we are led to the formula in the statement. Il
Now back to the laws of characters, we can formulate:

Theorem 2.19. For an easy quantum group G = (Gy), coming from a category of
partitions D = (D(k, 1)), the asymptotic moments of the main character are given by

lim [ x"=[D(k)]

N—o0 Cn

where D(k) = D(0, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.

Proof. According to the Peter-Weyl theory, and to the definition of easiness, the moments
of the main character are given by the following formula:

/x’“ = / Xuok
Gn GnN

= dim (Fiz(u®™))
= dim (spcm (fﬂ TE D(@))

Now since by Theorem 2.18 the vectors &, are linearly independent with N > £, and
in particular with N — oo, we obtain the formula in the statement. Il

In order to work out consequences, we will need the following standard result:
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Theorem 2.20. The Catalan numbers Cy, = |NCy(2k)| satisfy
Crin= Y CuCy
a+b=k

their generating series f(2) =3 ;¢ Cr2" satisfies zf* — f +1 =0, and we have:

1 (2
Ok_k;+1(k:>

Proof. We must count the noncrossing pairings of {1,...,2k}. Now observe that such a
pairing appears by pairing 1 to an odd number, 2a + 1, and then inserting a noncrossing
pairing of {2,...,2a}, and a noncrossing pairing of {2a + 2,...,2k}. We conclude from
this that we have the following recurrence formula for the Catalan numbers:

Cr= > CuG
a+b=k—1

But this gives zf? — f +1 = 0, and by solving this equation and choosing the solution
which is bounded at z = 0, we obtain the following formula for f:

1—+v1—-14z
fo)= 0=
z
By using now the Taylor formula for \/z, we obtain the following formula:

f(z) = kzzo %H (%f) 2"

But this gives the formula in the statement, for the coefficients CY. O
Now back to quantum groups, we have the following result, from [26], [27]:

Theorem 2.21. The asymptotic k-moments for the main quantum permutation and ro-
tation groups are the double factorials, and Bell and Catalan numbers,

St o, Cr ———— Cija

SN On B, ——— k!

the precise formulae being as follows,
(1) kM =135...(k—=3)(k—1),
(2) By = |P(k)| are the Bell numbers,

(3) Cy = ﬁ(%f) are the Catalan numbers,

with the conventions k!l =0 and Cyjo = 0 for k ¢ 2N.
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Proof. Consider indeed the quantum groups in the statement. According to the easiness
result from Theorem 2.11, and to the character formula in Theorem 2.19, the asymptotic
moments in question appear by counting the following sets of partitions:

NCO(k) NCy(k)

P(k) Py(k)
But these counting questions are all standard, as follows:

(1) Regarding k!! = | P2(k)|, this formula is clear, because we have k — 1 choices for the
pair of 1, then & — 3 choices for the pair of the next number, and so on.

(2) Regarding By, = |P(k)|, there is nothing much to be done here, because these
numbers, called Bell numbers, cannot be explicitely computed.

(3) Regarding now the numbers Cj /o = |NC5(k)|, which are the Catalan numbers, these
can be explicitely computed by recurrence, as explained in Theorem 2.20.

(4) Regarding Cx = |[NC(k)|, this can be established either by recurrence, or deduced
from (3), via fattening/shrinking. Indeed, by fattening the pairings into partitions, and
shrinking the partitions into pairings, we have a correspondence as follows:

NCy(2k) =~ NC(k)
We conclude from this that we have |[NC(k)| = Cy, as claimed. O
Once again following [26], [27], we have as well the following result:

Theorem 2.22. The asymptotic laws of characters for the quantum permutation and
rotation groups are the Gaussian, Poisson, Wigner and Marchenko-Pastur laws,

Sy Oy TN
SN On h———
the precise formulae being as follows:
(1) g1 = \/%e*ﬁﬂ dx is the Gaussian law of parameter 1.
2 = %Zp% is the Poisson law of parameter 1.

(2) m
(3) 1 = %\/4 — x2dzx is the Wigner semicircle law of parameter 1.
(4) m = %\/ 4x=! — 1dx is the Marchenko-Pastur law of parameter 1.
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Proof. This follows indeed from Theorem 2.21, by doing some calculus:

(1) By partial integration, we have the following formula:

1 k_—x2/2 1 / k—2 —a?/2
—— [ 2feT M dr=(k—-1) X — [ 2" e " *dx
\/27T/R ( ) V2T Jr

Thus the moments of g; satisfy the same recurrence as the numbers k!!.

(2) The moments of the Poisson law p; are the following numbers:

1 pk
k!

peEN

Computations show that the recurrence is the same as for the Bell numbers By.

(3) The moment generating function for the semicircle law 7, is given by:
SR
dx
T o 9 1—zz

By doing some computations, the coefficients of f are the Catalan numbers.

(4) The moment generating function for the Marchenko-Pastur law 7y is:

/ \/4$_1
27r 11—z

By computation, we obtain the generating series of the Catalan numbers. U

The above proof was of course quite short, but all this is standard material, and we
will be back to it with full details in section 5 below, when doing analysis.

As a conclusion now, the representation theory of our basic quantum groups is some-
thing extremely simple and fundamental, in the N — oo limit.

We will see in the next section that the results in the free case can be improved, with
the convergences there being actually stationary, starting from N = 2. Also, we will
see in section 5 below that the above results can be extended to the case of truncated
characters, with the limiting N — oo measures being py, g;, 7, V¢, with ¢ € (0, 1].
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3. REPRESENTATION THEORY

We have seen so far that the inclusion Sy C Sf;, as well as its companion inclusion
On C Of;, are liberations in the sense of easy quantum groups, and that some interesting
representation theory consequences, in the N — oo limit, can be derived from this. We
discuss here the case where N € N is fixed. Let us first discuss the representation theory
of OF;. Here the result, from [1], which is elementary, is as follows:

Theorem 3.1. The quantum groups O3, with N > 2 have the following properties:

(1) The odd moments of the main character vanish, and the even moments are:

/ sz = Cy,
Ox

(2) The main character follows the Wigner semicircle law of parameter 1:
X~m
(3) The fusion rules for irreducible representations are the same as for SUs,:
T QT = Tlk—1| + Vk—t)+2 + - + Tkpi

(4) The dimensions of the representations are as follows, with ¢+ q~* = N:
k1 _ o —k—1

dim(rg) = g q_l

q—dq

Proof. There are several proofs for this fact, the simplest one being via purely algebraic

methods, based on the easiness property of Oy, as follows:

(1) Our claim is that we can define, by recurrence on k € N, a sequence 1¢, 71,73, ... of
irreducible, self-adjoint and distinct representations of OF;, satisfying:

o = 1
™M =u
Tk +Tk—2 = Tg—1 Q71
(2) Indeed, at k = 0 this is clear, and at & = 1 this is clear as well, with the irreducibility

of 1 = uw coming from the embedding Oy C O}\L,. So assume now that rg,...,7rx_1 as
above are constructed, and let us construct .. We have, by recurrence:

Th—1 +Tp—3 = T2 @11
In particular we have an inclusion of representations, as follows:
Tk—1 C Tp—2 @7
Now since r;_s is irreducible, by Frobenius reciprocity we have:

Th_o CTr_1®1"
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Thus, there exists a certain representation r; such that:
Te +Tp_ o =7T_1 Q7T

(3) As a first observation, this representation 7y is self-adjoint. Indeed, our recurrence
formula r, 4+ rp_o = r,_1 ® r1 for the representations rgy,rq, 79, ... shows that the charac-
ters of these representations are polynomials in x,. Now since Y, is self-adjoint, all the
characters that we can obtain via our recurrence are self-adjoint as well.

(4) Tt remains to prove that r is irreducible, and non-equivalent to rq,...,7r,_1. For
this purpose, observe that according to our recurrence formula, ry + ry_o = rp_1 ® r1, We
can now split ©u®*, as a sum of the following type, with positive coefficients:

k
u®® = ey + Ch_oTh_o + . ..

We conclude by Peter-Weyl that we have an inequality as follows, with equality precisely
when 7} is irreducible, and non-equivalent to the other summands 7;:

ZC? < dim(End(u®*))

(2

(5) Now let us use the easiness property of Of%. This gives us an upper bound for the
number on the right, that we can add to our inequality, as follows:

Zcf < dim(End(u®*)) < Cy

The point now is that the coefficients ¢; come straight from the Clebsch-Gordan rules,
and their combinatorics shows that Y, ¢Z equals the Catalan number Cj, with the remark
that this follows as well from the known theory of SU,. Thus, we have global equality in
the above estimate, and in particular we have equality at left, as desired.

(6) In order to finish the proof of our claim, observe that r; is non-equivalent to
Tk—1,Tk—3,- .-, for instance because of the embedding Oy C OF, which shows that the
even and odd tensor powers of u cannot have common irreducible components.

(7) Since by Peter-Weyl any irreducible representation of Of; must appear in some
tensor power u®* and we know how to decomposing each u®* into sums of representations
7%, these representations ry are all the irreducible representations of OF.

(8) In what regards now the law of the main character, we obtain here the Wigner law
71, as stated, due to the fact that the equality in (5) gives us the even moments of this
law, and that the observation in (6) tells us that the odd moments vanish.

(9) Finally, from the Clebsch-Gordan rules we have ryr; = rp_1 + 7441, and we obtain
from this, by recurrence, with ¢ > 0 being such that ¢ + ¢! = N:

dimr, = qlC + qk_2 +...+ q_kJr2 + q_k

But this gives the dimension formula in the statement, and we are done. U
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The above result has some interesting combinatorial consequences, as follows:

Proposition 3.2. The following are linearly independent, for any N > 2:
(1) The linear maps {Tr |7 € NCo(k,1)}, with k + 1 € 2N.
(2) The vectors {&|m € NCo(2k)}, with k € N.
(3) The linear maps {TW|7T € NCy(k,k)}, with k € N,

Proof. All this follows from the dimension equalities established in the proof of Theorem
3.1, because in all cases, the number of partitions is a Catalan number. O

In order to pass now to quantum permutations, we can use the following well-known
trick, relating noncrossing pairings to arbitrary noncrossing partitions:

Proposition 3.3. We have a bijection NC(k) ~ NCy(2k), constructed by fattening and
shrinking, as follows:

(1) The application NC(k) — NCy(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NCy(2k) — NC(k) is the “shrinking” application, obtained by collaps-
ing pairs of consecutive neighbors.

Proof. The fact that the two operations in the statement are indeed inverse to each other
is clear, by computing the corresponding two compositions, with the remark that the
construction of the fattening operation requires the partitions to be noncrossing. U

At the level of the associated Gram matrices, the result is as follows:

Proposition 3.4. The Gram matrices of the sets of partitions
NCy(2k) ~ NC(k)
are related by the following formula, where m — w' is the shrinking operation,
Gatn(m,0) = " (AL Grn2 AL (7, o)
and where Ay, is the diagonal of Gy,.

Proof. In the context of the general fattening and shrinking bijection from Proposition
3.3 above, it is elementary to see that we have:

|7t Vo|=k+2|7"Vd|—|r|— |0
We therefore have the following formula, valid for any n € N:
nlmvel — pkt2lr'vo'|=|x'|—|o’|
Thus, we obtain the formula in the statement. Now by applying the determinant, we
obtain from this a formula of the following type, with C' > 0 being a constant:
det(Gogpn) = C - det(Gy p2)

Thus, we are led to the formula in the statement. U
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We can now formulate a “projective” version of Proposition 3.2, as follows:

Proposition 3.5. The following are linearly independent, for any N = n? with n > 2:
(1) The linear maps {Tx|m € NC(k,1)}, with k,l € 2N.
(2) The vectors {&|m € NC(k)}, with k € N.
(3) The linear maps {Tx|m € NC(k,k)}, with k € N.

Proof. This follows indeed from the various results from Proposition 3.2, by using the
Gram determinant formula from Proposition 3.4. O

Following [2], we can now work out the representation theory of the quantum group
S{, and more generally of any S}, with N = n? and n > 2, as follows:
Theorem 3.6. The quantum groups Sy with N =n? and n > 2 are as follows:
(1) The moments of the main character are the Catalan numbers:

/ Xk = Cy,
S%
(2) The main character follows the Marchenko-Pastur law of parameter 1:
X~ T
(3) The fusion rules for irreducible representations are the same as for SOs:
T @11 = Tlk—1] + Tk—t4+1 + - -« + Thkpi

(4) The dimensions of the representations are as follows, with q +q ' = N — 2:

¢ — gk

qg—1
Proof. This is quite similar to the proof of Theorem 3.1 above, by using the linear inde-
pendence result from Proposition 3.5 as main ingredient, as follows:

dim(ry) =

(1) We have indeed the following computation, based on the above:
/ X" = dim(Fiz(u®)) = #NC (k) = #NCy(2k) = C},
Sy
(2) This follows from (1), as explained in section 1 above.

(3) This is standard, by using the moment formula in (1), and the known theory of
SO;. Let indeed A = span(xx|k € N) be the algebra of characters of SO3. We can define
a morphism as follows, f being the character of the fundamental representation of Sy:

UV:A—-CSY) , xa—f-1
The elements fr = W(xx) verify then the Clebsch-Gordan rules, namely:
Tifir = fio—y + fle—ij+1 + -+ fegu
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We prove now by recurrence that each fj is the character of an irreducible corepresen-
tation 74 of C(S};), non-equivalent to rg,...,74_1. At k = 0,1 this is clear. So, assume
now that the result holds at £ — 1. By integrating characters we have, as for SOs:

Tk—2,Tk—1 C Th—1 @ T1
Thus there exists a corepresentation r; such that:
Th—1 @11 = T2 +Tp—1 + Tk

Once again by integrating characters, we conclude that 7 is irreducible, and non-
equivalent to ry,...,7x_1, as for SO3, and this proves our claim. Finally, since any
irreducible representation of Sy, must appear in some tensor power of u, and we have
a formula for decomposing each u®* into sums of representations r;, we conclude that
these representations r; are all the irreducible representations of Sy.

(4) Finally, the dimension formula there is clear by recurrence. U

Let us discuss now the extension of the above result, to all the quantum groups S5 with
N > 4. For this purpose we need an extension of the linear independence results from
Proposition 3.5. There are several approaches here, none being trivial, and we will use in
what follows a method which is long, but elementary and rock-solid, namely getting the
linear independence by computing the associated Gram determinant.

We already know, from section 2 above, that for the group Sy the formula of the
corresponding Gram matrix determinant, due to Lindstém [114], is as follows:
Theorem 3.7. The determinant of the Gram matrix of Sy is given by

N!
det(GkN): H m

weP (k)

with the convention that in the case N < k we obtain 0.

Proof. This is something that we know from section 2, the idea being that Gy naturally
decomposes as a product of an upper triangular and lower triangular matrix. U

Although we will not need this here, let us discuss as well, for the sake of completness,
the case of the orthogonal group Oy. Here the combinatorics is that of the Young dia-
grams. We denote by |.| the number of boxes, and we use quantity f*, which gives the
number of standard Young tableaux of shape . The result is then as follows:

Theorem 3.8. The determinant of the Gram matrix of Oy is given by
det(Gey) = J[ AV
I\|=k/2

where the quantities on the right are fn(A) = [ jea(N +25 —i—1).
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Proof. This follows from the results of Collins and Matsumoto [71] and Zinn-Justin [150].
Indeed, it is known from there that the Gram matrix is diagonalizable, as follows:

Gin=>_ fx(A)Pa
|\=k/2

Here 1 = > P, is the standard partition of unity associated to the Young diagrams
having k/2 boxes, and the coefficients fy(A) are those in the statement. Now since we
have Tr(Py) = f?*, this gives the result. See [31] and [71], [150]. O

For the free orthogonal group, the result, from [81], is as follows:
Theorem 3.9. The determinant of the Gram matriz for O is given by

[k/2]
det GkN H P dk/Q’T

where P, are the Chebycheff polynomials, given by
P():l 5 PIZX y PT+1:XPT_P7'71
and dg, = frr — frt1.r, with fi, being the following numbers, depending on k,r € Z,

(Y
k- k—r—1
with the convention fy, =0 for k ¢ Z.

Proof. We present here a short proof, from [31]. As a first observation, the result holds
when k is odd, all the exponents being 0. So, we assume that k is even.

Step 1. We establish a formula of the following type:

GkN(ﬂ',O') =< fw,fg >

For this purpose, let I' be a bipartite graph, with distinguished vertex 0 and adjacency
matrix A, and let 1 be an eigenvector of A, with eigenvalue V.
Let Ly be the set of length k loops [ =1; ...[; based at 0, and set:

Hy, = span(Ly)
For m € NCy(k) define f, € Hy by:
=) (H 8(1:, 19)( ) !
leLy \ir~gj

Here e — €° is the edge reversing, and the “spin factor” is as follows, as in [106], where
s,t are the source and target of the edges:

p(t)/ pu(s)
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The point now is that we have the following formula:

GkN(ﬂ-a U) =< fm fa >
We refer to [106] for details regarding all this.

Step 2. With a suitable choice of (I", 1), we obtain a fomula of type:
Gin = TinTin

Indeed, let us choose I' = N to be the Cayley graph of O}, and the eigenvector entries
u(r) to be the Chebycheff polynomials P.(N), i.e. the orthogonal polynomials for OF,.

In this case, we have a bijection NCy(k) — Ly, constructed as follows. For m € NCy(k)
and 0 < i < k we define h.(i) to be the number of 1 < j < ¢ which are joined by 7 to a
number strictly larger than i. We then define a loop I(7) = I(7); ... I(7)k, where I(7); is
the edge from h,(i — 1) to h, (7). Consider now the following matrix:

Tin(m,0) = [ [ 6(U(0)s, L))y (U(0):)

g

We have then the following formula:
fr= ZTlm(ﬂ', o)-l(o)

Thus we obtain, as desired:
Gin = TinTin

Step 3. We show that, with suitable conventions, T}y is lower triangular.

Indeed, consider the partial order on NCy(k) given by m < o if h,(i) < h,(i) for
t=1,...,k. Our claim is that ¢ £ 7 implies:

TkN(ﬂ-v U) =0

Indeed, suppose that ¢ £ 7, and let j be the least number with h,(j) > h.(j). Note
that we must have h,(j — 1) = h,(j — 1) and h,(j) = h:(j) + 2. It follows that we have
i ~p j for some i < j. From the definitions of Ty, and (o), if Ty, (7,0) # 0 then we
must have h,(i — 1) = h,(j) = hx(j) + 2. But we also have h.(i — 1) = h,(j), so that
ho(i —1) = h(i — 1) + 2, which contradicts the minimality of j.

Step 4. End of the proof, by computing the determinant of Tjy.
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Since T}y is lower triangular we have:

det(TkN) = HTkN(ﬂ'aﬂ-)

- T Phe
T ironj Phrgiya

k/2

— H pesrl?
r=1
Here the exponents appearing on the right are by definition as follows:
€hr =D > Ono(iyr — Onn(iyrt
T i~g]
Our claim now, which finishes the proof, is that for 1 <r < k/2 we have:
SN Ohaiirr = frjon
T ir~g]

Indeed, note that the left term counts the number of times that the edge (r,r + 1)
appears in all loops in L. Define a shift operator S on the edges of I' by:

S(s,t)=(s+1,t+1)
Given aloop I =1y ...l and 1 < s < k with Iy = (r,r + 1), define a path:
ST(L) . ST, L

Observe that this is a path in I' from 2r to 0 whose first edge is (2r,2r + 1) and first
reaches r — 1 after k — s + 1 steps.

Conversely, given a path fi ... fi in I" from 2r to 0 whose first edge is (2r,2r + 1) and
first reaches r — 1 after s steps, define a loop:

[ 1257 () - ST (faen)

Observe that this is a loop in I" based at 0 whose k — s + 1 edge is (r,r + 1).

These two operations are inverse to each other, so we have established a bijection
between k-loops in I" based at 0 whose s-th edge is (r,r + 1) and k-paths in T" from 2r to
0 whose first edge is (2r,2r + 1) and which first reach r — 1 after £ — s + 1 steps.

It follows that the left hand side is equal to the number of paths in I' = N from 2r to
0 whose first edge is (2r,2r 4+ 1). By the usual reflection trick, this is the difference of
binomials defining fj/2,, and we are done. O

Regarding now the quantum group Sj;, we have here the following formula, also estab-
lished by Di Francesco and collaborators in [81], [82], [83], [84]:
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Theorem 3.10. The determinant of the Gram matriz for S is given by

det(GkN) = (\/N)ak H Pr(m)d’”

r=1
where P, are the Chebycheff polynomials, given by
Pozl 5 P1:X N Pr+1:XPT—P,,-,1

and diy = frr — for1r, With fi, being the following numbers, depending on k,r € Z,

o= 2k 2k
k- k—r—1
with the convention fi, =0 for k ¢ Z, and where ar, =) p, (2|7| — k).
Proof. According to Proposition 3.4 above, if we denote by G’ the Gram matrix for O},
we have the following formula, with Dy = diag( NIT/2=k/4).
Gin = DinGly sy Din

With this formula in hand, the result follows from Theorem 3.9. U

We refer to [31] and to [38], [81], [82], [83], [84], [94] for a discussion here. Now with
the above result in hand, we have the following extension of Theorem 3.6:
Theorem 3.11. The quantum groups Sy, with N > 4 have the following properties:

(1) The moments of the main character are the Catalan numbers:
/ Xk = Ck
Sy
(2) The main character follows the Marchenko-Pastur law of parameter 1:
X~ T
(3) The fusion rules for irreducible representations are the same as for SOs:
Th @11 = Tjp—i| + Th—tl+1 + -+ Thy

(4) The dimensions of the representations are as follows, with q +q ' = N — 2:

k1 _ o~k

. qa —q

d =
im(ry) 1

Proof. The above statement is exactly the statement of Theorem 3.6, with the assumption

N = n? lifted. As for the proof, this is identical to the proof of Theorem 3.6, using this

time the linear independence result coming from Theorem 3.10 as technical ingredient. [
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Summarizing, we have now full representation theory results for both O}, Sy. These
results are quite surprising, and there are many things that can be said about O}, S, in
analogy with the known facts about SU,, SO3;. However, all this is quite technical, and
we defer the discussion to section 4 below. Let us record, however:

Theorem 3.12. The quantum groups O}, SY; have the following properties:

(1) OF, Sy are coamenable, and of polynomial growth.
(2) O%, Sk with N > 3,5 are not coamenable, and have exponential growth.

Proof. The various coamenability assertions follow from the Kesten criterion from section
1 above, the support of the spectral measure of y being respectively:

supp(m) = [~2,2]

supp(m) = [0,4]
As for the growth assertions, which can be of course improved with explicit exponents
and so on, these follow from the fact that the corresponding Cayley graphs are N. U

In the remainder of this section we keep developing some useful general theory for
OF;, Sy and their subgroups. We will present among others a general result from [7],
refining the Tannakian duality for the quantum permutation groups G C S}, stating that
the following spaces form a planar algebra in the sense of Jones [105]:

Py, = Fiz(u®")

To be more precise, we will show that these spaces form a planar subalgebra P = (Py)
of the Jones spin planar algebra Sy, and that any planar subalgebra P C Sy appears in
this way, so that we have a refined Tannakian correspondence, as follows:

GCSf, «— PcCSy

In order to get started, we need a lot of preliminaries, the lineup being von Neumann
algebras, II; factors, subfactors, and finally planar algebras. We already met von Neumann
algebras, in section 1 above. The fundamental result regarding them is as follows:

Theorem 3.13. Any von Neumann algebra A C B(H) decomposes as

A:/Amda:
X

with X being the measured space appearing as spectrum of the center, Z(A) = L>(X),
and with the fibers A, being “factors”, in the sense that Z(A,) = C.

Proof. The decomposition result definitely holds in finite dimensions, where von Neumann
algebra is the same as C*-algebra, and where the algebras are as follows:

A=Myn(C)®...H My, (C)
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Indeed, as explained in section 1 above, this decomposition is obtained by writing
Z(A) = CF. In general, the decomposition result in the statement is von Neumann’s
“reduction theory” result, based on advanced functional analysis. O

At an even more advanced level now, we know from Theorem 3.13 that, at least in
theory, things basically reduce to “factors”. And, regarding these factors, we have:

Theorem 3.14. The von Neumann factors, Z(A) = C, have the following properties:

(1) They can be fully classified in terms of 11y factors, which are by definition those
satisfying dim A = oo, and having a faithful trace tr : A — C.

(2) The 11y factors enjoy the “continuous dimension geometry” property, in the sense
that the traces of their projections can take any values in [0, 1].

(3) Among the 11y factors, the smallest one is the Murray-von Neumann hyperfinite
factor R, obtained as an inductive limit of matriz algebras.

Proof. This is one again something heavy, the idea being as follows:

(1) This comes from results of Murray-von Neumann and Connes, the idea being that
the other factors can be basically obtained via crossed product constructions.

(2) This is subtle functional analysis, with the rational traces being relatively easy to
obtain, and with the irrational ones coming from limiting arguments.

(3) Once again, heavy results, by Murray-von Neumann and Connes, the idea being
that any finite dimensional construction always leads to the same factor, called R. U

Let us discuss now subfactor theory, following Jones’ fundamental paper [101]. Jones
looked at the inclusions of II; factors A C B, called subfactors, which are quite natural
objects physics. Given such an inclusion, we can talk about its index:

Definition 3.15. The index of an inclusion of 11y factors A C B is the quantity
[B: Al =dimy B € [1, 0]
constructed by using the Murray-von Neumann continuous dimension theory.

In order to explain Jones’ result [101], it is better to relabel our subfactor as:
Ay C Ay
We can construct the orthogonal projection ey : Ay — Ay, and set:
Ay =< Ay, eq >

This remarkable procedure, called “basic construction”, can be iterated, and we obtain
in this way a whole tower of II; factors, as follows:

Ao Cey Ay Ce, Ay Ces Ag C .ol

Quite surprisingly, this construction leads to a link with the Temperley-Lieb algebra
TLy = span(NCy), and with many other things, which can be summarized as follows:
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Theorem 3.16. Let Ay C Ay be an inclusion of 11y factors.

(1) The sequence of projections ey, es, €3, ... € B(H) produces a representation of the
Temperley-Lieb algebra of index N = [Ay, Ag], as follows:

TLy C B(H)

(2) The index N = [A1, Ag], which is a Murray-von Neumann continuous quantity
N € [1, 00|, must satisfy the following condition:

N € {4(3052 <§) ’n € N} U [4, o0

Proof. This result, from [101], is something quite tricky, the idea being as follows:

(1) The idea here is that the functional analytic study of the basic construction leads to

the conclusion that the sequence of projections e, es, €3, ... € B(H) behaves algebrically,
when rescaled, exactly as the sequence of diagrams €1, e9,€3,... € T'Ly given by:
€1=H ) €2=|H ) 53=||H 5

But these diagrams generate T'Ly, and so we have an embedding T'Ly C B(H), where
H is the Hilbert space where our subfactor Ag C A; lives, as claimed.

(2) This is something quite surprising, which follows from (1), via some clever positivity
considerations, involving the Perron-Frobenius theorem. In fact, the subfactors having
index N € [1,4] can be classified by ADE diagrams, and the obstruction N = 4 cos*(Z)
itself comes from the fact that N must be the squared norm of such a graph. O

Quite remarkably, Theorem 3.16 is just the “tip of the iceberg”. One can prove indeed
that the planar algebra structure of T'Ly, taken in an intuitive sense, extends to a planar
algebra structure on the following sequence of commutants:

Py = Ay N Ay

In order to discuss this key result, from [105], that we will need as well, in connection
with our quantum permutation group problems, let us start with:

Definition 3.17. The planar algebras are defined as follows:

(1) A k-tangle, or k-bozx, is a rectangle in the plane, with 2k marked points on its
boundary, containing r small boxes, each having 2k; marked points, and with the
2k + > 2k; marked points being connected by noncrossing strings.

(2) A planar algebra is a sequence of finite dimensional vector spaces P = (Py), to-
gether with linear maps Py, ® ... ® P, — Py, one for each k-box, such that the
gluing of boxes corresponds to the composition of linear maps.

As basic example of a planar algebra, we have the Temperley-Lieb algebra T'Ly. Indeed,
putting T'Ly(k;) diagrams into the small r boxes of a k-box clearly produces a T Ly (k)
diagram, and so we have indeed a planar algebra, of somewhat “trivial” type. In general,
the planar algebras are more complicated than this, and we will be back later with some



QUANTUM PERMUTATIONS 55

explicit examples. However, the idea is very simple, namely “the elements of a planar
algebra are not necessarily diagrams, but they behave like diagrams”.

In relation now with subfactors, the result, which extends Theorem 3.16 (1) above, and
which was found by Jones in [105], almost 20 years after [101], is as follows:
Theorem 3.18. Given a subfactor Ay C Ay, the collection P = (Py) of linear spaces
Py = AyN Ay
has a planar algebra structure, extending the planar algebra structure of T'Ly.

Proof. As a first observation, since e; : Ay — Ay commutes with Ay we have e; € Pj. By
translation we obtain eq,...,ex_1 € Py for any k, and so:

TLy C P

The point now is that the planar algebra structure of T'Ly, obtained by composing
diagrams, can be shown to extend into an abstract planar algebra structure of P. This is
something quite heavy, and we will not get into details here. See [105]. u

Getting back now to quantum groups, all this machinery is very interesting for us. We
will need the construction of the spin planar algebra Sy. Let us start with:

Definition 3.19. We write the standard basis of (CN)®* in 2 x k matriz form,
e i1 9, Gy Gy 03 ... ...
etk U U Thel  ovr oo e .

by duplicating the indices, and then writing them clockwise, starting from top left.

Now with this convention in hand for the tensors, we can formulate the construction of
the spin planar algebra Sy, also from [105], as follows:

Definition 3.20. The spin planar algebra Sy is the sequence of vector spaces
P, = (CV)®*
written as above, with the multilinear maps associated to the various k-tangles
T Py ®...0 P, — P

being given by the following formula, in multi-index notation,

Tﬂ'(eil ® e ®627) — 2571'(7:1;"'77;7" :])6]
J

with the Kronecker symbols 0, being 1 if the indices fit, and being 0 otherwise.
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Here are some illustrating examples for the spin planar algebra calculus:

(1) The identity 1; is the (k, k)-tangle having vertical strings only. The solutions of
01, (z,y) = 1 being the pairs of the form (z,z), this tangle 1; acts by the identity:

LT e Tk (e Tk
B\ in )\ i
1 ... k 1 .- k

(2) The multiplication M}, is the (k, k, k)-tangle having 2 input boxes, one on top of
the other, and vertical strings only. It acts in the following way:

(G LY ) ) RS (i

(3) The inclusion I}, is the (k, k+1)-tangle which looks like 15, but has one more vertical
string, at right of the input box. Given z, the solutions of 0, (z,y) = 1 are the elements
y obtained from x by adding to the right a vector of the form (}), and so:

Jio-e JkY _ R T
@Q“.ﬁ_;cy”uo
Observe that I} is an inclusion of algebras, and that the various I are compatible with

each other. The inductive limit of the algebras Sy (k) is a graded algebra, denoted Sy.

(4) The expectation Uy is the (k + 1, k)-tangle which looks like 1;, but has one more
string, connecting the extra 2 input points, both at right of the input box:

/U /ey I I W O | N
W(h”.uimj_%ww<h“.%>
Observe that Uy is a bimodule morphism with respect to I.

(5) The Jones projection Ej is a (0, k + 2)-tangle, having no input box. There are k
vertical strings joining the first £ upper points to the first k£ lower points, counting from left
to right. The remaining upper 2 points are connected by a semicircle, and the remaining
lower 2 points are also connected by a semicircle. We have the following formula:

_ S YA B
mm_XXé“.%zz)
ijl

The elements e, = N ! E}(1) are projections, and define a representation of the infinite
Temperley-Lieb algebra of index N inside the inductive limit algebra Sy.

(6) The rotation Ry is the (k, k)-tangle which looks like 14, but the first 2 input points
are connected to the last 2 output points, and the same happens at right:

m ]
Re=| |
(RRRRS
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The action of Ry on the standard basis is by rotation of the indices, as follows:

Rk(eil...ik) = Cigis...ixi1

Thus Ry, acts by an order k linear automorphism of Sy (k), also called rotation.

There are many other interesting examples of k-tangles, but in view of our present
purposes, we can actually stop here, due to the following useful fact:

Theorem 3.21. The multiplications, inclusions, expectations, Jones projections, and ro-
tations generate the set of all tangles, via the gluing operation.

Proof. This is something well-known and elementary, obtained by “chopping” the various
planar tangles into small pieces, as in the above list. See [105]. O

Finally, in order for our discussion to be complete, we must talk as well about the
x-structure of the spin planar algebra. Once again this is constructed as in the easy
quantum group calculus, by turning upside-down the diagrams, as follows:

R T N A TR
ik G Jk

Summarizing, the sequence of vector spaces Sy(k) = C(X*) has a planar *-algebra
structure, called spin planar algebra of index N = |X|. See [105].

Following [7], we have the following result:
Theorem 3.22. Given G C Sy, consider the tensor powers of the associated coaction
map on C(X), where X = {1,..., N}, which are the folowing linear maps:
oF . O(XP) = (XM @ CG)
eil..‘ik — Z e]l]k ® ujlil cte u]klk
Jie-Jk
The fized point spaces of these coactions, which are by definition the spaces

P, = {x € C’(Xk)‘@k(x) =1 ®x}
are given by P, = Fiz(u®*), and form a subalgebra of the spin planar algebra Sy .

Proof. Since the map ® is a coaction, coming from the corepresentation wu, its tensor
powers ®F are coactions too, coming fron the corepresentations u®*, and at the level of
the fixed point algebras we have the following formula, which is standard:

Py, = Fiz(u®*)

In order to prove now the planar algebra assertion, we will use Theorem 3.21.
Consider the rotation Rj. Rotating, then applying ®*, and rotating backwards by R,;l
is the same as applying ®*, then rotating each k-fold product of coefficients of ®.
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Thus the elements obtained by rotating, then applying ®*, or by applying ®*, then
rotating, differ by a sum of Dirac masses tensored with commutators in A = C(G):

OF Ry (2) — (R, ®id)®F () € C(X*) ® [A, A]

Now let f 4 be the Haar functional of A, and consider the conditional expectation onto
the fixed point algebra P, which is given by the following formula:

br = (id@/A)(I)k

The square of the antipode being the identity, the Haar integration f 4 18 a trace, so it
vanishes on commutators. Thus Ry commutes with ¢y:

Or R, = Riop

The commutation relation ¢ T = T'¢; holds in fact for any (I, k)-tangle T". These
tangles are called annular, and the proof is by verification on generators of the annular
category. In particular we obtain, for any annular tangle 7"

o Top =Ty

We conclude from this that the annular category is contained in the suboperad P’ C P
of the planar operad consisting of tangles T satisfying the following condition, where
¢ = (¢), and where i(.) is the number of input boxes:

¢T¢®i(T) — T¢®z‘(T)

On the other hand the multiplicativity of ®* gives M) € P’. Since P is generated by
multiplications and annular tangles, it follows that we have P’ = P.

Thus for any tangle T" the corresponding multilinear map between spaces Py, (X) restricts
to a multilinear map between spaces P;. In other words, the action of the planar operad
P restricts to P, and makes it a subalgebra of Sy, as claimed. U

As a second result now, also from [7], completing our study, we have:

Theorem 3.23. Given an arbitrary planar subalgebra Q C Sy, there is a unique quantum
permutation group G C S} whose associated planar algebra is Q.

Proof. The idea is that this will follow by applying Tannakian duality to the annular
category over (). Let n,m be positive integers. To any element T,,,,, € Qni,m We can
associate a linear map Ly (Thim) @ Po(X) — Pp(X) in the following way:

|
| | | | Tn+m|
Lo | Tosm | i lan | — | |
] ] | an| | |
||

||
nl
U
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That is, we consider the planar (n,n +m, m)-tangle having an small input n-box, a big
input n + m-box and an output m-box, with strings as on the picture of the right. This
defines a certain multilinear map, as follows:

Po(X) @ Pom(X) = Pu(X)

Now let us put the element 7;,,, in the big input box. We obtain in this way a certain

linear map P, (X) — P,,(X), that we call L,,,. To be more precise:

(1) The above picture corresponds to n = 1 and m = 2. This is illustrating whenever
n < m, it suffices to imagine that in the general case all strings are multiple.

(2) If n > m there are n + m strings of a,, which connect to the n + m lower strings of
T+m, and the remaining n —m ones go to the upper right side and connect to the n —m
strings on top right of 7;,1,,. Here is the picture for n = 2 and m = 1:

| m
Tn m
1y (1] e

an Tner : an — H H|
)\ anll

ul
|

Consider now the linear spaces formed by the maps constructed above:

These spaces form a Tannakian category, and so by [148] we obtain a Woronowicz
algebra (A, u), such that the following equalities hold, for any m, n:
Hom(u®™, u®") = Qumn

We prove that u is a magic unitary. We have Hom(1,u®?) = Qg2 = Q2, so the unit of
(), must be a fixed vector of u®?. But u®? acts on the unit of (), as follows:

o = (2(1)

1

_Zkk®..
— 1 1 Ui U;

ikl
k ok
= Z(z l>®(““t)’“’
kl

From u®%(1) = 1®1 ve get that uu’ is the identity matrix. Together with the unitarity
of u, this gives the following formulae:

u' =ut=u!
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Consider the Jones projection E; € Q3. After isotoping, Loj(E;) looks as follows:

N |
U Ll | :
() 55) = [352) =0
i)\ |

In other words, the linear map M = Ly (E}) is the multiplication d; ® 0; — d;;0;:

R

Consider now the following element of C'(X) ® A:

(M @ id)u® ((; ;) ® 1) — (M ®id) <; <’; ];) ®ukiulj>

k
— Z (k}) 5k X ukiukj

k
Since M € Qo1 = Hom(u®? u), this equals the following element of C'(X) ® A:

arein((()21) = o(s()ee1)

= Z <Z) Ok @ 0;5Up;
k
Thus ugug; = d;uk; for any i, j, k. With ¢ = j we get u}, = ux;, and together with the
formula u! = w* this shows that all entries of u are self-adjoint projections. With i # j we
get ugu; = 0, so the projections on each row of u are orthogonal to each other. Together
with ! = u~!, this shows that each row of u is a partition of unity with self-adjoint
projections. The antipode is given by the formula (id ® S)u = u*. But u* is the transpose
of u, so we can apply S to the formulae saying that rows of u are partitions of unity, and
we get that columns of u are also partitions of unity. Thus u is a magic unitary.

Now if P is the planar algebra associated to u, we have Hom(1,v*") = P, = Q,, as
desired. As for the uniqueness, this is clear from the Peter-Weyl theory. g

The results established above, regarding the subgroups G C S}, have several gener-
alizations, to the subgroups G C Of and G C Uy, as well as subfactor versions, going
beyond the purely combinatorial level. We refer here to [5] and related papers, and we
will be back to some of these questions in section 12 below.
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4. TWISTED PERMUTATIONS

In this section we investigate the quantum permutation groups S7 of the finite quantum
spaces F'. Besides providing a useful generalization of our results regarding S, this will
eventually explain the connection with SOj3, in an elegant way. As a bonus, we will obtain
as well a conceptual result on the connection between Sy, and O},.

In order to get started, let us first talk about finite quantum spaces. We have:

Definition 4.1. A finite quantum space F' is the abstract dual of a finite dimensional
C*-algebra B, according to the following formula:

C(F)=B
The number of elements of such a space is by definition the number |F| = dim B. By
decomposing the algebra B, we have a formula of the following type:
C(F)=M,(C)a&...& M, (C)
Withny = ... =ng = 1 we obtain in this way the space F' = {1,... k}. Also, when k =1
the equation is C(F) = M, (C), and the solution will be denoted F' = M,,.

In order to talk now about the quantum symmetry group S}, we must use universal
coactions. As in section 2, we must endow our space F' with its counting measure:

Definition 4.2. We endow each finite quantum space F' with its counting measure, cor-
responding as the algebraic level to the integration functional
tr: C(F) — B(I*(F)) = C
obtained by applying the reqular representation, and then the normalized matrix trace.
To be more precise, consider the algebra B = C(F'), which is by definition finite di-
mensional. We can make act B on itself, by left multiplication:
m:B—L(B) , a— (b— ab)

The target of m being a matrix algebra, £(B) ~ My(C) with N = dim B, we can
further compose with the normalized matrix trace, and we obtain ¢r:

tr:NTrow

As basic examples, for both F' = {1,..., N} and F' = My we obtain the usual trace.
In general, with C(F') = M,,,(C) & ... & M,, (C), the weights of ¢r are:

2
1

Let us also mention that the canonical trace is precisely the one making C C B a

Markov inclusion. Equivalently, the counting measure is the one making F© — {.} a
Markov fibration. For a discussion of these facts, see [2], and also [5], [22].

C;, =
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Let us study now the quantum group actions G ~ F'. It is convenient here to use, in
order to get started, the no basis approach from [2]. If we denote by u, n the multiplication
and unit map of the algebra C'(F'), we have the following result, from [2]:

Proposition 4.3. Consider a linear map ® : C(F) — C(F) ® C(G), written as
Oler) = Y e; Dy
J
with {e;} being a linear space basis of C(F), orthonormal with respect to tr.

(1) ® is a linear space coaction <= wu is a corepresentation.
(2) @ is multiplicative < p € Hom(u®? u).

(3) @ is unital <= n € Hom(1,u).

(4) @ leaves invariant tr <= n € Hom(1,u*).

(5) If these conditions hold, ® is involutive <= w is unitary.

Proof. This is a bit similar to the proof for S, from section 2, as follows:

(1) There are two axioms to be processed here. First, we have:

(@A) = (P @id)® <= Y e;®A(uz) =Y Pler) @ uy

J

= Zej ® A(uy;) = Zej @ Ujk @ Ui

J Jk
k
As for the axiom involving the counit, here we have as well, as desired:

(id@e)® =id < Y c(uj)e; =e; = £(uy;) =0y
J
(2) We have the following formula:

By using this formula, we obtain the following identity:

D(eser) = uleer, ®1) =u(p®id)(e; @ e @ 1)



QUANTUM PERMUTATIONS 63

On the other hand, we have as well the following identity, as desired:
O(e;)P(er) = Z eje & i,
jl
= (p®id) Z e; @ e @ ujuy
jl
= (,u & Zd) (Z €; Qe ujiulk> (6,‘ X e K 1)
ijkl
= (p®@id)u®(e; ® e ® 1)

(3) The formula ®(e;) = u(e; ® 1) found above gives by linearity (1) = u(1 ® 1). But
this shows that & is unital precisely when u(1 ® 1) =1 ® 1, as desired.

(4) This follows from the following computation, by applying the involution:
(tr @ id)®(e;) = tr(e;)l <= Z tr(e;)u;; =tr(e;)1

J
J

— u'l=1

(5) Assuming that (1-4) are satisfied, and that ® is involutive, we have:

* *
(Wu)uy = E Ui
= E t’l“ 6 el u iUk

= (tr ® id) Z ezer @ wiug,
jl
= (tr®id)(®(e;) P (ex))
= (tr®@id)®(efex)
= tr(efeg)l
= Ok
Thus u*u = 1, and since we know from (1) that u is a corepresentation, it follows that
u is unitary. The proof of the converse is standard too, by using similar tricks. O

Following now [2], we have the following result, extending the basic theory of Sy, from
the previous section to the present finite quantum space setting:
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Theorem 4.4. Given a finite quantum space F', there is a universal compact quantum
group S} acting on F, leaving the counting measure invariant. We have

C(Sy) = C’(U;)/<,u € Hom(u®* u),n € an:(u)>
where N = |F| and where u,n are the multiplication and unit maps of C(F'). For F =
{1,..., N} we have S} = S%. Also, for the space F = My we have S} = SOj.
Proof. This result is from [2], the idea being as follows:

(1) This follows from Proposition 4.3 above, by using the standard fact that the complex
conjugate of a corepresentation is a corepresentation too.

(2) Regarding now the main example, for F' = {1,..., N} we obtain indeed the quantum
permutation group Sy, due to the results in section 2 above.

(3) In order to do now the computation for F' = M,, we use some standard facts about
SUs,, SO5. We have an action by conjugation SUs n~ My(C), and this action produces,
via the canonical quotient map SU; — SOs, an action SO3 ~ My(C). On the other
hand, it is routine to check, by using arguments like those from the proof of S% = Sy at
N = 2,3, from section 2 above, that any action G ~ Ms(C) must come from a classical
group. We conclude that the action SO3 ~ M,(C) is universal, as claimed. 4

In practice, for our purposes here it will be very useful to have bases and indices. We
will use a single index approach, based on the following formalism:

Definition 4.5. Given a finite quantum space F', we let {e;} be the standard multimatriz
basis of B = C(F), so that the multiplication, involution and unit of B are given by

*
eiej =e€j; , e =e€ 122 €e;
i=1

where (i,7) — ij 1is the standard partially defined multiplication on the indices, with the
convention ey = 0, and where v — 1 s the standard involution on the indices.

To be more precise, let {e/,} C B be the multimatrix basis. We set then i = (abr), and
with this convention, the multiplication, coming from e’ e, = d,,0p.€.,, is given by:

(abr)(cdp) = {é@dﬂ if r=p, b=c

otherwise
As for the involution, coming from (e!,)* = e},, this is given by:
(a,b,r) = (b,a,r)

Finally, the unit formula comes from the following formula for the unit 1 € B:

=Y

ar
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We can now convert the main assertion in Theorem 4.4, namely the no indices formula
of S} from there into something more concrete, as follows:

Theorem 4.6. Given a finite quantum space F, with basis {e;} C C(F) as above, the
algebra C(SFf) is generated by variables u;; with the following relations,

E UipUjp = Up kl E UipUjy = Ujp

ij=p kl=p
Zuij = 5j; ) Zuij =05
i=i J=j
Uiy = i
with the fundamental corepresentation being the matriz u = (w;). We call a matriz

u = (u;) satisfying the above relations “generalized magic”.
Proof. This can be deduced from any of the known presentations of C'(S}):

(1) If we take the triple index presentation of C'(S}) from [140], and replace there the
triple indices by single indices, we obtain the relations in the statement.

(2) Alternatively, if we take the double index presentation of C(S}) from [5], and replace
there the double indices by single indices, we obtain the relations in the statement.

(3) Also, when using Theorem 4.4, € Hom(u®?,u) and n € Fiz(u) produce the 1st
and 4th relations, then the biunitarity of u gives the 5th relation, and finally the 2nd and

3rd relations follow from the 1st and 4th relations, by using the antipode. U
As an illustration, consider the case F' = {1,..., N}. Here the index multiplication is
it = 1 and ij = () for 7 # j, and the involution is ¢ = ¢. Thus, our relations read:
UikWip = Ok Uik Uk = 5ijuik
doup=1 ., ) uy=1
i J
Ujj = Ui

We recognize here the standard magic conditions on a matrix u = (u;;).

Let us develop now some basic theory for the quantum symmetry groups S7, and their
closed subgroups G C Sj. Some of the results here are well-known, some other are
folklore, and some other are new. We first have the following result, from [2]:

Theorem 4.7. The quantum groups Sj. have the following properties:

(1) The associated Tannakian categories are TL(N), with N = |F|.
(2) The main character follows the Marchenko-Pastur law m, when N > 4.
(3) The fusion rules for S} with |F| > 4 are the same as for SOj.
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Proof. This result is from [2], the idea being as follows:

(1) Our first claim is that the fundamental representation is equivalent to its adjoint,
u ~ u. Indeed, let us go back to the coaction formula from Proposition 4.3:

(I)(ez) - Z ej X Uji
J

We can pick our orthogonal basis {e;} to be the stadard multimatrix basis of C'(F'), so
that we have, for a certain involution ¢ — ¢* on the index set:

*

With this convention made, by conjugating the above formula of ®(e;), we obtain:
Dlep) = Z ejx & u;kz
J
Now by interchanging ¢ <> ¢* and j <+ j*, this latter formula reads:

O(e;) = Z €j & Ussjn
J

We therefore conclude, by comparing with the original formula, that we have:

*

But this shows that we have an equivalence as follows, as claimed:

u~1u

Now with this result in hand, the proof goes as for the proof for Sy, from the previous
section. To be more precise, the result follows from the fact that the multiplication and
unit of any complex algebra, and in particular of the algebra C'(F') that we are interested
in here, can be modelled by the following two diagrams:

m=|U| , u=n

Indeed, this is certainly true algebrically, and this is something well-known. As in what
regards the x-structure, things here are fine too, because our choice for the trace from
Definition 4.2 leads to the following formula, which must be satisfied as well:

upt = N -id
But the above diagrams m, u generate the Temperley-Lieb algebra T'L(N), as stated.

(2) The proof here is exactly as for S};, by using moments. To be more precise, according
to (1) these moments are the Catalan numbers, which are the moments of 7.

(3) Once again same proof as for Sy, by using the fact that the moments of y are the
Catalan numbers, which naturally leads to the Clebsch-Gordan rules. O
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It is quite clear now that our present formalism, and the above results, provide alto-
gether a good and conceptual explanation for our SOs result regarding Sy. To be more
precise, we can merge and reformulate our main results so far in the following way:

Theorem 4.8. The quantun groups S3. have the following properties:

(1) For F ={1,...,N} we have S} = S},.

(2) For the space F = My we have S} = POy = PU}..

(3) In particular, for the space F = My we have S} = SOs.
(4)

(5)

3
4) The fusion rules for Sf with |F| > 4 are independent of F.
5) Thus, the fusion rules for S} with |F| > 4 are the same as for SOj.

Proof. This is basically a compact form of what has been said above, with a new result
added, and with some technicalities left aside:

(1) This is something that we know from Theorem 4.4.

(2) This is new, the idea being as follows. First of all, we know from section 1 above
that the inclusion POj C PUj is an isomorphism, with this coming from the free com-

plexification formula OF = Uy, but we will actually reprove this result. Consider indeed
the standard vector space action of the free unitary group:

Ut ~CN
We associate to this action its adjoint action:
PU ~ My(C)
By universality of S]TJN, we must have inclusions as follows:
POy, C PUy C Sy,

On the other hand, the main character of Oy with N > 2 being semicircular, the
main character of PO} must be Marchenko-Pastur. Thus the inclusion PO} C S} has
the property that it keeps fixed the law of main character, and by Peter-Weyl theory we
conclude that this inclusion must be an isomorphism, as desired.

(3) This is something that we know from Theorem 4.4, and that can be deduced as well
from (2), by using the formula POJ = SOs, which is something elementary.

(4) This is something that we know from Theorem 4.7.
(5) This follows from (3,4), as already pointed out in Theorem 4.7. O

Summarizing, we have now a good explanation for the occurrence of SOj, in connection
with quantum permutation questions. Philosophically, the idea is that S}: does not depend
that much on F', and so in order to obtain results, it is enough to take F' = My, where
the corresponding symmetry group is simply S} = SOs, and then to conclude.
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As another application of our extended formalism, the Cayley theorem for the finite
quantum groups, which fails in the S}, setting, due to some subtle reasons, as explained
in [23], holds in the S} setting. We have indeed the following result:

Theorem 4.9. Any finite quantum group G has a Cayley embedding, as follows:

G C S
Howewver, there are finite quantum groups which are not quantum permutation groups.
Proof. There are two statements here, the idea being as follows:

(1) We have an action G ~ G, which leaves invariant the Haar measure. Now since
the counting measure is left and right invariant, so is the Haar measure, we conclude that
G ~ G leaves invariant the counting measure, and so we have G C SZ, as claimed.

(2) Regarding the second assertion, this is something non-trivial, from [23], the simplest
counterexample being a certain quantum group G appearing as a split abelian extension
associated to the exact factorization Sy = Z4S3, and having cardinality |G| = 24. O

Getting back now to the quantum groups Sj. themselves, and to Theorem 4.8 above,
it is quite hard to go beyond this result, with results truly matching the known theory of
S. Some simplifications, however, appear is the “homogeneous” case:

Definition 4.10. We call homogeneous the finite quantum spaces of the following type:
F=Mgx{1...,L}
That is, the algebra B = C(F') must be a finite dimensional random matriz algebra:
B = Mg(CH)
The corresponding quantum permutation groups S3. are called homogeneous too.

Observe that the above spaces generalize both the spaces X = {1,..., K} and X = M,
where most of the known theory lies. The “random matrix” terminology comes from the
fact that the random matrix algebras, in general, are the von Neumann algebras of type
B = Mg (L>(X)), with X being a measured space, and for such an algebra to be finite
dimensional, we must have X = {1,..., L}. Thus, we are led to the above definition, up
to changing the given measure X = {1,..., L} into the counting measure.

As a first result regarding such spaces, which is well-known, we have:
Theorem 4.11. The symmetry group of F' = Mg x {1..., L} is given by
G(F)=PUkg1SL
with on the right a wreath product, equal by definition to PUE x Sy.
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Proof. The fact that we have an inclusion PUk 1 Sy, C G(F) is standard, and this follows
as well by taking the classical version of the inclusion PUJ . S} C GT(F), established
below. As for the fact that this inclusion PUk 1S, C G(F') is an isomorphism, this can
be proved by picking an arbitrary element g € G (F), and decomposing it. O

In order to discuss the quantum analogue of the above result, we will need a notion of
free wreath product. The basic theory here, coming from [50], is as follows:

Proposition 4.12. Given closed subgroups G C Uy, H C S, with fundamental corep-
resentations u,v, the following construction produces a closed subgroup of Uy, :

C(G . H) = (C(G)™* x C(H))/ < [ va] = 0 >
In the case where G, H are classical, the classical version of G . H is the usual wreath

product GV H. Also, when G is a quantum permutation group, so is G\, H

Proof. Consider the matrix wiq ;, = uE?)vab, over the quotient algebra in the statement.
It is routine to check that w is unitary, and in the case G C S}, our claim is that this
matrix is magic. Indeed, the entries are projections, because they appear as products of
commuting projections, and the row sums are as follows:

Z%wEﬁ%FZ%ZW=
b J
As for the column sums, these are as follows:

Z Wia,jb = Z UE?)Uab = Z Vab Z uz(;l) =1
a %

With these observatlons in hand, it is routine to check that G, H is indeed a quantum
group, with fundamental corepresentation w, by constructing maps A, e, S as in section
1, and in the case G C S}, we obtain in this way a closed subgroup of Sy, . Finally, the
assertion regarding the classical version is standard as well. See [50]. U

We refer to [13], [50], [132] for more details regarding the above construction. With
this notion in hand, we can now formulate the following result:

Theorem 4.13. The quantum symmetry group of F'= Mg x {1..., L} satisfies
PU 1, St C GH(F)
but this inclusion is not an isomorphism at K, L > 2.

Proof. We have two assertions to be proved, the idea being as follows:

(1) The fact that we have PUt . S} C GT(F) is well-known and routine, by checking
the fact that the matrix w;jq rp = uz(;'l,)klvllb is a generalized magic unitary.

(2) The inclusion PU,. ST C GT(F) is not an isomorphism, for instance by using [132],
along with the fact that m X7 # m; where 7, is the Marchenko-Pastur distribution. [J
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Let us focus now on the case N = 4. According to our previous philosophical consid-
erations, the link between S} and SO3 comes as follows:

{1,2,3,4}NM2 - SIN503

It is possible to get beyond this, with a very precise result, stating that S; is a twist
of SOs. Let us start with the following definition, from [15]:

Definition 4.14. C(SO3') is the universal C*-algebra generated by the entries of a 3 x 3
orthogonal matriz a = (a;;), with the following relations:
(1) Skew-commutation: a;jap = £aga;;, with sign + if i # k,j # 1, and — otherwise.
(2) Twisted determinant condition: X,ecs,015(1)020(2)030(3) = 1.

Normally, our first task would be to prove that C(SO3') is a Woronowicz algebra.
This is of course possible, by doing some computations, but we will not need to do these
computations, because the result follows from the following result, from [15]:

Theorem 4.15. We have an isomorphism of compact quantum groups
S§=850;"
given by the Fourier transform over the Klein group K = Zo X Zs.

Proof. Consider indeed the following matrix, corresponding to the standard vector space
action of SO;' on C*:
at = diag(1, a)
We apply to this matrix the Fourier transform over the Klein group K = Zy X Zs:

11 1 1 1 0 0 O 11 1 1
It -1 -1 1 0 a1 app ajs 1 -1 -1 1
4 1 -1 1 -1 0 21 29 A23 1 -1 1 -1
1 1 -1 -1 0 a31 Q32 ass 1 1 -1 -1
It is routine to check that this matrix is magic, and vice versa, i.e. that the Fourier

transform over K converts the relations in Definition 4.14 into the magic relations. Thus,
we obtain the identification from the statement. g

u =

We have the following classification result, also from [15]:

Theorem 4.16. The closed subgroups of S = SOz ' are as follows:

(1) Infinite quantum groups: S{, 05", Du.

(2) Finite groups: Sy, and its subgroups.

(3) Finite group twists: S;*', As'.

(4) Series of twists: D, (n > 3), DCy,! (n > 2).

(5) A group dual series: Dy, withn > 3.
Moreover, these quantum groups are subject to an ADE classification result, with the
graphs coming from the representation theory of the quantum groups.
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Proof. The idea here is that the classification can be obtained by taking some inspiration
from the McKay classification of the subgroups of SOj3, by twising everything using the
cocycle twisting method. As for the last assertion, the idea here is that the moments of
the main character count the loops based at 1 on the graph. See [15]. U

An interesting extension of the S = SOz result comes by looking at the general case
N = n?, with n € N. We will prove that we have a twisting result, as follows:

PO, = (5y)°

In order to explain this material, from [22], which is quite technical, requiring good
algebraic knowledge, let us begin with some generalities. We first have:

Proposition 4.17. Given a finite group F, the algebra C(S;I) 1s 1somorphic to the ab-
stract algebra presented by generators xg, with g, h € F, with the following relations:

T1g = Tg1 = (Slg

Ts,gh = E Tst—1 gLth

teF

Tgh,s = § Tgi—1Thts

teF
The comultiplication, counit and antipode are given by the formulae

A(33’gh) = ngs & Tgp

seF
e(xgn) = Ogn
S(Qigh> = Tp-14-1
on the standard generators xg.

Proof. This follows indeed from a direct verification, based either on Theorem 4.4 above,
or on its equivalent formulation from Wang’s paper [139]. U

Let us discuss now the twisted version of the above result. Consider a 2-cocycle on F,
which is by definition a map o : F' x F' — C* satisfying:

Ogh,sOgh = Og,hsOhs
Og1 = 019 = 1

Given such a cocycle, we can construct the associated twisted group algebra C' (Z:"\J), as
being the vector space C'(F') = C*(F'), with product as follows:

€g€n = Ogh€yh

We have then the following generalization of Proposition 4.17:
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Proposition 4.18. The algebra C’(Sg) 15 isomorphic to the abstract algebra presented
by generators x4, with g, h € G, with the relations x4 = x4 = 614 and:

OghLs,gh = E Ost—1tTst—1 gTth
teF

-1 Z ~1
Ugh Lgh,s = 0t717t8$gt*1xh,ts
ter
The comultiplication, counit and antipode are given by the formulae

xgh E Lgs X Tgp

sEF
e(zgn) = Ogn
_ -1
S(I'gh) = O'h—lhO'g_ng:h—lg—l
on the standard generators gp.

Proof. Once again, this follows from a direct verification. Note that by using the cocycle
identities we obtain o441 = 04-1,4, needed in the proof. O

In what follows, we will prove that the quantum groups S+ and S * are related by a
cocycle twisting operation. Let H be a Hopf algebra. We recall that a left 2-cocycle is a

convolution invertible linear map o : H ® H — C satisfying:
O1y1022y2,2 = Oy1z2192,y220
Oz1 = 01z = 8(1’)

Note that o is a left 2-cocycle if and only if 0!, the convolution inverse of o, is a right
2-cocycle, in the sense that we have:

-1 -1 _ -1 —1
Oe1y1,2%21y2 = Ta,y1219y2z0
-1 _ -1 _
U:):l - le - 6(1’)

Given a left 2-cocycle o on H, one can form the 2-cocycle twist H? as follows. As a
coalgebra, H? = H, and an element x € H, when considered in H?, is denoted [z]. The
product in H? is defined, in Sweedler notation, by:

= Z O--lel 0'507313/3 [nyQ]

Note that the cocycle condition ensures the fact that we have indeed a Hopf algebra.
Note also that the coalgebra isomorphism H — H? given by  — [z] commutes with the
respective Haar integrals, as soon as H has a Haar integral.

We can now state and prove a main theorem from [22], as follows:
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Theorem 4.19. If F' is a finite group and o is a 2-cocycle on F', the Hopf algebras
+ +
(st . O(st)
are 2-cocycle twists of each other, in the above sense.
Proof. In order to prove this result, we use the following Hopf algebra map:
. + o
T C’(Sﬁ) — C(F)
Tgh — 5gh€g

Our 2-cocycle o : F x F' — C* can be extended by linearity into a linear map as follows,
which is a left and right 2-cocycle in the above sense:

o:C(F)® C(F) = C
Consider now the following composition:
a=o(rem): C(SE)eC(Sh) = C(F) @ C(F) = C

Then « is a left and right 2-cocycle, because it is induced by a cocycle on a group
algebra, and so is its convolution inverse a~'. Thus we can construct the twisted algebra
C (S;I)afl, and inside this algebra we have the following computation:

[iEgh][l'rs] = ail(‘rgaxr)a(xhuxs)[xghxrs]
= Uf;rlahs[zghwrs]

By using this, we obtain the following formula:

Z Ost—1¢ [xstfl,g] [xth] = Z Ustfl,tag;ElﬁtO-gh xstfl,gxth]
teF teF
= Ogn[Tsgnl

Similarly, we have the following formula:
Z T gl Tgi1)[Tns] = a5 [T gn.s]
teF

We deduce from this that there exists a Hopf algebra map, as follows:
. + +ya~t
(P . C(Sﬁg) _> C<Sﬁ)

Tgh = [Tgn]
This map is clearly surjective, and is injective as well, by a standard fusion semiring
argument, because both Hopf algebras have the same fusion semiring. U

Summarizing, we have proved our main twisting result. Our purpose in what follows
will be that of working out versions and particular cases of it. We first have:
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Proposition 4.20. If F' is a finite group and o is a 2-cocycle on F', then

D(Tginy - Tgpnn) = g1,y Gm) QR BTy - Ty,
with the coefficients on the right being given by the formula

m—1
Ug1,-- -5 9m) = H T 919k 9rt1
k=1

is a coalgebra isomorphism C’(S; ) — C’(Sjg), commuting with the Haar integrals.

Proof. This is indeed just a technical reformulation of Theorem 4.19. U
Here is another useful result from [22], that we will need in what follows:

Theorem 4.21. Let X C F be such that og, = 1 for any g,h € X, and consider the
subalgebra
+
BX C C(SF\O->
generated by the elements x4, with g,h € X. Then we have an injective algebra map
) +
gen by xgp — Tgp.
Proof. With the notations in the proof of Theorem 4.19, we have the following equality
in C(Sg)o‘fl, for any g¢;, hi, 7,8 € X:
[Tgihy - Tgphy] * [Trisr - - Trgsy] = [Tgihy - - TgphyTrysy - - - Trys,]
Now @, can be defined to be the composition of ®p, with the linear isomorphism
C’(SI;)OF1 — C(S;I) given by [z] — z, and is clearly an injective algebra map. O
Let us discuss now some concrete applications of the general results established above.
Consider the group F' = Z2, let w = €™/ and consider the following map:
o:FxF—C*
o) = W
It is easy to see that o is a bicharacter, and hence a 2-cocycle on F. Thus, we can
apply our general twisting result, to this situation. In order to understand what is the

formula that we obtain, we must do some computations. Let F;; with 4,5 € Z, be the
standard basis of M,,(C). Following [22], we first have the following result:

Proposition 4.22. The linear map given by
n—1
Ulean) = Y W B,
k=0

defines an isomorphism of algebras 1) : C(ﬁg) ~ M,(C).
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Proof. Consider indeed the following linear map'

Z w e
It is routine to check that both v, are morphlsms of algebras, and that these maps
are inverse to each other. In particular, ¢ is an isomorphism of algebras, as stated. [
Next in line, we have the following result:
Proposition 4.23. The algebra map g@'ven by

ai—bj
o(uijup) § W X (0 ki), (b1—)
ab 0

defines a Hopf algebra isomorphism ¢ : C(Sy; ) ~ C’(Sgn).
Proof. Consider the universal coactions on the two algebras in the statement:
a:M,(C) — M, ((C)(}@C(S+ )
B:C(F;) — C(F,)®C(SE)
In terms of the standard bases, these coactions are given by:

AEy) = Y Bu®upiuy
Blewn) = D ewn © T i
kl

We use now the identification C(F,) ~ M, (C) from Proposition 4.22. This identifica-
tion produces a coaction map, as follows:

v M,(C) = M,(C)® C(S;EU)

Now observe that this map is given by the following formula:

1 ar—i
EJ) = E Z Eab ® Z w kx(’r‘,b—(z),(k,j—i)
ab kr

By comparing with the formula of o, we obtain the isomorphism in the statement. [J
We will need one more result of this type, as follows:

Proposition 4.24. The algebra map gz’ven by

ki+lj—ra— sb
P(T(a), (i) Zw T ) )
klrs

defines a Hopf algebra isomorphism p : C’(S;Af) ~ C(S}).
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Proof. We have a Fourier transform isomorphism, as follows:
C(F) ~ C(F)
Thus the algebras in the statement are indeed isomorphic. O
As a conclusion to all this, we have the following result, from [22]:

Theorem 4.25. Let n > 2 and w = e2™/™. Then

n—1

1 —a(k—1 —J
@(uijukl) = E Z =T j)pia,jb

ab=0
defines a coalgebra isomorphism
C(POS) — C(S;;)
commuting with the Haar integrals.

Proof. We recall from Theorem 4.23 (2) that we have identifications as follows, where the
projective version of (A, w) is the pair (PA,v), with PA =<v;; > and v =u® @

PO} = PUS = S,

With this in hand, the result follows from Theorem 4.18 and Proposition 4.20, by
combining them with the various isomorphisms established above. U

Here is a useful version of the above result, that we will need later on:

Theorem 4.26. The following two algebras are isomorphic, via ufj — Xij:

(1) The algebra generated by the variables ui; € C(O}).
(2) The algebra generated by Xi; = = > 0 y—y Diago € C(S}2)

n

Proof. We have @(ufj) = Xj;, so it remains to prove that if B is the subalgebra of C'(S}; )
generated by the variables u2;, then ©)p is an algebra morphism. Let us set:

K
X ={(i,0)|i € Z,} C 72

Then X satisfies the assumption in Theorem 4.20, and ¢(B) C Bx. Thus by Theorem
4.20, the map ©p = pFyy|p is indeed an algebra morphism. U

We will be back to this in section 8 below, with some probabilistic consequences.
As an overall conclusion, the twisting formula S; = SO;' ultimately comes from
something of type Xy ~ My, where Xy = {1,2,3,4} and My = Spec(M,(C)), and at

N > 5 there are some extensions of this, and notably when N = n? with n > 3.

Finally, let us go back to the small index classification results.
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In order to obtain the classification at N = 5, we will use the recent progress in subfactor
theory [108], concerning the classification of the small index subfactors. For our purposes,
the most convenient formulation of the result in [108] is as follows:

Theorem 4.27. The principal graphs of the irreducible index 5 subfactors are:

(1) Aw, and a non-extremal perturbation of AL,
(2) The McKay graphs of Zs, Ds, GA1(5), As, Ss.
(3) The twists of the McKay graphs of As, Ss.

Proof. This is a heavy result, and we refer to [108] for the whole story. The above
formulation is the one from [108], with the subgroup subfactors there replaced by fixed
point subfactors [2], and with the cyclic groups denoted as usual by Zy. U

In the quantum permutation group setting, this result becomes:

Theorem 4.28. The set of principal graphs of the transitive subgroups G C S5 coincide
with the set of principal graphs of the subgroups Zs, Ds, GA(5), As, S5, Ss .

Proof. We must take the list of graphs in Theorem 4.27, and exclude some of the graphs,
on the grounds that the graph cannot be realized by a transitive subgroup G C S5

We have 3 cases here to be studied, as follows:

(1) The graph A, corresponds to Si itself. As for the perturbation of Ag), this
dissapears, because our notion of transitivity requires the subfactor extremality.

(2) For the McKay graphs of Zs, D5, GA;(5), As, S5 there is nothing to be done, all
these graphs being solutions to our problem.

(3) The possible twists of As, S5, coming from the graphs in Theorem 4.27 (3) above,
cannot contain S5, because their cardinalities are smaller or equal than |S;| =120. O

With a little more work, the above considerations give in principle the full list of
transitive subgroups G C Sy. To be more precise, the only piece of work left is that of
classifying the twists of Ay, S5, appearing in (3) in the above proof.

As an interesting consequence of the above results, we have:

Theorem 4.29. The following quantum group inclusions are both maximal, in the sense
that there is no quantum group in between:

S4CSZ_

S5CS;_

In addition, the inclusion Sy C S3; is mazimal, at any N € N, when restricting the
attention to the class of the easy quantum groups.



78 TEO BANICA

Proof. There are several statements here, the idea being as follows:
(1) The N = 4 assertion follows from the ADE classification from Theorem 4.16.

(2) The N = 5 assertion follows from Theorem 4.28, with the remark that S; being
transitive, so must be any intermediate subgroup S5 C G C S5

(3) As for the last assertion, this is something elementary, obtained by doing some
combinatorics, as explained in [45]. O

The above results suggest the conjecture that Sy C S¥ should be maximal, at any
N € N. For a discussion and some related results here, we refer to [21].
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5. Laws of characters

In this second part of this book, this section and the next 3 ones, we discuss a number
of analytic questions for the most in relation with free probability. We will be mainly
interested in Sy, St ~, but in view of the subtle relationship between S ON, we will
include Oy, O%; as well in our discussion. We will comment on S} extensions, too.

Let us begin with some character basics. We have the following result:

Theorem 5.1. Given a Woronowicz algebra (A,w), with fundamental corepresentation
u € My(A), the law of the main character

N
X = Z Wij
i=1

with respect to the Haar integration has the following properties:

(1) The moments of x are the numbers M, = dim(Fiz(u®*)).
(2) My counts as well the lenght p loops at 1, on the Cayley graph of A.

(3) law(x) is the Kesten measure of the assoczated discrete quantum group.
(4) When u ~ @ the law of x is a usual measure, supported on [—N, N].
(5) The algebra A is amenable precisely when N € supp(law(Re(x))).

(6) Any morphism f : (A,u) — (B,v) must increase the numbers Mj,.

7) Such a morphism f is an isomorphism when law(x,) = law(xy).

(

Proof. All this is very standard, basically coming from the Peter-Weyl theory developed
n [147], and explained in section 1 above, the idea being as follows:

(1) This comes from the Peter-Weyl type theory, which tells us the number of fixed
points of v = u®* can be recovered by integrating the character y, = x*.

(2) This is something true, and well-known, for A = C*(T'), with I' =< ¢y,...,g95 >
being a discrete group. In general, the proof is quite similar.

(3) This is actually the definition of the Kesten measure, in the case A = C*(I"), with
['=<gi,...,gn > being a discrete group. In general, this follows from (2).

(4) The equivalence u ~ @ translates into x, = xJ, and this gives the first assertion.
As for the support claim, this follows from wu* =1 = ||uy|| < 1, for any 1.

(5) This is the Kesten amenability criterion, which can be established as in the classical
case, A = C*(T'), with I" =< ¢y, ..., gy > being a discrete group.

(6) This is something elementary, which follows from (1) above, and from the fact that
the morphisms of Woronowicz algebras increase the spaces of fixed points.

(7) This follows by using (6), and the Peter-Weyl type theory, the idea being that if f
is not injective, then it must strictly increase one of the spaces Fiz(u®*). U
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Summarizing, regardless of our precise motivations and philosophy, computing the law
of x =), u; is a central question, and the “main problem” to be solved.

In what regards the quantum rotation and permutation groups, that we are interested
in here, we have already solved this problem for them, our result being as follows:

Theorem 5.2. The main character laws for the basic quantum groups are the Poisson,
Gaussian, Marchenko-Pastur and Wigner laws p1, g1, 71,1

Sy

o) ™ N

SN

in the N — oo limit. Moreover, the convergence is stationary starting from N = 2 for
O}, starting from N = 4 for S¥, and is not stationary for Oy, Sy.

On Pr—n

Proof. This is something that we know from sections 1-4, as follows:
(1) For an easy quantum group G = (G ), coming from a category of partitions D =
(D(k,1)), the asymptotic moments of the main character are given by:

lim X" = lim dim (Fiz(u®"))

N—oo Cn N—o0

= ]\}1_1&1;0 dim (sp(m (&r ™C D(k))>
= [D(k)]

(2) This result applies to our 4 quantum groups, which are all easy, the corresponding
categories of partitions, and asymptotic moments of x, being as follows:

NC NC, Cp ———Cip2

P

Py By ——— k!
But these numbers being the moments of p;, g1, 71,71, we obtain the result.

(3) Regarding the stationarity claims, these are more advanced, and come for O}, S}
from the results in section 3 above. As for the non-stationarity claims for Oy, Sy, these
come either via direct computations, or from the Kesten amenability criterion. Il

All this is very nice, but the lack of symmetry between the classical and quantum
results, in what concerns the stationarity, remains an issue. As a piece of an answer
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here, standard free probability, based on partitions as above, shows that 7,7y, are the
free analogues of pi,g;. However, at a more advanced level, that of the Bercovici-Pata
bijection [46], the correct statement is that the free convolution semigroups {7}, {7} are
the free analogues of the convolution semigroups {p;}, {g:}.

Thus, in order to fix things, we need a parameter ¢ > 0. The idea will be that of looking
at truncated characters, with respect to a parameter t € (0, 1]:

Definition 5.3. Associated to any Woronowicz algebra (A, u) are the variables

[tN]

Xt = Z Ui
i=1

depending on a parameter t € (0,1], called truncations of the main character.

We will see that for our basic quantum groups, the asymptotic laws of these variables
are respectively p;, gi, 7, Vi, and that the convergence at generic ¢ € (0, 1] is not stationary.
Thus, we will have our fix for Theorem 5.2. Also, as a bonus, all this will get us into
advanced representation theory and free probability, that we will explore later.

In order to understand what the variables y; are about, let us first investigate the
symmetric group Sy. The result here, which is something very classical, is as follows:

Theorem 5.4. Consider the symmetric group Sy, regarded as a compact group of matri-
ces, Sy C Oy, via the standard permutation matrices.

(1) The main character x € C(Sn), defined as usual as x =, u;;, counts the number
of fized points, x(o) = #{i|o(i) =i}.

(2) The probability for a permutation o € Sy to be a derangement, meaning to have
no fized points at all, becomes, with N — oo, equal to 1/e.

(3) The law of the main character x € C(Sy) becomes with N — oo a Poisson law of
parameter 1, with respect to the counting measure.

(4) In fact, the law of any truncated character x; = Zyzj\ﬂ u;; becomes with N — oo a
Poisson law of parameter t, with respect to the counting measure.

Proof. This is something very classical, the proof being as follows:

(1) We have indeed the following computation:
W) =D wile) = 3 dogys = # {i]oi) =i}
(2) We use the inclusion-exclusion principle. Consider the following sets:

S = {U € SN‘J(Z') = z}
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The set of permutations having no fixed points is then Xy = (UJ; S%)". In order to
compute | Xy/|, consider as well the following sets:

ik {0 c SN‘U(ZE) =ip,...,0(ix) = Zk}

The inclusion-exclusion principle tells us that we have:

(uUss)

= 1SwI=D_ISM+ D ISkn Sk =+ (=DY Y IS§U.. USY|
¢ i<y <. <IN

= ISN\—Z\S§V!+Z]S%\—...+(—1)N Z \S}&,ZN|
g i<j 1< <in

Thus, the probability that we are interested in is given by:

P(x=o>=%<|SN\—Z\S}V|+Z|s§3\—...+(—1)fv > |5§¢~~~iNy>

1<j 11<...<IN

Now observe that for any i; < ... < i, we have |Si4~"*| = (N — k)!. We obtain:

Po=0) = 3 (-1F 3 ISy

k=0 11 <...<ip
1 I i |
= S>> (k)
" k=0 11<... <t
N
1 N
= —.Z(—l)’“(k)(N — k)!
k=0
Y
=D
k=0
B 11 | N1

Since we have here the expansion of %, we conclude that we have, as desired:

, 1
i P=0=7
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(3) This follows by generalizing the computation in (2). To be more precise, a similar

application of the inclusion-exclusion principle gives the following formula:
: 1
A POc=h) = 7

Thus, we obtain in the limit a Poisson law of parameter 1, as stated.
(4) As a first observation, and in analogy with the formula in (1) above, the truncated
characters count as well certain fixed points, as follows:
[tN]

[tN]
X(0) = 3 ualo) = D doiou = # {1 € {1, 1N} ]o i) = i}

Regarding now the computation of the law of y;, this follows by generalizing the com-
putation in (3). Indeed, an application of the inclusion-exclusion principle gives:

: tF
Jim P(x, = k) = Tt
Thus, we obtain in the limit a Poisson law of parameter ¢, as stated. U

The above result will be something quite fundamental for us, and is worth a second
proof, with the remark that in what concerns the case t = 1, that we already discussed in
Theorem 5.2, using easiness, this will be actually a third proof of it. We can use indeed
the following integration formula over Sy, which has its own interest:

Theorem 5.5. Consider the symmetric group Sy, with its standard coordinates:
gij = X <U € SN‘U(j) = Z)
The integrals over Sy are given, modulo linearity, by the formula

/ Girjr - Ginje = BoRr it keri = kerj
SN I 0 otherwise

where keri is the partition of {1,...,k} whose blocks collect the equal indices of i.

Proof. According to the definition of g;;, the integrals in the statement are given by:

1 ) . . .
/ Girir - - Jipjn = m# {O’ € SN‘a(jl) =d1,...,00jk) = zk}

SN
Now observe that the existence of o € Sy as above requires:
Thus, the above integral vanishes when ker # ker j. Regarding now the case ker: =
ker j, if we denote by b € {1,...,k} the number of blocks of this partition keri = ker j,
we have N — b points to be sent bijectively to N — b points, and so (N — b)! solutions,

and the integral in the statement follows to be (N_b)!

~ > as claimed. U
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As an illustration for the above formula, we can recover the computation of the asymp-
totic laws of the truncated characters y;. We have indeed:

Theorem 5.6. For the symmetric group Sy C Oy, regarded as a compact group of
matrices, Sy C Oy, via the standard permutation matrices, the truncated character

[tN]

xi(g9) = Z Gii

i=1

counts the number of fixed points among {1,...,[tN]}, and its law with respect to the
counting measure becomes, with N — oo, a Poisson law of parameter t.

Proof. The first assertion is something that we already know. For the second assertion,
we use the formula in Theorem 5.5. With Sy, being the Stirling numbers, we have:

[tN]

k
Xe = E / Givix -+ - Gigi
/SN t SN 171 kk

i1..ip=1

_ tN]! (N —[=]!)
N Z ([tN] — |=|!) NI

weP(k)
[tN]

(tN]! (N —b)!
;([tzv]—b)!' Nk

In particular with N — oo we obtain the following formula:

k
li F=) St
Nl_{noo ; Xt ; kb
But this is the k-th moment of the Poisson law p;, and so we are done. Il

Summarizing, the truncated characters for Sy are definitely interesting objects. How-
ever, in what regards Oy, Sj;, O, things are quite tricky, and we need a good motivation,
coming on top of what we know about Sy, for getting into computations here.

For this purpose, recall from our comments preceding Definition 5.3 that the need for
a parameter ¢t > 0 basically comes from theoretical probability, and more precisely from
the classical/free bijection there, at the semigroup level. So, let us explain this now.

In order to get started, recall that the Gaussian laws g; and Poisson laws p;, appear via
the Central Limit Theorem (CLT) and the Poisson Limit Theorem (PLT). Our first task
will be that of explaining these results. The first of them is as follows:
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Theorem 5.7 (CLT). Given a sequence of real random variables fi, fa, f3,... € L>(X)
which are i.i.d., centered, and with variance t > 0, we have, with n — 0o, in moments,

1 n
%Zlfi’\’gt

where gy is the Gaussian law of parameter t, given by:
1
gt V27t

Proof. We use the well-known fact that the log of the Fourier transform Fy(z) = E(e/)
linearizes the convolution. The Fourier transform of the variable in the statement is:

o - (o]

2
e~ /Qtdﬂf

ta? "
= [1-=—+0n7?
~ e—t172/2

On the other hand, the Fourier transform of g, is given by:

1 —y? T
Fule) = == [ ey

_ / o~ /I fiRi) a2 2
V2t Jr

1 / _ 2—t 2/2
= — | e 77"/ dz
VT IR

eftx2/2

Thus, we are led to the conclusion in the statement. Il

Regarding now the Poisson Limit Theorem (PLT), this is as follows:

Theorem 5.8 (PLT). We have the following convergence, in moments,

" " *n
((1——)50+—(51> — Dt
n n

where py is the Poisson law of parameter t > 0, given by:

—t tk(sk

pr=¢€ _k!
k
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Proof. Once again, we use the fact the log of the Fourier transform Fy(z) = E(e**)
linearizes the convolution. The Fourier transform of the variable in the statement is:

t t . \"
F(z) = lim ((1 — —) + —e”)
n—o00 n n

= (1 Y
= exp ((e" — 1)t)

On the other hand, the Fourier transform of p, is given by:

— tk ikx
Fule) = et 30 Lot
. !

i eixt k
- ;( k!)
= exp(—t) exp(e™t)
= exp ((e" —1)t)

Thus, we are led to the conclusion in the statement. Il

In order to discuss now the free version of the above results, we first need to talk about
moments, laws and freeness. Let us start with the following definition:

Definition 5.9. Let A be a C*-algebra, given with a trace tr.

(1) The elements a € A are called random variables.
(2) The moments of such a variable are the numbers My(a) = tr(a®).
(3) The law of such a variable is the functional p, : P — tr(P(a)).

Here k = oeeo... is as usual a colored integer, and the powers a* are defined by the
following formulae, and multiplicativity:

=1, a°=a , a"=a
As for the polynomial P, this is a noncommuting *-polynomial in one variable:
PeC<X X*>

Observe that the law is uniquely determined by the moments, because:
P(X) =) MX" = pa(P) =D \eMj(a)
k k

Let us discuss now the independence, and its noncommutative versions. As a starting
point here, we have the following straightforward definition:
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Definition 5.10. We call two subalgebras B,C C A independent when the following
condition 1s satisfied, for any x € B and y € C':
tr(z) =tr(y) =0 = tr(zy) =0
Also, two variables b,c € A are called independent when the algebras that they generate
B=<b>C=<c¢>
are independent, in the above sense.

It is possible to develop some theory here, but this is ultimately not very interest-
ing, being just an abstract generalization of usual probability theory. As a much more
interesting notion now, coming from [135], and that we will study next, we have:

Definition 5.11. We call two subalgebras B,C' C A free when the following condition is
satisfied, for any x; € B and y; € C:

tr(xz;) =tr(y;)) =0 = tr(z1y1xays...) =0
Also, two variables b,c € A are called free when the algebras that they generate
B=<b>C=<c>
are free, in the above sense.

Thus, freeness appears by definition as a kind of “free analogue” of independence. As
a basic result now regarding these notions, and providing us with examples, we have:

Proposition 5.12. We have the following results, valid for group algebras:
(1) C*(T"),C*(A) are independent inside C*(I' x A).
(2) C*(T"),C*(A) are free inside C*(I" x A).
Proof. In order to prove these results, we can use the fact that each group algebra is

spanned by the corresponding group elements. Thus, it is enough to check the indepen-
dence and freeness formulae on group elements, and this is in turn trivial. O

In short, we have now a notion of freeness, dealing with noncommutativity itself, in its
most pure form, where there are no algebraic relations at all. This is very nice, but in
practice now, we need a free analogue of the Fourier transform, or rather of the log of the
Fourier transform. The result here, due to Voiculescu [135], is as follows:

Theorem 5.13. Given a real probability measure p, consider its Cauchy transform

Gute) = [ 244

rE—T
and then define its R-transform as the solution of the following equation:

G, (Ru(é) " %) ¢

The free convolution operation is then linearized by the R-transform.
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Proof. The proof here, which is quite tricky, is in four steps, as follows:

(1) In order to model the free convolution, we can use the algebra of creation operators
on the free Fock space F'(R?). This is the same as the semigroup algebra C*(N * N), and
we have some freeness here, a bit in the same way as for group algebras.

(2) In what concerns single distributions, the point here is that the variables of type
S* + f(S), with S € C*(N) being the shift, and with f € C[X] being a polynomial, are
easily seen to model in moments all the distributions u : C[X] — C.

(3) Now let f,g € C[X] and consider the variables S* + f(S) and T* + ¢(T'), where
S, T € C*(NN) are the shifts corresponding to the generators of N * N. These variables
are free, and by using a 45° argument, their sum has the same law as S* + (f + ¢)(.9).

(4) Thus the operation y — f linearizes the free convolution. We are therefore left with
a computation inside C*(N), which is standard, and whose conclusion is that R, = f can
be recaptured from p via the Cauchy transform G, as in the statement. O

We refer to [135] or [138] for full details on the above. Now with the above technology
in hand, we are ready to state and prove the free CLT, once again following [135]:

Theorem 5.14 (FCLT). Given noncommutative self-adjoint variables xq,xs, x3,... € A
which are f.i.d., centered, with variance t > 0, we have, with n — 0o, in moments,

1 n
= Ti ~ Nt
where vy, is the Wigner semicircle law of parameter t, given by:
1
Y& = %\/ 4t2 — x2dx

Proof. We follow the same idea as in the proof of the CLT, explained before:

(1) At t = 1, the R-transform of the variable in the statement can be computed by
using the linearization property from Theorem 5.13, and is given by:

R(€) = nR, (%) -

(2) On the other hand, standard computations show that the Cauchy transform of the
Wigner semicircle law v satisfies the following equation:

1
G 2 =

Thus we have the following formula, which by the way follows as well from S+ .5* ~ 4,
which is clear from the proof of Theorem 5.13 above:

Ry, (§) =€
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(3) But this gives the result, and so we are done with the case ¢t = 1. The passage to
the general case, t > 0, is routine, by dilation.

O
We can state and prove as well a free PLT, as follows:

Theorem 5.15 (FPLT). We have the following convergence, in moments,

Hn
((1_£>50+£61> — T
n n

the limiting measure being the Marchenko-Pastur law of parameter t > 0,

4t — (x — 1 —1)?
m = max(1 —¢,0)dp + v ( ) dx
2nx
also called free Poisson law of parameter t > 0.
Proof. Consider the meaure in the statement, under the convolution sign:
t t
(- D)as
n n

The Cauchy transform of this measure is given by:
t\y1 ¢t 1
G =(1=-=)>4+ . —
We want to compute the following R-transform:

R = Ren(y) = nRy(y)
By Theorem 5.13, the equation satisfied by R is as follows:

t 1 t 1
L= ) gt — =y
n)yt+R/n n yl'+R/n—-1
By multiplying by n/y, and rearranging terms, this equation can be written as:
t+yR t
1+yR/n  14+yR/n—y

With n — oo the equation simplifies, and we obtain the following formula:

t
t+yR=——
I—y

Thus we have R = ﬁ, which equals Ry,, and we obtain the result.

As a conclusion to this, let us formulate the following statement:
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Theorem 5.16. The main limiting results in classical and free probability are

FPLT FCLT T ——————— V4

PLT —CLT Pr— 0t
the limiting measures being Gaussian, Poisson, Wigner and Marchenko-Pastur.

Proof. This follows indeed by putting together all the above results, classical and free,
and with g;, p;, v, ™ being respectively the measures in the statement. Il

Now back to our permutation and rotation questions, the above result makes a clear
connection with our quantum group scheme, from Theorem 5.2 above, namely:

SN

OJJQ TN

Sn

In order to get beyond this, and reach to the parameter ¢ > 0, we must do some further
probability. Following [130], given a noncommutative random variable a, we can define
its classical cumulants k,(a) and its free cumulants k,(a) by the following formulae:

log F,(¢) = Y _ kn(a)¢"

On P——a

Ro(€) = 3 mu(a)e”

With this notion in hand, we can define then more general quantities k.(a), x.(a),
depending on partitions © € P(k), by multiplicativity over blocks, and we have:

Theorem 5.17. We have the classical and free moment-cumulant formulae

My(a) = ) kala)

weP (k)

Mi(a)= ) kxla)
TeNC(k)
where kr(a), kr(a) are the generalized cumulants and free cumulants of a.

Proof. This is standard, by using the formulae of F,, R,, or by doing some direct combi-
natorics, based on the Mdbius inversion formula from section 2 above. See [130]. u
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Now with this classical and free cumulant technology in hand, we can reformulate
Theorem 5.16 above in a more conceptual way, as follows:

Theorem 5.18. The main central limiting results are as follows, with g, ps, V¢, T being the
Gaussian and Poisson semigroups, and Wigner and Marchenko-Pastur free semigroups,

FPLT FCLT T —————— Yt

PLT ——— CLT p— g,

which are related by the Bercovici-Pata bijection, in the sense that “the classical cumulants
of the classical measures are equal to the free cumulants of the free measures”.

Proof. We already know the main assertion, from Theorem 5.16, so we just have to dis-
cuss the assertions regarding the semigroup properties, cumulants and the Bercovici-Pata
bijection [46]. For this purpose, recall that at ¢ = 1 the moments of the limiting measures
in the statement appear by counting diagrams, according to the following scheme:

y—— NC NG,

pr—————— g P P

The point now is that at ¢ > 0 the moments of the measures in the statement can be
recaptured as well from the above diagrams, accroding to the following formula:

M, = Z ¢!
)

meD(k

Now by putting this into the classical and free cumulant machinery from Theorem 5.17,
we obtain the conclusions in the statement, in relation with [46]. See [122]. O

Summarizing, we have now a good understanding of the limiting character measures
appearing from Oy, OF;, Sy, Sy, and with the remark that the presence of a parameter
t > 0 would be desirable. But we already have our parameter ¢ > 0 in the quantum group
setting, coming from truncated characters, introduced in Definition 5.3 above:

[tN]
Xt = Z Ui
i=1

So, following [26], [27], let us discuss now the computation of the law of x;. In general,
and in particular in what regards Oy, S3;, OF, there is no simple trick as for Sy, and we
must use general integration methods, from [72], [144]. First, we have:
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Theorem 5.19. Assuming that A = C(G) has Tannakian category C = (C(k,1)), the
Haar integration over G is given by the Weingarten type formula

/Guflljl.. i —ﬂ;k§ (J)Wi(rm, o)
for any colored integer k = ey ... ey and indices i, j, where Dy, is a linear basis of C (0, k),
0p(i) =< T, e ®...® €, >
and Wy = G, with Gy(w,0) =< 7,0 >.

Proof. We know from section 1 above that the integrals in the statement form altogether
the orthogonal projection P* onto the following space:

Fiz(u®*) = span(Dy,)

Consider now the following linear map, with Dy = {{;} being as in the statement:

= Z <3, > &

weDy

By a standard linear algebra computation, it follows that we have P = W E, where W
is the inverse on span(T,|m € Dy) of the restriction of E. But this restriction is the linear
map given by Gy, and so W is the linear map given by W}, and this gives the result. [J

In the easy quantum group case, the above formula simplifies, as follows:

Theorem 5.20. For an easy quantum group G C Oy, coming from a category of parti-
tions D = (D(k,l)), we have the Weingarten integration formula

/Guilj1~~-uikjk = Z 07(1)06(§)Wien (7, 0)

m,0€D(k

where D(k) = D(0, k), § are usual Kronecker symbols, and Wiy = G, with
Gin(m, o) = Nlmvel
where |.| is the number of blocks.
Proof. With notations from Theorem 5.19, the Kronecker symbols are given by:
0e, (1) =< &ny€i, ® ... Q€ >=0(11,...,10k)
The Gram matrix being as well the correct one, we obtain the result. See [26]. O

With the above formula in hand, we can go back now to the question of computing the
laws of truncated characters. First, we have the following moment formula, from [26]:
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Theorem 5.21. The moments of truncated characters are given by the formula
/(UH 4+ ...+ uss)k = TT(WkNGkS>
€]

where Gy and Wiy = G,;]%, are the associated Gram and Weingarten matrices.

Proof. We have indeed the following computation:

/G(u11+...+uss)k = ZZ/umluwk

i1=1 ip=1
= ) Winlmo)d ..> 6:(6)d,(i)
m,0€D(k) i1=1 ip=1

= Z WkN<7T,U>Gks(U> 77)

m,0€D(k)
= TT(WkNGkS>

Thus, we have obtained the formula in the statement. Il

In order to process now the above formula, things are quite technical, and won’t work
well in general. We must impose here a uniformity condition, as follows:

Theorem 5.22. For an easy quantum group G = (Gy), coming from a category of
partitions D C P, the following conditions are equivalent:

(1) Gy-1 = Gy NUN_y, via the embedding Uy, C Uy, given by u — diag(u, 1).
(2) Gno1 = Gy NUy_,, via the N possible diagonal embeddings Uy, , C Uy:.
(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (Gy) is “uniform”.
Proof. We use the general easiness theory from section 1 above.

(1) <= (2) This is something standard, coming from the inclusion Sy C Gy, which
makes everything Sy-invariant. The result follows as well from the proof of (1) <= (3)
below, which can be converted into a proof of (2) <= (3), in the obvious way.

(1) < (3) Given K C Uy _,, with fundamental corepresentation u, consider the
N x N matrix v = diag(u,1). Our claim is that for any 7 € P(k) we have:

& € Fiz(v®) «— & € Fiz(v®),Va' € P(K),n' C =
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In order to prove this, we must study the condition on the left. We have
&x € Fiz(v®")

(v®k57r)i1...ik = (fw)il...ik>Vi

— Z Y v inreode Em g = (En)irenin, Vi

< 25 ]17---7jk Ulljl "'Uikjk = 57r<i1,

<~

i), Vi

Now let us recall that our corepresentation has the special form v = diag(u,1)

. We
conclude from this that for any index a € {1

., k}, we must have:
With this observation in hand, if we denote by 4, j the multi-indices obtained from 7, j

obtained by erasing all the above i, = j, = N values, and by k' < k the common length
of these new multi-indices, our condition becomes

Z(S jla"')]k ( ®k/)i/j’ :67T(i17-‘-aik)7vz.

Here the index j is by definition obtained from j’ by filling with N values. In order to
finish now, we have two cases, depending on i, as follows

Case 1. Assume that the index set {ali, = N} corresponds to a certain subpartition
7' C 7. In this case, the N values will not matter, and our formula becomes

25 e oo Gi) W Vi = 00 (80, i)
Case 2. Assume now the opposite, namely that the set {a|i, = N} does not correspond
to a subpartition 7’ C 7. In this case the indices mix, and our formula reads

0=0
Thus, we are led to & € Fixz(v®*), for any subpartition 7' C 7, as claimed. Now with

this claim in hand, the result follows from Tannakian duality

O
By getting back now to the truncated characters, we have the following result

Theorem 5.23. For a uniform easy quantum group G = (Gy), we have the formula

lim XF = Z Il
N=eoJay ~eD(k)
with D C P being the associated category of partitions



QUANTUM PERMUTATIONS 95

Proof. We use the general moment formula from Theorem 5.21 above. With s = [tN],
this formula becomes:

/ X = Tr(WinGrgny)
GnN

The point now is that in the uniform case the Gram and Weingarten matrices are
asymptotically diagonal, and this gives the result. See [26], [33], [43]. O

We can now improve our quantum group results, as follows:

Theorem 5.24. The main truncated character laws for the basic quantum groups are the
Poisson, Gaussian, Marchenko-Pastur and Wigner laws pg, g¢, T, Ve

SN

o Tt

SN

in the N — oo limit. Also, the convergences are not stationary at generic t € (0, 1].

On Pt——— Gt

Proof. This follows indeed from the easiness property of our quantym groups, and from
Theorem 5.23, which produces the moments in Theorem 5.18. As for the last assertion,
this is something valid at any ¢ € (0, 1), which follows from standard computations. O

As an umbrella result now, summarizing all our knowledge, we have:

Theorem 5.25. The asymptotic truncated character laws for the basic quantum permu-
tation and rotation groups, which are all easy, as follows,

St oF; NC

NC,

P

Sn On

are the Poisson, Gaussian, Marchenko-Pastur and Wigner laws py, ¢, 7, Ve, which appear
from the main limiting laws in classical and free probability,

TNt FPLT

FCLT

h—g, PLT ——— CLT

and which form semigroups related by the Bercovici-Pata bijection, “the classical cumu-
lants of the classical measures are equal to the free cumulants of the free measures”.
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Proof. This follows from Theorem 5.18 and Theorem 5.24, and from the various results
leading to them. In fact, the present result summarizes our probabilistic knowledge in
the N — oo limit, with the only things left being the technical stationarity results for
S, O%, which from the present N — oo perspective look rather “accidental”. O

There are many ways of further extending the above results, and for a basic computation
here, in the spirit of [86], we refer to [33]. Also, we will be back to this later, in sections
9-12 below, when doing reflection groups, with the result that the various square diagrams
in Theorem 5.25 can be suitably modified, and then completed into cubes.



QUANTUM PERMUTATIONS 97

6. PARTIAL PERMUTATIONS

We discuss in this section an extension of some of the results that we have seen so far,
both of algebraic and analytic nature, from the case of the basic quantum permutation
and rotation groups, to their “partial semigroup” analogues:

S5 o5, S% Ox

SN ON §N 6N

Let us start with the semigroup S n of partial permutations. This is a quite familiar
object in combinatorics, defined as follows:

Definition 6.1. Sy is the semigroup of partial permutations of {1...,N},
Sy = {U:X:Y‘X,YC {1,...,N}}
with the usual composition operation, o'o : o' (X' NY) = o' (X' NY).

Observe that Sy is not simplifiable, because the null permutation hes ~, having the
empty set as domain/range, satisfies 0o = o) = 0, for any o € Sy. Observe also that Sy
has a “subinverse” map, sending o : X — Y to its usual inverse 607" : Y ~ X.

A first interesting result about this semigroup gN, which shows that we are dealing
here with some non-trivial combinatorics, is as follows:

Proposition 6.2. The number of partial permutations is given by

N 2
~ N
ENEDIN < k)
k=0
that us, 1,2,7,34,209, ..., and with N — oo we have:

T exp(4vV/N — 1)
|Sn| =~ N!\/ P

Proof. The first assertion is clear, because in order to construct a partial permutation
o : X — Y we must choose an integer k = | X| = |Y|, then we must pick two subsets
X,Y C {1,..., N} having cardinality k, and there are (]IX) choices for each, and finally we
must construct a bijection o : X — Y, and there are k! choices here. As for the estimate,
which is non-trivial, this is however something standard, and well-known. Il

Another result, which is trivial, but quite fundamental, is as follows:
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Proposition 6.3. We have a semigroup embedding u: Sy C Mny(0,1), defined by

ui (o) = {1 if o(j) =i

0 otherwise
whose 1tmage are the matrices having at most one nonzero entry, on each row and column.

Proof. This is trivial from definitions, with u : Sy C My(0,1) extending the standard
embedding u : Sy C My(0,1), that we have been heavily using, so far. U

Finally, a third basic result about Sy is as follows:
Proposition 6.4. We have an embedding Sy C Son, mapping o : X ~Y to
o(i) ifieX
N+r ifi=ux,

Yr ZfZ:N+T
7 if i>N-+L

o'(i) =

where X¢={xy,...,xp} and Y ={y1,...,yr}, withxy < ... <xp and y; < ... <yyg.

Proof. This is something a bit more technical, which is clear from definitions, too. O

Let us discuss now some probabilistic aspects, related to the Poisson computations
in section 5. We denote by x : Sy — N the cardinality of the domain/range, and by
X : Sy — N be the number of fixed points. These variables are given by:

KIE Uij XIE Ui
ij i

These two quantities are in fact of similar nature:

Proposition 6.5. The embedding §N C Saon tn Proposition 6.4 makes correspond the
variables x, k : Sy — N to the variables

Xiefts Xright - SQN — N
counting the fixed points among {1,..., N} and among {N + 1,...,2N}, respectively.

Proof. By using the formula of ¢ — ¢’ from Proposition 6.4, we obtain:

Xiest(0') = #{i < Nl|o'(i) =i}
_ (e X|o() =)
= x(0)
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We have as well the following formula:
Xright(0') = #{i > N|o'(i) = i}
= {i>N+1L}
= N-2
= (o)
Thus we have obtained the formulae in the statement, and we are done. ]

More generally, given a number [ < N, we denote by x; : Sy — N the number of
fixed points among {1,...,l}. Observe that Sy C Syy maps in fact x; — x;, for any
[. Generally speaking, we are interested in the joint law of (x;, k). There are many
interesting questions here, and as a main result on this subject, we have:

Theorem 6.6. The measures

k= law (Xl‘/f = k;)

ZO)

and become Poisson (st) in the k = sN,l =tN, N — oo limit.

are given by the formula

Proof. Observe first that at £ = [ = N this corresponds to the well-known fact that the
number of fixed points x : Sy — N becomes Poisson (1), in the N — oo limit. More
generally, at £ = N this corresponds to the fact that the truncated character x; : Sy - N
becomes Poisson (), in the [ = tN — oo limit. In general, we can use the same method,
namely the inclusion-exclusion principle. Let us set indeed:

S = {a € §N‘m(0) = k}
By inclusion-exclusion, we obtain the following formula:

P <Xl = p’/s = k)
— ’5;;\?” (;)# {a € §](\I;__§)
1

! (L= D\ | St—p—r)
- y§§§>|(p) 2. ( r )‘SN"I’)‘T

r>0

o—(i);éz,vz'gl—p}

Here the index r, which counts the fixed points among {1,...,l — p}, runs a priori up
to min(k, ) — p. However, since the binomial coefficient or the cardinality of the set on
the right vanishes by definition at » > min(k,[) — p, we can sum over r > 0.
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~ N\?
®)) —

By using this and then by cancelling various factorials, and grouping back into binomial
coeffiecients, we obtain the following formula:

P(Xlzp"'i:k> )
- S (e (G20)
L)

We can now compute the measure itself. With p = ¢ — r, we obtain:

law (Xl’/i = /{:)

) ;; (2;‘}“? (p—]ir) (pjrr> (p]iryzép

- S O00) -

“ 206 G ()

The sum at right being (d; — do)*?, this gives the formula in the statement.

We have the following formula:

Regarding now the asymptotics, in the regime £ = sN,l = tN,N — oo from the
statement, the coefficient of (6; — &y)*?/q! in the formula of i} is:

<= ()

Q0

) ()

<
) ()

= (st)?

12
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We deduce that the Fourier transform of il is given by:

(ev = 1)1
Fui)(y) ~ Z(St)qT
920
_ 6st(ey—l)
But this is the Fourier transform of Poisson (st), and we are done. i

Observe that the formula in Theorem 6.6 shows that we have p = pF. This is an
interesting equality, which seems to be quite unobvious to prove, with bare hands.

Let us discuss now the construction and main properties of the quantum semigroup of
quantum partial permutations Sy, in analogy with the above. For this purpose, let us go
back to the embedding u : Sy C My(0, 1) in Proposition 6.3.

Due to the formula u;;(0) = di6(j), the matrix v = (u;;) is “submagic”, in the sense
that its entries are projections, which are pairwise orthogonal on each row and column.
This suggests the following definition, given in [42]:

Definition 6.7. C’(gf{,) 15 the universal C*-algebra generated by the entries of a N x N
submagic matrixz u, with comultiplication and counit maps given by

Alugy) = Zuzk X Uk
k

e(uij) = b
where submagic means formed of projections, which are pairwise orthogonal on rows and
columns. We call S}, semigroup of quantum partial permutations of {1,..., N}.

Here the fact that the morphisms of algebras A, € as above exist indeed follows from the
universality property of C(Sy), with the needed submagic checks being nearly identical
to the magic checks for C'(S};), from section 2 above.

Observe that the morphisms A, e satisfy the usual axioms for a comultiplication and
antipode, namely:

(A ®id)A = (id @ A)A
(e®id)A = (id®e)A =id
Thus, we have a bialgebra structure of C' (gf{,), which tells us that the underlying non-

commutative space §;{, is a compact quantum semigroup. This semigroup is of quite
special type, because C'(S5) has as well a subantipode map, defined by:

S(uig) = uji
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To be more precise here, this map exists because the transpose of a submagic matrix is
submagic too. As for the subantipode axiom satisfied by it, this is as follows, where m(®)
is the triple multiplication, and A® is the double comultiplication:

mP(S®id® S)A® = 3
Observe also that A, e, S restrict to C (§ ), and correspond there,Nvia Gelfand duality,

to the usual multiplication, unit element, and subinversion map of Sy.

As a conclusion to this discussion, the basic properties of the quantum semigroup g;
that we constructed in Definition 6.7 can be summarized as follows:

Proposition 6.8. We have maps as follows

C(Sy) — C(SY) Sy o S%
i 4 : U U
O(gN) — C(SN) §N > Sy

with the bialgebras at left corresponding to the quantum semigroups at right.

Proof. This is clear from the above discussion, and from the well-known fact that projec-
tions which sum up to 1 are pairwise orthogonal. See [42]. O

As a first example, we have Sf=8.AtN=2 now, recall that the algebra generated
by two free projections p, q is isomorphic to the group algebra of Do, = Zs * Zy. We
denote by € : C*(Dy) — C1 the counit map, given by the following formulae:

e(l)=1

e(...pgpq...) =0
With these conventions, we have the following result, from [42]:

Proposition 6.9. We have an isomorphism

O(55) = {(2.9) € C*(Dx) & C* (D) |e(@) = £() |

which is given by the formula
uw— (P ©0 0r
C\0®s g0

where p,q and r,s are the standard generators of the two copies of C*(Dy).

Proof. Consider an arbitrary 2 x 2 matrix formed by projections:

(5 o)
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This matrix is submagic when the following conditions are satisfied:
PR=PS=QR=QS5S=0

But these conditions mean that the non-unital algebras X =< P,Q) >andY =< R, S >
must commute, and must satisfy xy = 0, for any r € X,y € Y.

Thus, if we denote by Z the universal non-unital algebra generated by two projections,
we have an isomorphism as follows:

CSH~CloZoz
Now since C*(Dy,) = C1 & Z, we obtain an isomorphism as follows:
OS5 ~ {()\+a,)\+b) AeC,abe Z}
Thus, we are led to the conclusion in the statement. See [42]. U

Let us extend now to our free setting the classical results. Proposition 6.2 has no free
analogue, because Sy, is infinite. Proposition 6.3 was already extended, as being part of
Definition 6.7. Regarding now Proposition 6.4 and Proposition 6.5, we first have:

Proposition 6.10. The following two elements of C(gj\’,) are self-adjoint,
X:ZUii7 Fﬁ:zuzj
i ij

satisfy 0 < x, k < N, and coincide with the usual x, k on the quotient C(§N).

Proof. All the assertions are clear from definitions, with the inequalities 0 < y,kx < N
being taken of course in an operator-theoretic sense. U

With this observation in hand, if we denote by v = (v;;) the magic unitary for Syy, the
formulae in Proposition 6.5 tell us that the surjection C'(San) — C(Sn) maps:

Vi1 + ...+t UNN — X

UNt1,N+1 + ... FVanoN — K

Let us look now at Theorem 6.6. Since C' (gx,) has no integration functional, we cannot
talk about the joint law of (x, ). Thus, we need an alternative approach to .

For this purpose, we use the following simple observation:
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Proposition 6.11. Any partial permutation o : X ~Y can be factorized as

X z Y

{1k ——{1,... .k}

with o, B,y € Sy being certain non-unique permutations, where k = k(o).

Proof. Since we have | X| = |Y'| = k, we can choose any two bijections X ~ {1,... k} and
{1,...,k} = Y, and then complete them up to permutations v, € Sy. The remaining
permutation [ € Sy is then uniquely determined by the formula o = af~. Il

We can now formulate an alternative definition for the measures ul. We fix k < N,
and we denote by p, ¢, r the magic matrices for Sy, S, Sy. We have:

Proposition 6.12. Consider the map ¢ : Sy X Sp X Sy — Sx, sendmg (a, B,7) to the
partial permutation o : v H1,... k} ~ofl,... .k} given by o(v71(t)) = a(B(1)).

(1) The image of ¢ is the set S\W = {o € Sy|r(c) = k}.

(2) The transpose of ¢ is given by ™ (uij) = D, 1<y Pis © qst @ Tt

(3) . equals the law of the variable p*(x;) € C(Sny x Sy X Sn).
Proof. This is an elementary statement, whose proof goes as follows:

(1) Since a,y € Sy, the domain and range of the associated element o € Sy have
indeed cardinality k. The surjectivity follows from Proposition 6.11 above.

(2) For the element o € Sy in the statement, we have:

Uz’j(U):l 0(j):i
¥ Sk =g e(B0) =
Js,t < k,y N (t) =4, 8(t) = s,a(s) =1

3s,t < k() = 1,q9(B) = 1, pis(@) = 1
E'S,t < k’,(pis ®QSt®rtj>( 7/877) =1

Now since the numbers s,t < k are uniquely determined by «, 3,7,1, 7, if they exist,
we conclude that we have the following formula:

Uij(U) = Z (Dis ® st ® th)(aa B,7)

s,t<k

171111

But this gives the formula in the statement, and we are done.

(3) This comes from the fact that the map ¢, : Sy X Sy X Sy — gj(é) obtained by
restricting the target of ¢ commutes with the normalized (mass one) counting measures.
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At k = N this follows from the well-known fact that given (a,,v) € Sy x Sy X Sy
random, the product a8y € Sy is random, and the general case is clear as well. Il

The point now is that we can use the same trick, “c = afv”, in the free case. The
precise preliminary statement that we will need is as follows:

Proposition 6.13. Let p,q,r be the magic matrices for Sy, Sy, S%.

(1) The matriz U;; = Zs’tgk Dis @ qst @ 145 15 submagic.
2) We have a representation T : C’(gj\}) — C(S% x S x 8%, mluy) = Uy
) T factorizes through the algebra C(S;(k)) =C(SY)) <k=k>.

) At k = N, this factorization m, commutes with the Haar functionals.

(
(3
(4

Proof. Once again, this is an elementary statement, whose proof goes at follows:

(1) By using the fact that p, ¢, are magic, we obtain:

UijUil = Z Z DisPiv @ ¢stGuw @ Tt wl

s,t<k v,w<k

= D) Pis @ Gutllow @ TijTuwn

s,t<k w<k

= ZPis@Qst@'f’tﬂ’tl
s,t<k
= 0;U

The proof of U;;U;; = 0;U;; is similar, and we conclude that U is submagic.

(2) This follows from (1), and from the definition of C/(S%).

(3) By using the fact that p, ¢, r are magic, we obtain indeed:

ZU"j:ZZPis@CIst@Tt]’: Zl@qst@)l:k
ij

i s,t<k 5,t<k
Thus the representation 7 factorizes indeed through the algebra in the statement.

(4) This is a well-known analogue of the fact that “the product of random permutations
is a random permutation”, that we already used before. Here is a representation theory
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proof, using Peter-Weyl theory. With P = Proj(Fixz(u®")), we have:

/ U’Llle’Ln]n
ShxSEHxSst

- E /'+ pilsl .. -pinsn /+ qsltl L antn /+ Ttljl ... Ttnjn
st SN SN SN

- E : ‘Piln-inysln-sn P51-~-5n7t1~-~tn Pt1~-~tnaj1-~-jn
st

3
(P)iy.injrm
= Pilmin,jl--.jn

- / Wiygy + - - Wipgn
S+

N

Thus 7 commutes indeed with the Haar functionals, and we are done. U

Observe that, since k is now continuous, 0 < k < N, the algebras C' (gj\r,(k)) constructed
above don’t sum any longer up to the algebra C(S};) itself. Thus, in a certain sense, the
above measures p! encode only a part of the “probabilistic theory” of Si.

We can however formulate a free analogue of Theorem 6.6, as follows:

Theorem 6.14. The measures pf, = law(m(x;)), where 7y is defined as

me s C(SH) = C(Sh x Sf x St

Uij — sz‘s@)qst@?“tj

s,t<k

become free Poisson (st) in the k = sN,l =tN, N — oo limit.

Proof. Observe first that at k = [ = N this corresponds to the fact that the law of the
main character x : Sy — N becomes free Poisson (1), in the N — oo limit. Unlike in the
classical case, the convergence here is stationary, starting from N = 4.

More generally, at & = N this corresponds to the fact that the truncated character
Xt : S — N becomes free Poisson (), in the [ = tN — oo limit.

In general, we can use the same technique, namely the moment method, and the Wein-
garten formula. The variable that we are interested in, x} = m(x;), is given by:

XZZZZ%S@qSt@M

i<l s,t<k
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By raising to the power n and integrating, we obtain the following formula:

/ (L

ShxSitxsh

Z Z / DPiysy - - plnsn/ Qsqty - - qsntn/ Ttyig - Ttpin
S

10 <l 8q,ta<k

By using now the Weingarten formula, the above moment is:

= Z S GaDF5()Wan(a, B) - 6, (5)35() Wik (7. 9) - 6.(3,(6) W (. )

ist a..peNC(n)

= Z Wan (, BYWo (7, 0)Wan (g, p 25 +(8)05(2)0=(¢)d, (i)

a..peNC(n) ist

= D Wan(a, OWar(y, )Wan(e, £) D Savpli)35v(8)5ve (1)

a..peNC(n) ist

= Z WnN<aa 6)Wnk(,77 5>Wn]\/ (5a p) ' l|a\/p|k|ﬂ\/’y|k|5\/€\

a...peNC(n)

Let us examine now the asymptotic regime k = sN,l = tN, N — oo in the statement.
We use here two standard facts from [27], namely the fact that in the N — oo limit the
Gram and Weingarten matrices are concentrated on the diagonal, and the fact that we
have |7V o| < M, with equality when 7 = 0. We obtain, as in [27]:

Cp E Nlal =1 N—lel | flavelplaval Vel
a,7,e€ENC(n)
E N lal=hl=lel+lavel+lavaltyvel | g=lyl+laval+lyvel | tlavel

12

,7,6€NC(n)

Z (st)\al

aeNC(n)

12

We recognize at right the well-known formula for the moments of the free Poisson law
of parameter st, and this finishes the proof. O

As a conclusion, with Theorem 6.6 and Theorem 6.14 in hand, and by using the well-
known fact that Poisson (st) — free Poisson (st) is indeed a liberation, in the sense of

free probability [46], [138], we can now state that Sy — S is a “correct” liberation.

More generally now, we can include as well rotations and quantum rotations in our
picture. Our starting point will be the following definition:
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Definition 6.15. Oy is the semigroup of partial linear isometries of RN,
5]\1 = {T :A— B isometry’A, B C RN}

with the usual composition operation for such maps, namely:
TT:TYA'NB)—T(ANB)

As a first remark, 6N is indeed a semigroup, with respect to the operation in the
statement, and this is best seen in the matrix model picture, as follows:

Proposition 6.16. We have an embedding 5N C My (R), obtained by completing maps
T : A — B into linear maps U : RN — RN by setting Uj,. = 0. Moreover:

(1) This embedding makes On correspond to the set of matriz-theoretic partial isome-
tries, i.e. to the matrices U € My (R) satisfying UU'U = U.

(2) The semigroup operation on 5N corresponds in this way to the semigroup operation
for matriz-theoretic partial isometries, U oV = U(U'U AVVHV.

Proof. All the assertions are elementary. For C' = A, B let I : C C RY be the inclusion,
and Py : RY — C be the projection. The correspondence T <+ U is then given by:

A L B A 4 B
P4 Ig Ia Pp
RYN RYN RN RN
U U

The fact that the composition U o V' is indeed a partial isometry comes from the fact
that the projections U'U and V'V are absorbed when performing the product:

UUUANVVHY - VHUU AVVHU - UUU AVVHV = UUU AVVHV
Thus, we are led to the conclusions in the statement. U

Observe also that we have a set-theoretic embedding O ~ C O, that can be obtained
by suitably adapting the formula in Proposition 6.4 above.

In general, the multiplication formula UoV = U(U'U AVV*)V in Proposition 6.16 (2),
while being quite complicated, is quite unavoidable.

In view of some future liberation purposes, we would need a functional analytic inter-
pretation of it. We have here the following result:
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Proposition 6.17. 0(5]\/) 15 the universal commutative C*-algebra generated by the en-
tries of a N x N matriz u = (u;;) satisfying the relations

u=u |, wulu = u
with comultiplication given by the formula

(Zd X A)U == ulg(plg VAN q12)u13 == nh—>nolo UUt Ce UtU

2n+1 terms
where p = wu',q = u'u and Uyj = D, wip @ uy;.

Proof. The presentation assertion is standard, by using the Gelfand and Stone-Weierstrass
theorems. Let us find now the comultiplication map of C (51\;) We know that this is the
map given by A(u;;) = ® (L), where & : C(On) ® C(Oy) — C(Oy x Oy) is the
canonical isomorphism, and where L;;(U,V) = (U o V),;.

In order to write now this map L;; in tensor product form, we can use the following
well-known formula:

PAQ = lim (PQ)"

n—oo

More precisely, with P = VV*! and Q = U'U, we obtain the following formula:

(UoV); = Z U(P A Q)uVij = nh_g)loz Un(PQ)iaVi
i ki

With ag = k, as, = [, and by expanding the product, we obtain:

(U © V)ZJ - nh_{go E : Uiaopaoal Qamz s Pa2n72a2nlea2n71a2n ‘/:12nj

ag...a2n
= lim § UiaoQalCLQ S Qa2n71a2n ’ Paoal s Pa2n72a2nflva2nj
n—oo
ag...a2n

Now by getting back to A(u;;) = ®1(Ly;), with L;;(U,V) = (U o V);;, we conclude
that we have the following formula, with p = uu’ and q = u'u:

A(UU) = nlggo E UjagGaras - - - Qagn_1a2n ® Pagay - - - Pagn—2a2n—1Waznj

ag...a2n



110 TEO BANICA

Let us expand now both matrix products p = wu! and ¢ = u'u. In terms of the element

Uij = > ) Wik ® ug; in the statement, the sum on the right, say SZ-(;-Z), becomes:

SE = iy (W) ayag - (U0 az, ® (WU )agar - - (WU ) g, sz U,
as

= E UiqoUbyay Ubrag - - - Ubpagy 1 Ubpag, @ Uages Uarer - - - Yagy acn Yagy 100 Uasyj

asbscs

— E Uicl Ublcl Ublc2 s Ubncn Ubn]

bscs
= (UU'...U'U);;
2n+1 terms
Thus we have obtained the second formula in the statement. Regarding now the first
formula, observe that we have U = wujou;3. This gives:

UUt e UtU == (Ulgulg)(U§3U§2) e (u§3u§2)(u12u13)
2n+1 terms

U12(U13U§3)(Ut12u12) e (u13u§3)(u§2u12)u13
= U12P13912 - - - P13G12U13
Now since the product on the right converges in the n — oo limit to ui2(pi3 A q12)u13,
this gives the first formula in the statement as well, and we are done. O

Observe that if we further assume that w is unitary, or that its entries satisfy the
condition u?j = pij (projection) with p = (p;;) magic, then UU'U = U, so the convergence
in the formula of A is stationary, and we obtain A(w;;) = Uj;.

Thus, we can recover in this way the fact that both the inclusions Oy C 5N C My(R)
are semigroup maps, with respect to the usual multiplication of the N x N matrices.

We will be back to this observation, with full details directly in the free case, in Propo-
sition 6.20 below.

Let us construct now the liberations. We have here the following definition:

Definition 6.18. To any N € N we associate the following algebra,
C(Oy) =C" ((Uz‘j)z‘,jzl,...,zv

YR

wi; = uj;, uu' = p, projection)

and we call the underlying object 5;{, space of quantum partial isometries.

As a first observation, due to the presentation results in Proposition 6.17, we have an
inclusions Oy C OF. We have as well a liberated version of Proposition 6.16, or rather
of the last assertion there, the rest being already known.
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These functoriality statements are best summarized as follows:

Proposition 6.19. We have embeddings of compact quantum spaces as follows,

o3, o3,

On
and the compact quantum spaces on the right produce the compact quantum groups on the
left by dividing, at the algebra level, by the relations

On

p=p=q=q =1
where ¢ = u*u and ¢’ = u'u, as in Definition 6.18.

Proof. 1t follows from definitions that we have embeddings as in the statement. Regarding
now the second assertion, in the case of O}, the relations p =p = ¢ = ¢ =1 read:

wul! = aut = vlu =dla =1

We deduce that both u,u’ are unitaries, and so when dividing by these relations we
obtain the quantum group Oy. As for the result regarding the classical versions, this is
clear too, by dividing by the commutation relations ab = ba. U

Let us discuss now the multiplicative structure. We have here:

Proposition 6.20. 6;& has a non-associative multiplication given by

(Zd X A)U = U,lg(plg VAN qlg)ulg == 7115& UUt Ce UtU

2n+1 terms
where p = wut,q = v'u and Uy; = Y, wi @ ug;. The embeddings
6]\[, O]—i\} C 67\}
commute with the multiplications.

Proof. First of all, the equality between the two matrices on the right in the statement
follows as in the proof of Proposition 6.17. Let us call W = (W;;) this matrix.

In order to check that A(u;;) = W;; defines indeed a morphism, we must verify that
W = (W,;) satisfies the conditions in Definition 6.18. We have:
WW'W = uia(pia A qi2)urs - ui5(p13 A qua)ugs - tia(prz A qiz)uns
ur2(p13 A qr2)p13(P13 A qiz)pr2(pis A qi2)uas
= up(pz A q2)uiz =W
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Regarding now the last assertion, for the inclusion Oy C 5} this is clear. For the
inclusion OF; C O this is clear too, because with p = ¢ = 1 we obtain (id ® A)u = U,
which is the usual comultiplication formula for C(OF). O

Let us discuss now probabilistic aspects. We will see that, while our space 5;{, is not a
semigroup, the Bercovici-Pata bijection criterion is satisfied for it.

We use the same method as for §j§, namely a “oc = afvy” type trick. So, pick an
exponent o € {(), +}, set k =", ; u;jul;, and consider the following algebra:

17
cOMy=c(0%)) <k=k>

With this convention, we have the following result:

Proposition 6.21. For any o € {0, +} we have a representation

Tt C(OM) = C(0% x 08 x 0%,)

(i) = Z Dis @ st & Tt

s,t<k

which commutes with the Haar functionals at k = N.

Proof. In the classical case, the first observation is that any partial isometry T': A — B,
with the linear spaces A, B C RY having dimension dim(A) = dim(B) = k, decomposes
as T =UVW, with U/W € Oy and V € Oy:

A r B

w U

R* R*

\4

We conclude that we have a surjection ¢ : Oy X O X On — 65\];) mapping (U, V, W) to
the partial isometry T : W~YR*) — U(R¥) given by T(W ~'z) = U(Vz). By proceeding
now as in the proof of Proposition 6.12 (2) above, we see that the transpose map m = ¢*
is the representation in the statement, and we are done with the classical case.

In the free case, this is a straightforward extension of Proposition 6.13 above. Let us
first check that the matrix U = (U;;) formed by the elements appearing on the right in
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the statement satisfies the partial isometry condition. We have:

(UUtU);; = Z UinUie Uy

kl
— Z Z Z Z DisPivPly ® qstGuwyz & Ttk TwkT 25

kl st<kvw<ky,z<k

— Z Z Dis @ qstQyty= & Tz5

s,t<k y,z<k
= § Dis & qsz & T2
s,2<k

Uy

ES

Since we have as well that u;; = uy; implies U;; = U;

.7, this proves the partial isometry
condition.

Let us ckeck now that the representation that we have just constructed vanishes on the
ideal < kK = k£ >. We have:

Z Uz]UZtJ = Z Z Z DisPiv @ qstGuw & Tt Twj
]

i s, t<kv,w<k

= Z 1®QStQSt®1

s,t<k

= k

Thus we have a representation 7 as in the statement. Finally, the last assertion is
already known, from the proof of Proposition 6.13 (3). O

With the above result in hand, we can construct measures ! as in the discrete case,
pt = law(xk) with x4 = m.(x;), and we have the following result:

Theorem 6.22. Oy — 5;{, is a liberation, in the sense that we have the Bercovici-Pata
bijection for pt, in the k = sN,l =tN, N — oo limit.

Proof. This follows by using standard integration technology, from [26], [43], [72]. More
precisely, the Weingarten computation in the proof of Theorem 6.14 above gives the
following formula, in the k = sN, [ = tN, N — oo limit, where D(n) C P(n) denotes the
set of partitions associated to the quantum group Of, under consideration:

lim ()= 30 (st

N— o o o
°J O3 x08x0% aeD(n)
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On the other hand, we know from [26], [43], [72] that the law of the truncated character
x; is given by the following formula, in the [ = tN, N — oo limit:

li "= ¢l
Nlinoo 0° (Xl> Z
N aeD(n)
We conclude that in the k = sN, [ =tN, N — oo limit, we have the following equality
of distributions:
li L _ li sl
Jim, .= Jim o
Thus, we are led to the conclusion in the statement. O
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7. DE FINETTI THEOREMS

We discuss in this section probabilistic invariance questions with respect to the basic
quantum permutation and rotation groups, namely:

SN Oy

Sn On

In general, given an easy quantum group G = (Gy), there is a natural notion of G-
invariance for a sequence of noncommutative random variables (z;);en, which agrees with
the usual definition when G is a classical group.

Following the classical theory of the De Finetti theorem, then [112], then [76], [77],
and then [34], we will discuss here De Finetti type theorems for the above quantum
permutation and rotation groups that we are interested in.

Let us start by fixing some notations. We first have:

Definition 7.1. Given an easy quantum group Gy C Oy, we consider the free complex
algebra on N wvariables

PN:C<t1,...,tN>
and we construct a coaction of C(Gy) on it, as follows:

ay : Py —>PN®C(GN)
tj — th®uw

Observe that «a is indeed a coaction, in the sense that we have:
(id® A)ay = (ay ® id)ay
(id®e)ay =id
With this notion in hand, we can talk about invariant sequences, as follows:

Definition 7.2. Let (z1,...,zxN) be a sequence of random variables in a noncommutative
probability space (B, ). We say that the sequence is Gy-invariant if the distribution
functional ¢, : Py — C is invariant under the coaction ay,

(pz @id)an(p) = ¢u(p)
for all p € Py. More explicitly, the sequence (1, ...,xy) is G y-invariant if
gO(l'jl . ZL‘jk) = Z QD(J?“ Ce xik)uim . U’ikjk
i1

as an equality in C(Gx), for any k € N and any 1 < ji,...,jx < N.
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In the classical case we recover in this way the usual invariance notion from probability,
as shown by the following result:

Proposition 7.3. In the classical group case, where Gy C Oy, a sequence (x1,...,TN)
is G n-invariant in the above sense if and only if

Qo(le - ‘xjk) - Z Girji - - ‘gikjkgo(l‘il C - Tiy)
in.mig
foreachk € N, 1 <jy,...,5k < N and g = (g;5) € Gn, and this coincides with the usual
notion of G'y-invariance for a sequence of classical random variables.

Proof. This follows indeed by evaluating both sides of the equation in Definition 7.2 at a
given group element g € Gy. O

In the classical De Finetti theorem, the independence occurs after conditioning. Like-
wise the free De Finetti theorem is a statement about freeness with amalgamation.

Both these concepts may be expressed in terms of operator-valued probability theory,
that we will recall now. First, we have the following definition:

Definition 7.4. An operator-valued probability space consists of:

(1) A unital algebra A.
(2) A wunital subalgebra B C A.
(3) An expectation E : A — B, satisfying E(1) = 1 and E(byabs) = by E(a)b,.

Given such an operator-valued probability space, the joint distribution of a family of
variables (z;);c; in the algebra A is by definition the following functional:

Ea: B < (ti)ie] >— B
P — E(P(z))
We refer to [130] and related papers for more on all this, general theory and examples.
Next, we have the following key definition:

Definition 7.5. Let (z;);cr be a family of variables.

(1) These variables are called independent if the algebra < B, (x;);c; > is commutative,
and if iy, ..., € I are distinct and py,...,pr € B <t > then:

Epi(zi,) - pr(w,)) = E(pi(s,)) - .- Epe(zi,))

(2) These variables are called free if for any iy, ..., ix € I such that iy # 1,11, and any
Dis-- Dk € B <t > such that E(p(z;,)) =0, we have:

E(pi(zi,) ... pe(2y,)) =0

In order to deal with invariance questions, we will need the theory of classical and free
cumulants, in this setting. Let us start with the following definition:
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Definition 7.6. Let (A, B, E) be an operator-valued probability space.
(1) A B-functional is a N-linear map p : AN — B such that:
p(boaiby, asby ..., anby) = bop(ay, bias, ..., bx_1an)by
Equivalently, p is a linear map AN — B, where the tensor product is taken with
respect to the natural B — B bimodule structure on A.

(2) Suppose that B is commutative. For k € N let p*® be a B-functional. Given
7 € P(n), we define a B-functional p™ : AN — B by the formula

pay,. .. ay) = H p(V)(ay,...,an)

Ver
where if V.= (i; < ... <) is a block of w then:
o(V)(ar,- . ax) = palaay - . a)

If B is noncommutative, there is no natural order in which to compute the product
appearing in the above formula for p(™.

However, the nesting property of the noncrossing partitions allows for a natural defini-
tion of p(™ for 7 € NC(N), which we now recall:

Definition 7.7. For k € N let p®) : A¥ — B be a B-functional. Given m € NC(N),
define a B-functional p™) - AN — B recursively as follows:

(1) If m = 1y is the partition having one block, define p'™ = pN),
(2) Otherwise, let V.={l+1,...,1+ s} be an interval of 7 and define:
P ay, . an) = p" Nay, .. ap (A, - i), Grpsits - - -5 GN)
Finally, we have the following definition:
Definition 7.8. Let (z;)ier be a family of random variables in A.

(1) The operator-valued classical cumulants c(g) : A¥ — B are the B-functionals de-
fined by the following classical moment-cumulant formula:

E(ai...an) = Z cg)(al,...,a]\/)

TeP(N)

(2) The operator-valued free cumulants mg) : AF — B are the B-functionals defined
by the following free moment-cumulant formula:

E(ay,...,ay) = Z Kg)(al, c..,apy)
TeNC(N)
We refer to [130] for more on the above notions.

We have the following result, which is well-known in the classical case, and which in
the free case is due to Speicher [130]:
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Theorem 7.9. Let (z;)ier a family of random variables in A.

(1) If the algebra < B, (x;)icr > is commutative, then (x;);c; are conditionally inde-
pendent given B if and only if when there are 1 < k,1 < N such that iy, # i;:

C(E'N)(boxilbla o Tigby) =0

(2) The variables (z;);er are free with amalgamation over B if and only if when there
are 1 < k,1 < N such that iy, # i;:

KJ(EN) (bo(lf,;lbl, N ,IZ'NbN) =0

Note that the condition in (1) is equivalent to the statement that if 7 € P(N), then
the following happens, unless m < ker¢:

Cg)(boxilbl, . ,IL‘Z'NbN) =0

Similarly, the condition (2) is equivalent to the statement that if # € NC(INV), then the
following happens, unless m < ker:

I{g)(boxilbl, Ce ,ZEZ'NbN) =0
Observe also that in the case B = C we obtain the usual notions of independence and

freeness. As before, we refer to [122], [130] for more on all this.

Stronger characterizations of the joint distribution of (z;);c; can be given by specifying
what types of partitions may contribute nonzero cumulants.

To be more precise, we have here the following result:

Theorem 7.10. Let (x;);er be a family of random variables in A.
(1) Suppose that < B, (x;)ic; > is commutative. The B-valued joint distribution of
(x;)ier is independent for D = P and independent centered Gaussian for D = Py
if and only if, for any m € P(N), unless m € D(N) and m < keri:

cg)(boxilbl, . ,IE,‘NbN) =0

(2) The B-valued joint distribution of (x;)er is freely independent for D = NC' and
freely independent centered semicircular for D = NCs if and only if, for any
m € NC(N), unlessm € D(N) and m < keri:
Kg)(bol‘ilbl, Ce ,[L’Z‘NbN) =0

Proof. These results are well-known, coming from the definition of the classical and free
cumulants, in the present setting, via some combinatorics. For the detailed proofs, exam-
ples and comments on all this, we refer to [122], [130]. O

Finally, here is one more basic result that we will need:
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Theorem 7.11. Let (x;);e; be a family of random variables. Define the B-valued moment
functionals E™N) by the following formula:

EM(ay,...,ax) = E(a;y ...ay)

(1) If B is commutative, then for any o € P(N) and ai,...,ay € A we have:

cg)(al,...,a]\/): Z /LP(N)<7T,O')E(W)<CL1,...,CLN)
T€P(N),m<c
(2) For any o € NC(N) and ay,...,ay € A we have:
mg)(al,...,aN) = Z ,uNC(N)(W,J)E(”)(al,...,aN)

TeNC(N),m<o

Proof. This follows indeed from the Mobius inversion formula. O

We can now prove a reverse De Finetti theorem, as follows:

Theorem 7.12. Let (x1,...,xx) be a sequence in A.
(1) If x1,...,xN are freely independent and identically distributed with amalgamation
over B, then the sequence is Sy;-invariant.
(2) If 1, ...,xN are freely independent and identically distributed with amalgamation

over B, and have centered semicircular distributions with respect to E, then the
sequence is Oy -invariant.

(3) If < B,x1,...,xN > is commutative and x, . ..,xy are conditionally independent
and identically distributed given B, then the sequence is Sy-invariant.
(4) If < xy1,...,xn > is commutative and x1,...,xx are conditionally independent

and identically distributed given B, and have centered Gaussian distributions with
respect to E, then the sequence is Oy -invariant.

Proof. Suppose that the joint distribution of (x1,...,2zy) satisfies one of the conditions
in the statement, and let D be the partition family associated to the corresponding easy
quantum group. We have then the following computation:

Z @(xh e "rik>ui1j1 oo Uiy gy,

010k

= Z ¢<E<xj1 .- 'xjk))uiljl e Ui gy,

i1k

= Z Z gp( gr)(xl,...,xl))uiljl...uikjk

i1...0 m<keri

= Z @({g)(xl,...,xﬁ) Z Wiygy - -« Wig g

weD(k) i,m<keri
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Here £ denotes the free and classical cumulants in the cases (1,2) and (3,4) respectively.
It follows from a direct computation that if 7 € D(k) then:

Z 1 if # <kery
e hIk 0 otherwise

i,m<keri
Applying this above, we find:

Z 90('771'1 . 'xik)uiljl s Uipg = Z 90(5g)(x1> B ,1‘1))

11yl m<ker j
= W(le - 'Q:J'k>
This completes the proof. U

We now begin the technical preparations for our approximation result.

We will use the following simple fact:

Proposition 7.13. Suppose that a sequence (z1,...,xN) is Gy-invariant. Then there is
a right coaction

&N : MN(C) — MN<(C) & LOO(GN)
determined by the following formula:
ay(p(r)) = (ev: @ my)an(p)
Moreover, the fized point algebra of ay is the Gn-invariant subalgebra By .

Proof. This follows indeed after identifying the GNS representation of Py for the state
¢, with the morphism ev, : Py — M, (C). O

There is a natural conditional expectation given by integrating the coaction «, with
respect to the Haar state:
EN : MN<C) — BN

En(m) = (z’d@ / ) an(m)

The point now is that by using the Weingarten calculus, we can give a simple combi-
natorial formula for the moment functionals with respect to Ey, in the case where G is
one of the easy quantum groups under consideration. To be more precise, we have:

Proposition 7.14. Suppose that (xy,...,xn) is Gy-invariant, and that either Gy =
0%, 8%, or that Gy = Oy, Sy and (1, ...,xx) commute. We have then

- 1
E](V)(boxlbl, . ,Ilbk) = W Z bod?il e bl’zkbk

mw<keri

for any 7 in the partition category D(k) for Gy, and any by, ..., by € By.
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Proof. We prove this by induction on the number of blocks of 7. First suppose that 7 = 1,
is the partition with only one block. Then:

E](\}k)(bol'lbl, ce ,xlbk) = EN(boiL'l Ce 1’1[%)
= Z boxil...xikbk/uill...uikl
010k

Here we have used the fact that by, ..., b are fixed by the coaction a,. Applying the
Weingarten integration formula, we have:

EN(boxl...xlbk) = Zboxuxlkbk Z ZWkN(W,J)

7411k ﬂ'SkeI‘i g
= E E WkN 7T O') E bol’il xzkbk
weD(k) \ceD(k) i,m<keri

Now observe that for any o € D(k) we have:
Grn(o,1x) = NVl = N
It follows that for any 7 € D(k), we have:
N Z Win(m,0) = Z Win(m,0)Grn (o, 1)

ceD(k) oeD(k)
57r1k
Applying this above, we find, as desired:

1
EN(bo.’L'l...Zlflbk) = Z N(Swlk Z b()I‘“,Ilkbk

weD(k) i,m<keri

1 N
Nz':l

If the condition (3) or (4) is satisfied, then the general case follows from:

B (bowiby, ... wiby) = by b [[ En(V) (@1, 20)

Ver

The one thing we must check here is that if 7 € D(k) and V is a block of 7 with s
elements, then 15 € D(s). This is easily verified, in each case.

Suppose now that the condition (1) or (2) is satisfied. Let m € D(k). Since 7 is
noncrossing, m contains an interval V.={l+1,...,l4+ s+ 1}. We then have:

E](\;r)(bollflbl, c. 7$1bk) = E](\;riv)(bol'lbl, Ce 7En(x1bl+1 R $1bl+5)$1, Ce 7x1bk>
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To apply induction, we must check that 7 —V € D(k —s) and 15 € D(s). Indeed, this
is easily verified for NC, NC5. Applying induction, we have:

EJ(\;r)(bOxlbla < 7$1bk)

1
= Z bol’il . bl (En(ZL’le_l .. -«lel—i-s)) JIZ'HS e xzkbk

Nlxl—1

i,m—V <keri
1 1 ¢
= W Z bOxil e bl N Z Z‘l‘b“_l e bxins ZL’iHS e Izkbk
i,m—V <keri i=1
1
N‘ | i,m<keri
This completes the proof. O

In order to advance, we will need some standard Weingarten estimates for our quantum
groups, which have their own interest, and that we will discuss now.

Regarding the symmetric group Sy, the situation here is very simple, as follows:

Proposition 7.15. For Sy the Weingarten function is given by

(N = |7])!

WkN(W,J) = Z HJ(T»?T)M(TJ) NI

r<mAc
and satisfies the folowing estimate,
Win(m,0) = Nl (u(n Ao, m)u(n Ao,o) + O(NY)
with p being the Mdébius function of P(k).
Proof. The first assertion follows from the Weingarten formula, namely:
/ Uiyt = S 0(0)8, ()W (, )
SN moeP (k)

Indeed, in this formula the integrals on the left are known, from the explicit integration
formula over Sy that we established in section 5, namely:

/ Ginjs -+ - Gini, = =R kerid = ker
SN I 0 otherwise

But this allows the computation of the right term, via the Mébius inversion formula,
explained in section 2. As for the second assertion, this follows from the first one. O
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The above result is of course something very special, coming from the fact that the
integration over Sy is something very simple.

Regarding now the quantum group Sj;, that we are particularly interested in, let us
begin with some explicit computations.

We first have the following simple and final result at k = 2, 3, directly in terms of the
quantum group integrals:

Proposition 7.16. At k = 2,3 we have the following estimate:

0 (keri # ker j)
WUiygy - - - Ugpgy, = —| ker | . .
ot ~ N (ker i = ker j)

N

Proof. Since at k < 3 we have NC(k) = P(k), the Weingarten integration formulae for
S and Sy coincide, and we obtain, by using the above formula for Sy:

/+ Wiygy - - - Uiggy, = / Wiygy - - - Uig gy,
S SN

N
(N — [keri])!
= 5ker iker j N

But this gives the formula in the statement. U

In general now, the idea will be that of working out a “master estimate” for the Wein-
garten function, as above. Before starting here, let us record the formulae at £ = 2, 3,
which will be useful, as illustrations. At k = 2, with indices ||, M, and with the convention
that ~ means componentwise dominant term, we have:

N2 _N—2
Won ~ (_N—Q N1 )
At k = 3 now, with indices |||, |I7,7], 1T, and same meaning for ~, we have:

N3 N3 —_N3 _N3 2N73
-N3% N2 N3 N3 N2
WSN ~ _N—S N—3 N—2 N—3 _N—2
-N3 N3 N3 N2 N2
2N3 —-N2 —-N2 —_N2 NI

These formulae follow indeed from the plain formulae for Wiy at k = 2,3 from [20],
after rearranging the matrix indices as above. Observe in particular that we have the
following formula, which will be of interest in what follows:

WgN(‘ﬂ, HD ~ N_3

In order to deal now with the general case, let us start with:
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Proposition 7.17. The following happen, regarding the partitions in P(k):
(1) 7|+ |o| < |7 Vo|+|rAal.
(2) [rVT|+|TVaol <|rVoa|l+]|T|
(3) d(m,0) = %ﬂ — |7 Vol is a distance.

Proof. All this is well-known, the idea being as follows:
(1)This is well-known, coming from the fact that P(k) is a semi-modular lattice.
(2) This follows from (1), as explained for instance in [34].

(3) This follows from (2), which says that the following holds:
[Tl +lol
2

7+ 17l
2
7| + o]
- 2
Thus, we obtain the triangle inequality:
d(x,7) + d(7,0) > d(r,0)

As for the other distance conditions, these are all clear. U

d(m, ) + d(t,0)

- d(ﬂ'7 U) + ‘T’

Actually in what follows we will only need (3) in the above statement. For more on
this, and on the geometry and combinatorics of partitions, see [122].

As a main result now regarding the Weingarten function, we have:

Theorem 7.18. The Weingarten function Win has a series expansion in N !,

Wiy (1, 0) = NImveol=irl=lo] Z K,(m,o0)N79
g=0
where the objects on the right are defined as follows:
(1) A path from w to o is a sequence p=[r =190 # 11 # ... # 7 = 7).
(2) The signature of such a path is + when r is even, and — when r is odd.
(3) The geodesicity defect of such a path is g(p) = > i_, d(1i_1,7:) — d(7,0).
(4) K, counts the signed paths from m to o, with geodesicity defect g.

Proof. The Gram matrix Gy (7,0) = N™l can be written as follows:

Gin(m,o) = N5 Nlmvel=5 plg
= N‘%'N—d(w,g)N@
x|

Consider now the diagonal matrix A = diag(N 2 ), and let us set as well:

0 (r=0)
H<7T, U) = {Nd(ﬂ,a) (71' U)

+
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In terms of these two matrices, the above formula simply reads:
Gy = A(1+ H)A
Thus, the Weingarten matrix is given by the following formula:
Wiy =AY 1+ H) AT

In order to compute the inverse of 1 + H, consider the set P.(m, o) of length r paths
between 7 and 0. The powers of H are then given by:

H'(m,0) = Z H(rg,m) ... H(Tro1, 1)
pEPy(m,0)
=Y Nodmee0)
pE P, (m,0)
Thus by using the formula (1+ H)™'=1— H + H> — H® + ... we obtain:
1+ H) H(m0) = ) (-1)H(70)

=0

= N_d(”"’)i Z (=1)"N—9®)

r=0 peP,(m,o)

<

It follows that the Weingarten matrix is given by:
Win(m,0) = A7(m)(1+ H) ™ (r,0)A7 (o)

_ N5 --dme Z (—1)" N—9®)

?o.)

Nﬂ\/ﬂlﬂllai Z (—=1)"N—9@

r=0 peP,(m,0)

ﬁ
g
3
m
¥
3

Now by rearranging the various terms of the double sum according to their geodesicity
defect g = g(p), this gives the formula in the statement. O

As an illustration, we have the following explicit estimates:

Theorem 7.19. Consider an easy quantum group G = (Gy), coming from a category of
partitions D = (D(k)). For any m < o we have the estimate

Wi (r,0) = N (u(m, 0) + O(N))
and for m, o arbitrary we have
Win (7, 0) = O(lerval—\w\—lal)
with p being the Mdbius function of D(k).
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Proof. We have two assertions here, the idea being as follows:
(1) The first estimate is clear from Theorem 7.18.

(2) In the case m < o it is known that K, coincides with the M&bius function of
NC(k), as explained for instance in [34], so we obtain once again from Theorem 7.18 the
fine estimate as well, namely:

Win(m, o) = N~ (u(m,0) + O(N7Y)) Vr <o
Observe that, by symmetry of Wy, we obtain as well the following estimate:
Win(m, o) = N7l (u(o, 7) + O(N7Y)) Vr>o
Thus, we are led to the conclusions in the statement. Il

When 7,0 are not comparable by <, the situation is quite unclear. The simplest
example appears at k = 3, where we have the following formula, which is elementary:

Wan (|7, 1)) ~ N2
Observe that the exponent —3 is precisely the dominant one, because:
‘mvm‘—‘m’—’m‘:1—2—2:—3

As for the corresponding coefficient, Ky(|M,M|) = 1, this is definitely not the Mobius
function, which vanishes for partitions which are not comparable by <. According to
Theorem 7.18, this is rather the number of signed geodesic paths from |1 to M.

In relation to this, observe that geometrically, NC(5) consists of the partitions |1, ], 1]l
which form an equilateral triangle with edges worth 1, and then the partitions |||, M1, which
are at distance 1 apart, and each at distance 1/2 from each of the vertices of the triangle.

It is not exactly obvious how to recover the formula Ky(|M,M]) = 1 from this.

Finally, we will need as well the following result:

Proposition 7.20. We have the following results:

(1) [fD = NC, NCQ, then ,uD(k)(ﬂ',O') = ,uNc(k)(ﬂ',O').
(2) [fD = P, P2 then ,uD(k)(TF,O'> = Mp(k)(ﬂ',a').

Proof. Let Q = NC, P according to the cases (1,2). It is easy to see in each case that D(k)
is closed under taking intervals in Q(k), i.e., if m,m € D(k), 0 € Q(k) and m < 0 < 9
then o € D(k). The result now follows from the definition of the Mobius function. O

With all these combinatorial ingredients in hand, we are now prepared to prove an
approximation result for finite sequences, from [34], as follows:
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Theorem 7.21. Suppose that (x1,...,zy) is Gy-invariant, and that Gy = O, Sy, or
that Gy = On, Sy and (x4, ...,xN) commute. Let (y1,...,yn) be a sequence of By-valued
random variables with By-valued joint distribution determined as follows:

(1) G = O™ : Free semicircular, centered with same variance as x.

(2) G = S*: Freely independent, y; has same distribution as x.

(3) G = O: Independent Gaussian, centered with same variance as x.
(4) G = S: Independent, y; has same distribution as x;.

Then if 1 < j1,...,5k < N and by, ...,b, € By, we have the following estimate,
Ci(G)
N

with Ci(G) being a constant depending only on k and G.

[|En(boxj, - .. 25,0r) — E(boy;, - - - yj.b0) || < 1| |¥1Bol | - - - |1bx ]|

Proof. First we note that it suffices to prove the result for N sufficiently large. We will
assume that N is sufficiently large as for the Gram matrix Gy to be invertible.

Let 1 <j1,....5k < N and by, ...,b, € By. We have:
EN<b0$j1 c. Z'kak)

= E bol‘il .. -xikbk / Wy gy« - - Uiy gy,

110k

= Z bofL‘il R l’lkbk Z Z WkN('ﬂ', 0)

11...0k w<keri o<kerj
= Z ZWkN(W,U) Z boxllxlkbk
o<kerj m i,m<keri
On the other hand, it follows from the assumptions on (y,...,yy) and the various

moment-cumulant formulae, that we have:
E(boyjl e y]kbk) = Z §<E?I\), (bol’lbl, e ,Ilbk)
o<kerj
Here, and in what follows, £ are the relevant free or classical cumulants:

The right hand side can be expanded, via Md&bius inversion, in terms of expectation
functionals as follows, with 7 being a partition in NC| P according to the cases (1,2) or
(3,4), and with 7 < o for some o € D(k):

E](\;r) (boﬂ')lbl, e ,l’lbk)
Now if m ¢ D(k) then we claim that this expectation functional is zero.

Indeed this is only possible if D = NC5, P, and 7 has a block with an odd number of
legs. But it is easy to see that in these cases x; has an even distribution with respect to
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En, and therefore we have, as claimed:

E](\;r) (boxlbl, c. ,l’lbk) =0

This observation allows to to rewrite the above equation as:

E(boyjl . y]kbk Z Z ,UD (bo.ﬁClbl, Ce ,l’lbk)
o<kerjn<o
We therefore obtain the following formula:
E(boyj, - - - y;,br) = Z ZMD (m,0) NIl Z boxi, . .. x;, by

o<kerjn<o i,m<keri

Comparing these two equations, we find that:
EN<bOLL'j1 Ce a:]kbk) — E(boyjl . y]kbk)

Z Z (Wan(m,0) = ppg (7 |7r| Z boTiy - - - iy, bk

o<kerj m i,m<keri

Now since z1, ..., 2y are identically distributed with respect to the faithful state ¢, it
follows that these variables have the same norm. Therefore, for any = € D(k):

Z bol’il R xzkbk

i,m<keri

< Nl | Heol - . 114

Combining this with the former equation, we obtain:
|En(boj, - j,be) — E(boyj, - - yj,.bi)l|
< 0D Wil )N — g (, )| el [F]1bol | - [ [bl|

o<kerj m

Let us set now:

Cr(G) = sup N x Z {WkN T, 0)NI" |—MD(k)(7T 0)‘

NeN o,meD(k)

But this is finite by our main estimate, which completes the proof. O

We will make use of the inclusions Gy C Gy for N < M, which correspond to the
Hopf algebra morphisms wy ps : C(Gpr) — C(Gy) determined by:

() = o HISij SN
N (i 0;; if max(i,j) > N

We begin by extending the notion of G y-invariance to infinite sequences:
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Definition 7.22. Let (x;);en be a sequence in a noncommutative probability space (A, p).
We say that (z;)ien is G-invariant if
(x1,...,2N)
is G y-tnvariant for each N € N.

In other words, the condition is that the joint distribution functional of (z1,...,xy)
should be invariant under the following action, for each n € N:

apN : PN — PN ®C(GN)

It will be convenient to extend these actions to Py, = C < t;]i € N >, by defining
BN : Poo = Poo @ C(G) to be the unique unital morphism such that:

SN ti@uy if1<j<N
An(ty) = L
tj®1 1fj>N

It is clear that Sy is an action of Gy. Also, we have the following relations, where
tN Py — Ps is the natural inclusion:

(td @ wn,m)Bym = B
(LN X id)OéN = BNLN
By using these compatibilities, we have the following result:

Proposition 7.23. A a sequence (x;);en is G-invariant if and only if the joint distribution
functional

Yzt Poo = C
is invariant under By for each N € N.

Proof. This is clear indeed from the above discussion. O

In what follows (z;);en Will be a sequence of self-adjoint random variables in a von
Neumann algebra (M, ¢). We will assume that M is generated by (z;)en.

We denote by L?(M, ¢) the corresponding GNS Hilbert space, with inner product which
is by definition as follows:
< my,my >= p(myms)
Also, the strong topology on M will be taken by definition with respect to the faithful
representation on L?(M, ).

We let P2~ be the fixed point algebra of the action By, and we set:
"
By = {p()|p e P2}
We have then the following formula:

(id ® wn,N4+1)Bn+1 = By
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Thus we have an inclusion as follows, for any n > 1:
By C By
We then define the G-invariant subalgebra by:

B:ﬂBN

N>1

With these conventions, we have the following result:

Proposition 7.24. If an infinite sequence (x;);en is G-invariant, then for each N € N
there is a right coaction

An M — M® L™(Gy)
determined by the following formula, for any p € Pso:
B (p(x)) = (ev, @ Ty)Bn(p)
The fized point algebra of EN s then By.
Proof. This is indeed clear from definitions. O

We have as well the following result, which is clear as well:

Proposition 7.25. In the above context, for each N € N there is then a p-preserving
conditional expectation En : M — By given by integrating the action By :

Bxtm) = (o [} Gv(m)

By taking the limit as N — oo, we obtain a @-preserving conditional expectation onto the
G-invariant subalgebra.

Proof. Once again, this is clear from definitions. O
Next, we have the following result:

Proposition 7.26. Suppose that (z;)ien is G-invariant. Then:

(1) For any m € M, the sequence En(m) converges in 2-norm and with respect to the
strong topology to a limit E(m) € B.

(2) E is a p-preserving conditional expectation of M onto B.

(3) For m € NC(k) and my,...,my € M we have, with strong convergence:

EM(my®...0m;) = li_>m E](\T,r)(ml ® ... mg)

Proof. This is again clear from definitions. Note that (1) is just a simple noncommutative
reversed martingale convergence theorem. U

We are now prepared to state and prove the main theorem, from [34]:
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Theorem 7.27. Let (x;)ien be a G-invariant sequence of self-adjoint random variables
in (M, p), and assume that M =< (x;);eny >. Then there is a subalgebra B C M and a
p-preserving conditional expectation E : M — B such that:

(1) If G = (Sn), then (z;)ien are conditionally independent and identically distributed
given B.

(2) If G = (S%), then (z;)ien are freely independent and identically distributed with
amalgamation over B.

(3) If G = (Op), then (z;)ien are conditionally independent, and have Gaussian dis-
tributions with mean zero and common variance, given B.

(4) If G = (O%), then (z;)ien form a B-valued free semicircular family with mean zero
and common variance.

Proof. Let j1,...,71 € Nand by,...,by € B. We have:

E(bol’jl Ce ijkbk) = ]\}Loo E’rL(bOle Ce I'jkbk)
= ]\}eréo Z Z Win(m, o) Z boxi, - .. i, by
o<kerj w i,m<keri
= ]\}1_{1(1)0 Z Z k) (T, U)N_"T| Z boxi, . .. x;, by,
o<kerj m<o i,m<keri

Let us recall now from the above that we have the following compatibility formula,
where Ty : W*(x1,...,2x) — M is the obvious inclusion, and ay is as before:

(iv ®@id)an = Bnin
By using this, and the above cumulant results, we have:

E(b(]le .. l’]kbk) = ]\}lilloo Z Z MD(k) (71'7 O')EJ(\?r)(bglL'lbl, C ,l’lbk)

o<kerj <o

We therefore obtain the following formula:

E(boxj, .- wjbi) = Y ppgey(m,0)E@ (boziby, . .., w1by)
o<kerj <o
We can replace the sum of expectation functionals by cumulants to obtain:
E(bol’jl . l’]kbk) = Z gg)(bol’lbl, Ce ,JIlbk)
o<kerj

Here and in what follows & denotes the relevant free or classical cumulants, depending
on the quantum group that we are dealing with, free or classical.
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Now since the cumulants are determined by the moment-cumulant formulae, we find
that we have the following formula:

fg)(bol‘lbh .., x1b,) if o € D(k) and 0 < kerj
0 otherwise

gg)(bgl'jlbl, Ce ,[L’jkbk) = {

The result then follows from the characterizations of these joint distributions in terms
of cumulants. 0

We refer to [34] and related papers for more on the above.
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8. HYPERGEOMETRIC LAWS

We have seen so far that, in what concerns the probability theory on classical or quan-
tum groups, the very first problem which appears, and which is of key importance, is that
of computing the laws of characters, and more generally of truncated characters:

[tN]

Xt = Z U
i=1

For the quantum rotation and permutation groups, this problem can be investigated
by using easiness and combinatorics, and satisfactory results in this sense, which are in
tune with free probability theory, can be obtained in the N — oo limit.

That was for the basic theory. In this section we discuss more advanced aspects,
regarding the case where N € N is fixed, or variables which are more general than the
truncated characters y;, or regarding both, more advanced variables at fixed N € N. Let
us first discuss the case of Oy. In certain situations, we can use:

Proposition 8.1. Fach row of coordinates on Oy has the same joint distribution as the
sequence of coordinates on the real sphere SH]{_I,

(uﬂ, e ,uiN) ~ (351, P ,xN)
and the same happens for the columns.

Proof. Given an index i € {1,..., N}, our claim is that we have an embedding as follows,
which commutes with the corresponding uniform integration functionals:

C(Sg_l) C C(ON) , Z; — Wjj

In order to prove this claim, consider the subalgebra C'(S) C C(Oy) generated by the
variables w;;, with ¢ being fixed, and with j = 1,..., N. Since these N variables are real,
and their squares sum up to 1, we have a quotient map, as follows:

C(Sﬂ]{y_l) — C(S) C C(ON) y Xy — U5

Now observe that S C Sg ~! must be an isomorphism, because by Gram-Schmidt we
can complete any vector of Sﬂg ~!into an orthogonal matrix. Thus, the above composition
of morphisms is an embedding. As for the commutation with the uniform integration
functionals, this follows from the fact that we have an action Oy ™~ S. Il

Motivated by the above, let us compute now the hyperspherical laws at fixed values of
N € N. Let us begin with a full discussion in the classical case. At N = 2 the sphere
is the unit circle T, and with z = e the coordinates are cost,sint. The integrals of the
arbitrary products of such coordinates can be computed as follows:
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Theorem 8.2. We have the following formula,

/2 e(p)e(a) Nl
/ cosP tsin?tdt = <Z> N
0 2 (p+q+ 1N

where e(p) = 1 if p is even, and £(p) = 0 if p is odd, and where
m!l=(m—1)(m—3)(m—2>5)...
with the product ending at 2 if m is odd, and ending at 1 if m is even.

Proof. This is something known to everyone loving and teaching calculus. We compute
the integral in the statement I, by partial integration. For this purpose, we use:

(cosPtsint) = pcosP ' t(—sint)sint + cos’ t cost
= pcosP™ t —pcosP 1t + cosPT ¢
= (p+1)cos®™t —pcosP 't

By integrating between 0 and 7/2, we obtain the following formula:
(p+ Dlppr = ply

Thus we can compute I, by recurrence, and we obtain:

p—1
I, = T p—2
_p=lp=3,
p p—2"

p—1 p—3 p—25
p p—2 p—4 7"

p!!
(p+nuh%@

Together with Iy = 7 and I; = 1, which are both clear, we obtain:

I _ (71')5(13) p!!
P2 (p+ 1!

Summarizing, we have proved the following formula, with one equality coming from the
above computation, and with the other equality coming from this, via t = 7 — s:

/2 w/2 e(p) I
/ cosP tdt = / sin’ tdt = <E> _ b
0 0 2 (p+ 1!
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In relation with the formula in the statement, we are therefore done with the case p = 0
or ¢ = 0. Let us investigate now the general case. We must compute:

1

w/2
g = / cos? tsin? ¢t dt
0
In order to do the partial integration, observe that we have:

(cos tsin?t) = pcosP ! t(—sint)sin?t
+ cosPt-gsin? ' tcost

= —pcosP ttsin?t 4+ gcosPT tsin? Tt
By integrating between 0 and /2, we obtain, for p,q > 0:

Pl 1gv1 = qlpr19-1

Thus, we can compute I, by recurrence. When ¢ is even we have:

qg—1
Ly, = mIpH,H
q—1 ¢-3
T op+1 p4a et

g—1 ¢—3 q—5I
p+1 p+3 p+5 6,46

gt
(p+ o ot

But the last term was already computed above, and we obtain the result:

N
Ipq ﬁ[p-&-q
pllg!t  ym\eta)  (p+ g)!!
S Graia) Grerm
m\ £(P)e(a) pllg!!
=G Grom

Observe that this gives the result for p even as well, by symmetry. Indeed, we have
I,,; = Iy, by using the following change of variables:
T

t=—-—s
2
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In the remaining case now, where both p, g are odd, we can use once again the formula
Plp—14+1 = qlpt1,4-1 established above, and the recurrence goes as follows:

q—1
Ly, = m[p—f—lq—z
g—1 g-—3

] _
p+1 p+3 p+4,q—4
g—1 q—3 q—5]
p+1 p+3 p+5b PHoa0

pllig!
- (p i q— 1)” IerQ*l,l

In order to compute the last term, observe that we have:

/2
Iy, = / cosP tsintdt
0

1 /2
= —>=3 (cosP™ t) dt
p 0

1

p+1
Thus, we can finish our computation in the case p, g odd, as follows:

B plligh
Iy = CEY R Ipiq-11
pllg! 1
P+qg—DI ptgq
pllg!!
(p+q+ 1
Thus, we obtain the formula in the statement, the exponent of /2 appearing there
being £(p)e(q) = 0-0 = 0 in the present case, and this finishes the proof. O

More generally, we can compute arbitrary polynomial integrals, over the spheres of
arbitrary dimension, the result being is as follows:

Theorem 8.3. The spherical integral of x;, ...x; vanishes, unless each a € {1,...,N}
appears an even number of times in the sequence iy, . ..,ix. We have
N — DU !
/ :cl-l...:cikd:v:( ) N
gy -1 (N + %, — !

with 1, being this number of occurrences.
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Proof. We can restrict attention to the case [, € 2N, since the other integrals vanish. The
integral in the statement can be written in spherical coordinates, as follows:

N w/2 /2
[:—/ / l’lll...l‘ljifvjdtl...dt]v_l
14 0 0

In this formula V is the volume of the sphere, J is the Jacobian, and the 2V factor
comes from the restriction to the 1/2% part of the sphere where all the coordinates are
positive. The normalization constant in front of the integral is:

2N 2N N 2 [N/2]
-2 rlZx1)=(Z2 N -1
V. NzN/2 (2 * ) <7T> ( )

As for the unnormalized integral, this is given by:

w/2 /2
I'= / / (costy)™(sint; costy)™
0 0

(sintysinty...sinty_gcosty_1) ™

(sintysinty...sinty_psinty_1)™
SiIlN_2 tl SiDN_3 tg e Sin2 tN_g sin tN_g
dty...dty_4

By rearranging the terms, we obtain:

w/2
I = / coslt ¢y sin®2 o HINEN=2 ¢ qp
0

=]

/ cos!? ty sinb3 TN EN=3 ¢ ¢,

w/2
w/2
/ cos!N=2 ¢t o sin N 1IN L o dEn
0
/2

/ COSZN*1 tN—l sinlN tN—l dtN_l
0
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Now by using the formula at N = 2, from Theorem 8.2, this gives:
IMN(le+ ... +In+ N =2)I! rm\c(N=-2)
T (it FIv+E N (§>
N3+ ...+ Iy + N =3l rr\e(N=3)
(lb+...+ly+ N =2)! (‘)

_[/

2

IN—o M (It + v+ DI e
(In—a+Iv_1 + Iy +2)!! <§>
In_1 M 7\ £(0)
(In_1 + 1y + 1) (5)
Now observe that the various double factorials multiply up to quantity in the statement,
modulo a (N — 1)!! factor, and that the 7 factors multiply up to F' = (%)[N/z]. Thus by
multiplying with the normalization constant, we obtain the result. O

In connection now with our probabilistic questions, we have:

Theorem 8.4. The even moments of the hyperspherical variables are

N — DIk
kd :(—
/s;gl‘”’ W rE-D

and the variables vy; = [L’Z/\/N become normal and independent with N — oo.

Proof. The moment formula in the statement follows from Theorem 8.3. Now observe

that with V — oo we have the following estimate:

N— 1)
bgy = VDR
/%lel YT WNrk—n "

~ NF/2 x gl
= N*2Mi(g)
Thus, we have z;/ VN ~ g1, as claimed. Finally, the independence assertion follows as
well from the formula in Theorem 8.3, via standard probability theory. U

In the case of the free sphere now, from [37], the computations are substantially more
complicated. Let us start with the following result, that we know from section 5:

Theorem 8.5. For the free sphere S{{;l, the rescaled coordinates

Yi = VNz;

become semicircular and free, in the N — oo limit.
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Proof. As explained in section 5 above, the Weingarten formula for the free sphere, to-
gether with the standard fact that the Gram matrix, and hence the Weingarten matrix
too, is asymptotically diagonal, gives the following estimate:

/SDQY Tiy ... T, de =~ N Z )(50(21,...,%)

1
»+ ceNCa(k

With this formula in hand, we can compute the asymptotic moments of each coordinate
x;. Indeed, by setting 7; = ... = 1 = i, all Kronecker symbols are 1, and we obtain:

/ a¥ de ~ N7F2|NCy (k)|
Str
Thus the rescaled coordinates y; = v/Nz; become semicircular in the N — oo limit, as

claimed. As for the asymptotic freeness result, this follows as well from the above general
joint moment estimate, via standard free probability theory. See [26]. O

The problem now, which is highly non-trivial, is that of computing the moments of the
coordinates of the free sphere at fixed values of N € N. The answer here, from [30], based
on advanced quantum group and calculus techniques, is as follows:

Theorem 8.6. The moments of the free hyperspherical law are given by

I+1
1 g+1 1 2042 T
2l r
dr = . . -1
/sugy TN -1 ZHT_ZH( ) (l+r+1) 1+q

-1
,+

where q € [—1,0) 4s such that ¢+ ¢ ' = —N.

Proof. The idea is that z; € C(Sﬂgll) has the same law as u1; € C(OY;), which has the
same law as a certain variable w € C(SUJ), which can be in turn modelled by an explicit
operator on [2(N), whose law can be computed by using advanced calculus.

Let us first explain the relation between O and SUy. To any matrix F € GLy(R)
satisfying F'2 = 1 we associate the following universal algebra:

C(Op) =C* <(Uz‘j)i,j:1 ..... N

Observe that O;FN = O};. In general, the above algebra satisfies Woronowicz’s general-
ized axioms in [147], which do not include the strong antipode axiom S? = id.

u=FuF = unitary)

At N = 2, up to a trivial equivalence relation on the matrices F', and on the quantum
groups O}, we can assume that F is as follows, with ¢ € [—1,0):

"= (1/3—7 Vo__q)
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Our claim is that for this matrix we have:
Of = SUJ

Indeed, the relations © = F'uF tell us that u must be of the following special form:

()
v«

Thus C'(O}) is the universal algebra generated by two elements «, vy, with the relations
making the above matrix v unitary. But these unitarity conditions are:

ay = gqya
ay' =q7a
="

afa+y'y=1

ad” +¢’yy =1
We recognize here the relations in [147] defining the algebra C'(SUJ), and it follows
that we have an isomorphism of Hopf C*-algebras:

C(0F) =~ C(SUY)

Now back to the general case, let us try to understand the integration over Of.. Given
m € NCy(2k) and i = (iy, ..., 142), We set:

oy (i) = HFislisr
sem

Here the product is over all strings s = {s; ™~ s, } of 7. Our claim is that the following
family of vectors, with 7 € NCy(2k), spans the space of fixed vectors of u®?*:

fﬂ = 255(2)6,1 ®...Q 6i2k

Indeed, having & fixed by u®? is equivalent to assuming that v = FuF is unitary.
By using now the above vectors, we obtain the following Weingarten formula:

[ it = S OO Wi ()

F o

With these preliminaries in hand, let us start the computation. Let N € N, and consider
the number ¢ € [—1,0) satisfying:
g+q'=-N
Our claim is that we have:

/090(\/N7+2uij)=/ plat+a” +v—q7")

N SU3
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Indeed, the moments of the variable on the left are given by:

| =3 Wantro)
ON o

On the other hand, the moments of the variable on the right, which in terms of the
fundamental corepresentation v = (v;;) is given by w = 3, v;;, are given by:

/,;Ug w = 37" 6F (0)3E () Wan (7, )

iy To

We deduce that w/+/N + 2 has the same moments as w;;, which proves our claim.
In order to do now the computation over SUJ, we can use a matrix model due to
Woronowicz [146], where the standard generators «,y are mapped as follows:

mu(@)er = /1 —q¢*kepq
m(Mer = uq'ey

Here u € T is a parameter, and (ey,) is the standard basis of [*(N). The point with this
representation is that it allows the computation of the Haar functional. Indeed, if D is
the diagonal operator given by D(e;,) = ¢*ex, then the formula is as follows:

[ e =0 [rom@ng

With the above model in hand, the law of the variable that we are interested in is of
the following form:

/ plata’+y—qy) = (1—q2)/t7“(D90(M))
SUd T
To be more precise, this formula holds indeed, with:

M(ex) = eps1 + qk(u - qu_l)ek + (1 - q%)@k—l

The point now is that the integral on the right can be computed, by using advanced
calculus methods, and this gives the result. We refer here to [30]. U

du
2miu

Following now [22], let us discuss the free hypergeometric laws. We will use here a
twisting result established in section 4 above, which is also from [22]. We know from that
twisting result that we have, at the probabilistic level:

Theorem 8.7. The following two algebras are isomorphic, via u?j — Xij,
(1) The algebra generated by the variables ui; € C(O}),
(2) The algebra generated by X;; = %Zz,bﬁ Dia,jb € C(S:Q),
and this isomorphism commutes with the respective Haar integration functionals.

Proof. This follows indeed from the general twisting result from section 4. g
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As pointed out in [22], it is possible to derive as well this result directly, by using the
Weingarten formula, and manipulations on the partitions:

Theorem 8.8. The following families of variables have the same joint law,

(1) {u;} € CO7),
(2) {Xij = % X apPiae} € C(S2),

where u = (u;;) and p = (piajp) are the corresponding fundamental corepresentations.

Proof. As already mentioned, this result can be obtained via twisting methods. An al-
ternative approach is by using the Weingarten formula for our two quantum groups, and
the shrinking operation 7 — 7’. Indeed, we obtain the following moment formulae:

/ u?f = Z Wopn(, 0)
o

T,0ENCa(2k)

ko _ ' |+|o’ |-k o
X = E pl™ e Win2 (7', 0")

S+
n? m,0€NC2(2k)

According to the fattening results in section 2 the summands coincide, and so the
moments are equal, as desired. The proof for joint moments is similar. Il

In what follows we will be interested in single variables. We have here:

Definition 8.9. The noncommutative random variable
(n,m,N) ZZUU e C( S+
=1 j=1
is called free hypergeometric, of parameters (n,m, N).

The terminology comes from the fact that the variable X’(n,m, N), defined as above,
but over the algebra C(Sy), follows a hypergeometric law of parameters (n, m, N). Fol-
lowing [22], here is an exploration of the basic asymptotic properties of these laws:
Theorem 8.10. The free hypergeometric laws have the following properties:

(1) Let n,m, N — oo, with %3 — t € (0,00). Then the law of X (n,m,N) converges
to Marchenko- Pastur law .
(2) Letn,m, N — oo, with z — v € (0,1) and i — 0. Then the law of S(n,m, N) =

(X(n,m, N) —muv)/\/mv(1 —v) converges to the semicircle law ;.
Proof. This is standard, by using the Weingarten formula, as follows:
(1) From the Weingarten formula, we have:

/X(n,m,N)k’: Z WkNﬂg 7l o]

m,0eNC(k
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The point now is that we have the following estimate:
N~ O(N-=1) it r =0
Win(m,0) = {O(thﬂ—n—lol) if m# o

It follows that we have:

thl it r=¢
W, Tl plol
e (7, o)nim 0 ifrm#o

Thus the k-th moment of X(n,m, N) converges to > cyon A7 which is the k-th
moment of the Marchenko-Pastur law 7;, and we are done.
(2) We need to show that the free cumulants satisfy:
1 ifp=2
KIS, m, N), . Sm N = 4
0 ifp#2
The case p = 1 is trivial, so suppose p > 2. We have:
kP [S(n,m,N),...,S(n,m,N)]
= (mv(1—v)P2P[X(n,m,N),...,X(n,m,N)]
On the other hand, from the Weingarten formula, we have:

kP [X(n,m,N),...,X(n,m,N)]
- Z pp(w; 1p) H Z Wxew) (T, ov)nl™Imlov

weNC(p) Vew ry,oyeNC(V)
= Z pp(w, 1,) H Z (N_|WV|M|V\(7TV70V) +O<N—|Wv\—1))n\ﬁv\m|av\
weNC(p) Vew ry,oyeNC(V)
= Z (N_lﬂlup(ﬁv o)+ O(*N_‘W'_l))n'ﬁlm'g' Z fp(w, 1p)
m,0€NC(p) weNC(p)
<o o<w

We use now the following standard identity:

1 ifoe=1
Z /"Lp(w7 ]'p) - {O lf o % 1p
weNC(p) p
o<w

This gives the following formula for the cumulants:

/{(p) [X<n7 m, N)a Tt 7X(n7 m, N)] =m Z (N_|7r|:up(7r’ 110) + O(N_Iﬂ—l_l))nlﬂ

TeNC(p)

It follows that for p > 3 we have, as desired:

kP [S(n,m,N),...,S(n,m,N)] =0
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As for the remaining case p = 2, here we have:
1

R(2)[S(nvm7 N),S(n,m, N)] - o~ Z V|7F|IU/2<7T7 12)
v(l-v) rENC(2)
1 2
(1 -v) (v =27)
= 1
This gives the result. U

As a final analytic topic, let us discuss now, following [33], the computation of the
asymptotic laws of powers Tr(u*) with k € N, called Diaconis-Shahshahani variables,
following the paper [86], generalizing the usual characters y = T'r(u). In order to do our
computation, let us start with the following standard definition:

Definition 8.11. Associated to ki, ..., ks € N is the trace permutation v € Sy, with
k =>"k;, having cycles
(1,..., k)
(k‘l—i-l,...,kl—i-k‘z)

(k—ks+1,...,k)
called trace permutation associated to kq, ..., ks € N.
We denote by (o) the partition given by:
ir~ve J = (1) ~0) 1)
With these conventions, we have the following result:

Theorem 8.12. Given an easy quantum group G, we have:
/ Tr(uf) ... Tr(u®) du = # {71' € Dk’ﬂ' = 7(7)} +O(N™Y
a
If G is classical, this estimate is exact, without any lower order corrections.

Proof. We have two assertions to be proved, the idea being as follows:

(1) Let I be the integral to be computed. According to the definition of 7, we have:

= r(uf) . Tr(uf) du
I—/GT()T()d

= Z /G(uiliz SR uikil) <. (uikfkerlik—kerQ SR uikik—ks+1)

i1 g

= E:/“z’w1)~-“iwk>
G

i1 g
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We use now the Weingarten formula. We obtain:

I = Z Z Z Win(m, o)

11...15 m<keri o<ker iy

- Y Y T Wt

1.1, m<keri y(o)<keri
VY (o
= E Nl g )|WkN(7T,O')
m,0€Dy,

_ X e o)

m,0€Dy

The leading order of NIm™Vy(@lt+mvel=Irl=lo| i NO which is achieved if and only if o > 7
and m > (o), or equivalently when 7 = o = (o). But this gives the formula.

(2) In the classical case, instead of using the approximation for Wy (7, o), we can write
NI™1@) = G n(v(0), ), and we can continue as follows:

I = Z Ginv(y(o), m)Win(m, 0)

m,0€ Dy,

= Y 5((0),0)

€Dy,
= #{o € Difo =~(m)}
Thus, we are led to the conclusion in the statement. U

If ¢ is a cycle we use the notation ¢! = ¢, and ¢*= cycle opposite to c¢. We have the
following definition, generalizing Definition 8.11 above:

Definition 8.13. Associated to any ky, ..., ks € N and any ey, ..., es € {1,%} is the trace
permutation v € Sk, with k =Y k;, having as cycles

(1,..., k)"
(kv +1,..., k4 ko)

(k—ks+1,... k)
called trace permutation associated to kq, ..., ks € N and ey, ..., es € {1, %}.

With this convention, Theorem 8.12 extends to this setting, as follows:

Theorem 8.14. Given an easy quantum group G, we have:
/ Tr(u*)e .. Tr(u®)® du = # {7r € Dk‘w = ’}/(’/T)} +O(N)
a

If G is classical, this estimate is exact, without any lower order corrections.
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Proof. This is similar to the proof of Theorem 8.12. U
In terms of cumulants, we have the following result, also from [33]:

Theorem 8.15. For G = Oy, Sy we have the following cumulant formula:
e (Tr(uf)er, . Tr(ufr)or) = # {7? € Dk‘ﬂ' Vy=1g = 7(7?)}
Also, for G = O, ST, we have the following free cumulant formula:
ko (Tr(uF)er o Tr(ub)er) = # {7r € Dk‘ﬂ' Vy=1, 7= 7(#)} +O(N™Y

Proof. We have two assertions to be proved, the idea being as follows:

(1) Let ¢, be the considered cumulant. We write, for those partitions m € Py, such that
the restriction of 7 to a block of ¢ is an element in the corresponding set Dj,:

D, = {r € Ppp € Dy ww € o}
We have then the following equivalent formula:
D, = {’/T € Dk‘ﬂ < 07}
Then, by the definition of the classical cumulants via Mobius inversion, we get:

Cr = Z (o, 1) - #{m € Dy|m = ~(7)}

oc€P(r)

= Z p(o, 1) - #{m € D|n <o?,m =~(m)}

oc€P(r)
= Z H (O’, 1r> Z 1
oc€eP(r) <oV, m=y(m)

In order to exchange the two summations, we first have to replace the summation over
o € P(r) by a summation over 7 = ¢” € P(k). Note that the condition on the latter is
exactly 7 > 7 and that we have p(o,1,) = u(o?,1;). Thus:

= Z,M(T,lk) Z 1

>y w<r,m="y(m)

- Y X wnw

m=y(m) TVY<T
The definition of the M6bius function gives for the second summation:

AT 26) = 0 otherwise

TVy<T

With this formula in hand, the assertion follows.
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(2) In the free case, the proof runs in the same way, by using free cumulants and the
corresponding Mobius function on noncrossing partitions. Note that we have the analogue
of our equation in this case only for noncrossing o. O

We can now recover the theorem of Diaconis and Shahshahani in [86]:

Theorem 8.16. The variables uy = limy_o, T7(u*) are as follows:

(1) For Oy, the uy are real Gaussian variables, with variance k and mean 0 or 1,
depending on whether k is odd or even. The uy are independent.

(2) For OF;, at k = 1,2 we get semicircular variables of variance 1 and mean 0 for u;
and mean 1 forus, and at k > 3 we get circular variables of mean 0 and covariance
1. The uy are x-free.

Proof. This follows by using the formula in Theorem 8.15, as follows:

(1) In this case Dy consists of all pairings of k elements. We have to count all pairings
7 with the properties that 7V v = 1; and 7 = (7).

Note that if 7 connects two different cycles of v, say ¢; and ¢;, then the property
7 = ~y(p) implies that each element from ¢; must be paired with an element from ¢;. Thus
those cycles cannot be connected to other cycles and they must contain the same number
of elements. This means that for s > 3 there is no such «. Thus all cumulants of order 3
and higher vanish asymptotically and all traces are asymptotically Gaussian.

Since in the case s = 2 we only have permissible pairings if the two cycles have the same
number of elements, we also see that the covariance between traces of different powers
vanishes and thus different powers are asymptotically independent. The variance of wy
is given by the number of matchings between {1,... k} and {k + 1,...,2k} which are
invariant under rotations. Since such a matching is determined by the partner of the first
element 1, for which we have k possibilities, the variance of w; is k. For the mean, if k
is odd there is clearly no pairing at all, and if £ = 2p is even then the only pairing of
{1,...,2p} which is invariant under rotations is (1,p+1),(2,p+2), ..., (p,2p). Thus the
mean of uy, is zero if k£ is odd and 1 if k£ is even.

(2) In the quantum case Dy consists of noncrossing pairings. We can essentially re-
peat the arguments from above but have to take care that only noncrossing pairings are
counted. We also have to realize that for £ > 3, the u; are not selfadjoint any longer,
thus we have to consider also uj in these cases. This means that in our arguments we
have to allow cycles which are rotated “backwards” under ~.

By the same reasoning as before we see that free cumulants of order three and higher
vanish. The pairing which gave mean 1 in the classical case is only in the case k = 2 a
noncrossing one, thus the mean of uy is 1, all other means are zero. For the variances,
one has again that different powers allow no pairings at all and are asymptotically *-free.
For the matchings between {1,...,k} and {k+1,...,2k} one has to observe that there is
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only one non-crossing possibility, namely (1, 2k), (2,2k—1), ..., (k,k+1) and this satisfies
7w = v(m) only if y rotates both cycles in different directions.

For £k = 1 and k = 2 there is no difference between both directions, but for k& > 3
this implies that we get only a non-vanishing covariance between w; and wuj, with value
1. This shows that u; and us are semicircular, whereas the higher u; are circular. U

In order to discuss permutations and quantum permutations, let us start with:

Proposition 8.17. The cumulants of uj, = limy_,o T7(u*) are as follows:
(1) For Sy, the classical cumulants are given by:

Cr(Upyy ooy ug,) = Z q!
qlkiVi=1,....r
(2) For Sy, the free cumulants are given by:
2 ifr=1,k >2
2 fr=2k =kye =€}
2 =2k =y =2
1 otherwise

cr(uzll, o ,ui:) =

Proof. We have two assertions to be proved, the idea being as follows:

(1) Here Dy, consists of all partitions. We have to count partitions 7 which have the
properties that mV v = 1; and m = ().

Consider a partition 7 which connects different cycles of . Consider the restriction of
7 to one cycle. Let k be the number of elements in this cycle and ¢ be the number of the
points in the restriction. Then the orbit of those ¢ points under v must give a partition of
that cycle, which means that ¢ is a divisor of k and that the ¢ points are equally spaced.
The same must be true for all cycles of v which are connected via 7, and the ratio between
t and k is the same for all those cycles. This means that if one block of 7 connects some
cycles then the orbit under v of this block connects exactly those cycles and exhausts all
points of those cycles. So if we want to connect all cycles of v then this can only happen
in the way that we have one block of 7 intersecting each of the cycles of ~.

To be more precise, let us consider ¢, (u,, . .., ug,.). We have then to look for a common
divisor ¢ of all ky, ..., k., and a contributing 7 is then one the blocks of which are of the
following form: k;/q points in the first cycle, equally spaced, and so on up to k,/q points
in the last cycle, equally spaced. We can specify this by saying to which points in the
other cycles the first point in the first cycle is connected. There are ¢"~! possibilities for
such choices, and this gives the formula in the statement.

(2) For S¥ we have to consider noncrossing partitions instead of all partitions. Most
of the contributing partitions from the classical case are crossing, so do not count for
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the quantum case. Actually, whenever a restriction of a block to one cycle has two or
more elements then the corresponding partition is crossing, unless the restriction exhausts
the whole group. This is the case ¢ = 1 from the considerations above, corresponding
to the partition which has only one block, giving a contribution 1 to each cumulant
¢r(Ugy, - -, ug, ). For cumulants of order 3 or higher there are no other contributions. For
cumulants of second order one might also have contributions coming from pairings, where
each restriction of a block to a cycle has one element. But this is the same problem as in
the O3 case, and we only get an additional contribution for the second order cumulants
co(ug, up). For first order cumulants, singletons can also appear and make an additional
contribution. Taking this all together gives the formula in the statement. U

We can now formulate a result about permutations and quantum permutations:

Theorem 8.18. The variables uj, = limy_,o, T7(u*) are as follows:
(1) For Sy we have a decomposition of type
U = Z lCl
1k

with the variables Cy being Poisson of parameter 1/k, and independent.
2) For Si we have a decomposition of the type
N

uw=0C , u=0+C, (k>2)
where the variables C; are x-free, C is free Poisson, Cy is semicircular, and Cj

with k > 3 are circular.

Proof. We have several assertions to be proved, the idea being as follows:

(1) Let Cj, be the number of cycles of length k. We have uj, =, IC;. We are claiming

now that the Cj are independent and each is a Poisson variable of parameter 1/k, i.e.,
that ¢, (Cy,, ..., () is zero unless all the [; are the same, say = [, in which case it is 1/,
independently of r. This is compatible with the cumulants for the u;, according to:

cr(ukl,...,ukT) = Z"'le"'chT(Ch)""Olr)

Lk Lok
-y
1

Uk Vi

Since the C} are uniquely determined by the wu, via some kind of Mdbius inversion,
this shows that the C} are independent, and that C}, is Poisson with parameter 1/k.

(2) In the classical case the random variable C; can be defined by:

1
Cl = 7 E Uilhuizi3 e uim

i1...4; distinct
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Note that we divide by [ because each term appears actually [ times, in cyclically
permuted versions, which are all the same because our variables commute.

Note that, by using commutativity and the monomial condition, in general the ex-
Pression U, Wiy, - - - Ui, has to be zero unless the indices (iy,...,4) are of the form
(41, -+, 01,01, 1,...), where [ divides k and iy, ..., are distinct. This yields then the
following relation, which we used before to define Cj:

k E
TT(U ) = WUy igUigig - - - Wipiy
11...9

_ § : 2 : k/l
- (ui1i2ui2i3 s uizil)

Ik i1...i; distinct

= qu

Ik

This explicit form of C; in terms of u;; can be used to give a direct proof, by using the
Weingarten formula, of the fact that the C; are independent and Poisson.

(3) In the free case we define the “cycle” C} by requiring neighboring indices to be
different, as follows:
C = Z UigyigWingig - - - Uipiyg
i1 Al AU
Note that if two adjacent indices are the same in w;,, Ui, - . . 4;;, then, because of the
relation u;ju;, = 0 for j # k, all must be the same or the term vanishes. For the case
where all indices are the same we have:

Zuuuu s Uy = Zuzz = C
But this gives then the following relation:
Tr(uf) = Cyp + C,

Again, the C; are uniquely determined by the T (u*) and thus our calculations also show
that the C) defined by our equation are x-free and have the distributions as stated. [
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9. Finite graphs

Many interesting examples of quantum permutation groups appear as particular cases
of the following general construction from [6], [7], involving finite graphs:

Proposition 9.1. Given a finite graph X, with adjacency matriz d € My(0,1), the
following construction produces a quantum permutation group,

O(GH(X)) = C(SF) / <du - ud>
whose classical version G(X) is the usual automorphism group of X.

Proof. The fact that we have a quantum group comes from the fact that du = ud re-
formulates as d € End(u), which makes it clear that we are dividing by a Hopf ideal.
Regarding the second assertion, we must establish here the following equality:

C(G(X)) = C(Sy) / <du - ud>

For this purpose, recall that we have wu; (U) = 0q(j)i- By using this formula, we have:

du z] Z d; kuk] Z dzkaa(] k= za(]
On the other hand, we have as Well

Ud Z_] Z uzk dkj Z 5a(k)idkj = da—l(i)j
k

Thus the condition du = ud reformulates as dij = dy(i)o(j), and we are led to the usual
notion of an action of a permutation group on X, as claimed. O

Let us work out some basic examples. We have the following result:

Theorem 9.2. The construction X — G (X) has the following properties:

(1) For the N-point graph, having no edges at all, we obtain Sy.

(2) For the N-simplez, having edges everywhere, we obtain as well S5.
(3) We have G (X) = GT(X°), where X is the complementary graph.
(4) For a disconnected union, we have GT(X)*GH(Y) C GH(X UY).
(5) For the square, we obtain a non-classical, proper subgroup of Sy .

Proof. All these results are elementary, the proofs being as follows:
(1) This follows from definitions, because here we have d = 0.

(2) Here d = I is the all-one matrix, and the magic condition gives ul = Iu = NI. We
conclude that du = ud is automatic in this case, and so GT(X) = Sy.

(3) The adjacency matrices of X, X¢ being related by the formula dy +dx. = I. We can
use here the above formula ull = Iu = NI, and we conclude that dxu = udy is equivalent
to dxeu = udxe. Thus, we obtain, as claimed, G*(X) = GT(X°).
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(4) The adjacency matrix of a disconnected union is given by dx.y = diag(dy,dy).
Now let w = diag(u,v) be the fundamental corepresentation of G*(X)*G*(Y). Then
dxu = udx and dyv = vdy imply, as desired, dx yw = wdxy.

(5) We know from (3) that we have G*(OJ) = G*(| |). We know as well from (4) that
we have Zy % Zy C GT(] |). It follows that G™(O) is non-classical. Finally, the inclusion
GT(O) C Sy is indeed proper, because S; C S; does not act on the square. El

In order to further advance, and to explicitely compute various quantum automorphism
groups, we can use the spectral decomposition of d, as follows:

Proposition 9.3. A closed subgroup G C S} acts on a graph X precisely when
Pou=uP, , V)eR
where d =, X - Py is the spectral decomposition of the adjacency matriz of X.

Proof. Since d € My(0,1) is a symmetric matrix, we can consider indeed its spectral
decomposition, d = >, A - Py. We have then the following formula:

< d >= span {PA’)\ € R}
But this shows that we have the following equivalence:
d € End(u) <= P, € End(u),VA € R

Thus, we are led to the conclusion in the statement. Il

In order to exploit this, we will often combine it with the following standard fact:
Proposition 9.4. Consider a closed subgroup G C S3;, with associated coaction map

d:CYN - CVeC(G)

For a linear subspace V. C CV, the following are equivalent:

(1) The magic matriz u = (u;j) commutes with Py .
(2) V is invariant, in the sense that (V) C V ® C(G).

Proof. Let P = Py. For any i € {1,..., N} we have the following formula:

(ID(P(el)) = (Z Pk16k> = ZPkiej ® Ujk = Z €; & (’LLP)JZ
k Jk J
On the other hand the linear map (P ® id)® is given by a similar formula:

(P ®id)(P(e;)) = Z Pler) ® up = Z Pjrej & up; = Z e; ® (Pu)ji
k Jk J
Thus uP = Pu is equivalent to ®P = (P ® id)®, and the conclusion follows. U

We have as well the following useful complementary result, from [6]:
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Proposition 9.5. Let p € My(C) be a matriz, and consider its “color” decomposition,
obtained by setting (p.)i; = 1 if pij = ¢ and (p.)ij = 0 otherwise:

p:Zc'pc
ceC

Then u = (u;;) commutes with p if and only if it commutes with all matrices p..
Proof. Consider the multiplication and counit maps of the algebra C¥:
M:67;®€j — €i€;
C: e, — e Re;
Since M, C' intertwine u, u®2, their iterations M®) C®) intertwine u, u®*, and so:

p® = MEpEC® =N " kp, € End(u)

ceC

Let S = {c € C|p. # 0}, and f(c) = c. By Stone-Weierstrass we have S =< f >, and
so for any e € S the Dirac mass at e is a linear combination of powers of f:

o= st - S (S ] -3 (St
k k ceS ceS k
The corresponding linear combination of matrices p*) is given by:

ST en) g (g

ceS ceS

The Dirac masses being linearly independent, in the first formula all coefficients in the
right term are 0, except for the coefficient of d., which is 1. Thus the right term in the
second formula is p,., and it follows that we have p. € End(u), as claimed. Il

The above results can be combined, and we are led to the following statement:
Theorem 9.6. A closed subgroup G C S5 acts on a graph X precisely when
u = (u)
commutes with all the matrices coming from the color-spectral decomposition of d.

Proof. This follows by combining Proposition 9.3 and Proposition 9.5, with the “color-
spectral” decomposition in the statement referring to what comes out by succesively doing
the color and spectral decomposition, until the process stabilizes. Il

The above statement might seem in need of some further discussion, and axiomatization,
in what regards the two operations used there. In answer to all this, the point is that we
are in fact doing planar algebras. We have the following result, from [7]:
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Theorem 9.7. The planar algebra associated to GT(X) is equal to the planar algebra
generated by d, viewed as a 2-box in the spin planar algebra Sy, with N = | X|.

Proof. We recall from section 3 above that any quantum permutation group G C S}
produces a subalgebra P C Sy of the spin planar algebra, given by:
Py, = Fiz(u®F)
In our case, the idea is that G = GT(X) comes via the relation d € End(u), but we
can view this relation, via Frobenius duality, as a relation of type:
&4 € Fiz(u®?)

Indeed, let us view the adjacency matrix d € My(0,1) as a 2-box in Sy, by using the
canonical identification between My (C) and the algebra of 2-boxes Sy (2):

(dij) < ;di]— (; ;)

Let P be the planar algebra associated to G*(X) and let @ be the planar algebra
generated by d. The action of u®? on d viewed as a 2-box is given by:

(e ) - Balt o

ij ikl

> (]; l;) @ (udut)y

kl
Since v is a magic unitary commuting with d we have:

udu! = duut = d

This means that d, viewed as a 2-box, is in the algebra P, of fixed points of u®2. Thus
we have ) C P. For P C ) we use the duality found in section 3. Let indeed (B,v)
be the pair whose associated planar algebra is (). The same computation with v at the
place of u shows that v commutes with d. Thus we have a morphism A — B, given by
u;; — V5, and it follows that we have P C (), and we are done. Il

With the above results in hand, it is quite clear that our assumption that d € My (0, 1)
is the adjacency matrix of a usual graph X is somehow unnatural, and that we can look at
more general objects. We can consider for instance general permutation quantum groups
of the following type, depending on an arbitrary matrix d € My(C):

C(GH(X)) = C(SF) / <du - ud>

Here X stands for the combinatorial object associated to d, namely the complete graph
having as vertices {1, ..., N}, with each oriented edge i — j colored by d;; € C. Generally
speaking, the theory extends well to this setting, and we have analogues of the above



QUANTUM PERMUTATIONS 155

results, some valid for any d € My (C), and some other valid under the asumption d = d*.
We refer to [7] and subsequent papers for a full discussion here.

With these issues discussed, so let us get back now to concrete things. As a basic
application of the above results, following [6], we can further study G*(0), as follows:

Theorem 9.8. The quantum automorphism group of the N-cycle is as follows:
(1) At N # 4 we have GT(X) = Dy.
(2) At N =4 we have Dy C GT(X) C S, with proper inclusions.

Proof. We aknow that the results hold at N < 4, so let us assume N > 5. Given a N-th
root of unity, w" = 1, the vector £ = (w?) is an eigenvector of d, with eigenvalue:

A=w+wV!

Now by taking w = e>™/N

, it follows that the are eigenvectors of d are:

]‘7f7f2""7fN_1

More precisely, the invariant subspaces of d are as follows, with the last subspace having
dimension 1 or 2 depending on the parity of N:

Cl,CfoCfNl, CfroCsN=2,. ..
Consider now the associated coaction ® : C¥N — CV @ C(G), and write:
d(fl=f@a+ N 120
By taking the square of this equality we obtain:
(A =r2d+ 26+ 1 (ab+ ba)
It follows that ab = —ba, and that ®(f?) is given by the following formula:
3(f2) = f2oa+ N2 e
By multiplying this with ®(f) we obtain:
() =ed+ NP2+ Nl ®a? + f @ ba?

Now since N > 5 implies that 1, N — 1 are different from 3, N — 3, we must have
ab? = ba®? = 0. By using this and ab = —ba, we obtain by recurrence on k that:

() = fFodt + Nk
In particular at k = N — 1 we obtain:
(NN = N gV 4 e p
On the other hand we have f* = f¥~! so by applying * to ®(f) we get:
(NN = Nl + fob
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Thus a* = o' and b* = bV ! Together with ab® = 0 this gives:
(ab)(ab)” = abb™a™ = abNaN 1 = ((lbz)bN72aN71 —0

From positivity we get from this ab = 0, and together with ab = —ba, this shows that
a,b commute. On the other hand C(G) is generated by the coefficients of ®, which are
powers of a, b, and so C'(G) must be commutative, and we obtain the result. O

Summarizing, this was a bad attempt in understanding G*(0J), which appears to be
“exceptional” among the quantum symmetry groups of the N-cycles. An alternative
approach to G*(0J) comes by regarding the square as the N = 2 particular case of the
N-hypercube [y. Indeed, the usual symmetry group of Uy is the hyperoctahedral group
Hy, so we should have a formula of type G(0J) = H, . Quite surprisingly, we will see that
Gt (Oy) is in fact a twist of Oy. In order to discuss this material, let us start with:

Theorem 9.9. There is a signature map € : Poyen — {—1,1}, given by

£(7) = (-1
where ¢ is the number of switches needed to make T noncrossing. In addition:

(1) For T € Sk, this is the usual signature.
(2) For T € Py we have (—1)¢, where ¢ is the number of crossings.
(3) For 7 <1 € NCeyen, the signature is 1.

Proof. The fact that ¢ is indeed well-defined comes from the fact that the number ¢ in
the statement is well-defined modulo 2, which is standard combinatorics.

In order to prove the remaining assertion, observe that any partition 7 € P(k,l) can
be put in “standard form”, by ordering its blocks according to the appearence of the first
leg in each block, counting clockwise from top left, and then by performing the switches
as for block 1 to be at left, then for block 2 to be at left, and so on.

Here is an example of such an algorithmic switching operation, with block 1 being first
put at left, by using two switches, then with block 2 left unchanged, and then with block
3 being put at left as well, but at right of blocks 1 and 2, with one switch:

With this convention, the proof of the remaining assertions is as follows:

(1) For 7 € S the standard form is 7/ = id, and the passage 7 — id comes by composing
with a number of transpositions, which gives the signature.

(2) For a general 7 € Py, the standard form is of type 7/ = |...|37, and the passage
T — 7’ requires ¢ mod 2 switches, where ¢ is the number of crossings.
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(3) Assuming that 7 € P.,e, comes from m € NCpy, by merging a certain number of
blocks, we can prove that the signature is 1 by proceeding by recurrence. O

With the above result in hand, we can now formulate:
Definition 9.10. Associated to a partition ™ € Pyen(k, 1) is the linear map
Trei, @...0¢e,)= Z&r (;1 3’;) ey, ®...0¢€,
G-
where the signed Kronecker symbols
6= € {—1,0,1}
are given by 0, = () if T > 7, and &, = 0 otherwise, with T = ker(}).

In other words, what we are doing here is to add signatures to the usual formula of T.
Indeed, observe that the usual formula for T}, can be written as folllows:

Tﬂ(ei1®...®eik): Z ej1®"'®€jl
j:ker(;)zﬂ

Now by inserting signs, coming from the signature map ¢ : P, — {1}, we are led
to the following formula, which coincides with the one from Definition 9.10:

Tﬂ(eh@...@eik):Zg(T) Z e, ®...Q0e€;,
T>m j:ker(;):*r
We have the following key categorical result:

Proposition 9.11. The assignement = — T, is categorical, in the sense that

Tﬂ' ® TO’ = T[ﬂ‘o’] ) Tﬂ'Tg - NC(W7J)T[%] T* = Tﬂ-*

? ™

where c(m,0) are certain positive integers.

Proof. In order to prove this result we can go back to the proof from the easy case, and
insert signs, where needed. We have to check three conditions, as follows:

1. Concatenation. It is enough to check the following formula:

- (ker -  (Ker ki...k, — o (ker i p ki... .k,
Ji---Jg l1... 1 Ji--Jq Lol

Let us denote by 7, v the partitions on the left, so that the partition on the right is of
the form p < [rv]. Now by switching to the noncrossing form, 7 — 7/ and v — v/, the
partition on the right transforms into p — p' < [7'v/]. Now since [7'¢'] is noncrossing, we
can use Theorem 9.9 (3), and we obtain the result.
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2. Composition. Here we must establish the following formula:

i ..y TR AN i ...,
(e (o) ) G (o)) == (e (7))

Let 7,v be the partitions on the left, so that the partition on the right is of the form
p < [I]. Our claim is that we can jointly switch 7, v to the noncrossing form. Indeed, we
can first switch as for ker(j; ... j,) to become noncrossing, and then switch the upper legs
of 7, and the lower legs of v, as for both these partitions to become noncrossing.

Now observe that when switching in this way to the noncrossing form, 7 — 7’ and
v — 1/, the partition on the right transforms into p — p’ < [}]. Now since [7] is
noncrossing, we can apply Theorem 9.9 (3), and we obtain the result.

3. Involution. Here we must prove the following formula:
i (i) g (3
"\J1---Jq T\t
But this is clear from the definition of §,, and we are done. O

As a conclusion, our construction m — T, has all the needed properties for producing
quantum groups, via Tannakian duality. So, we can now formulate:

Theorem 9.12. Given a category of partitions D C Peyen, the construction

Hom(u®", u®") = span (Tw

me D(k:,l))

produces via Tannakian duality a quantum group G C O%, for any N € N.

Proof. This follows indeed from the Tannakian results from section 1 above, exactly as in
the easy case, by using this time Proposition 9.11 as technical ingredient. O

We can unify the easy quantum groups, or at least the examples coming from categories
D C P,,e,, with the quantum groups constructed above, as follows:

Definition 9.13. A closed subgroup G C O} is called q-easy, or quizzy, with deformation
parameter ¢ = £1, when its tensor category appears as follows,

Hom(u®* u®) = span <T7r

€ D(k, l))
for a certain category of partitions D C Piyen, where, for g = —1,1:
T=T,T

The Schur-Weyl twist of G is the quizzy quantum group G C Of obtained via ¢ — —q.
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Let us compute now the twist of Ox. We recall that the Mobius function of any lattice,

and in particular of P,,.,, is given by:

1 ito=m
pwlo,m) =9 = geren o) ifo<m
0 ifoLn

With this notation, we have the following result:

Proposition 9.14. For any partition m € Ppyen, we have the formula

[, = ZQTTT

T<m

where ay =Y &(T)p(o,7), with p being the Mdbius function of Peyen.

Proof. The linear combinations "= " ___«,T, acts on tensors as follows:

T<m

T, ®...0¢€,) = ZaT e, ®...0e€,)

T<m

= ZaTZ Z e]l By

T O'<’7'] ker
= g ( g aT> g e, ®...0e;
o<m \o<7<m jkﬂ@)za

Thus, in order to have T, = > o a.T,, we must have, for any o < 7:

> o

o<t<T

71

But this problem can be solved by using the Mobius inversion formula, and we obtain

the numbers o, = > &(7)u(o, 7) in the statement.

We can now twist the orthogonal group. The result here is as follows:

Theorem 9.15. The twist of Oy is obtained by replacing the relations ab = ba with

ab = +ba

with anticommutation on rows and columns, and commutation otherwise.

g

Proof. The basic crossing, ker (;JZ) with ¢ # j, comes from the transposition 7 € Sy, so its

signature is —1. As for its degenerated version ker (ZZ), this is noncrossing, so here the

signature is 1. We conclude that the linear map associated to the basic crossing is:

—e; ®e; fori#j
e @ e; otherwise

Ty(ei ® ¢;) = {
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We can proceed now as in the untwisted case, and since the intertwining relations
coming from Ty correspond to the relations defining Oy, we obtain the result. U

Getting back now to graphs, we have the following result, from [20]:
Theorem 9.16. The quantum symmetry group of the N-hypercube is
Gt(Oy) = On
with the corresponding coaction map on the vertex set being the map

d: C*(ZY) = C*(Z5) @ C(On)

gi —>Zgj®uji
J

—

via the standard identification Oy = Z1 .

Proof. We use here the fact that the cube Uy, when regarded as a graph, is the Cayley
graph of the group ZY. The eigenvectors and eigenvalues of [y are as follows:

Uiy = ) (F1)ETIINGE g
J1---IN
Nijiy = (D" 4+ (1)
Modulo some standard computations, explained in [20], it is enough to construct a map
® as in the statement. For this purpose, consider the following variables:

G; = Zgj ® wj;
J

We must show that these variables satisfy the same relations as the generators g; € Z%'.
The self-adjointness being automatic, the relations to be checked are therefore:

G:=1 , GG;=GG;
In what regards the squares, we have the following formula:
G = Z kgt @ Wiy =1+ Z Ik g1 @ (Wirt + Uiy,
kl k<l
Also, we have the following formula:
G, G, = Z GGt @ (WikWj — Wjkli + UgUjp — Wjrly)
k<l

From the first relation we obtain ab = 0 for a # b on the same row of u, and by using
the antipode, the same happens for the columns. From the second relation we obtain:

[uikaujl] = [Ujk,uil] Vk #1
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Now by applying the antipode we obtain:
[y, ugi] = (i, urg]
By relabelling, this gives, for j # :
[k, sz] = [ug, ujk]
Thus for i # j, k # | we must have:
[wir, wje] = [wjk, wa] =0
We are therefore led to G C Oy, as claimed. O

In connection with the various extensions of our formalism, regarding colored graphs,
or finite metric spaces, let us record as well the following result, also from [20]:

Theorem 9.17. The quantum isometry group of the N-hypercube, regarded as a finite
metric subspace of RN, is:

GT(Oy) = On
That is, we obtain the twisted orthogonal group Oy.

Proof. We recall that the quantum symmetry group of a finite colored graph is produced
by the formula du = ud. This construction applies in particular to the finite metric spaces,
which can be regarded as complete graphs, with the edges colored by their lengths. The
distance matrix of the cube has a color decomposition as follows:

d=dy +V2dy+ V3ds+ ...+ VNdy

Since the powers of d; can be computed by counting loops on the cube, we have formulae
as follows, with z;; € N being certain positive integers:

d% = To1ln + x92ds
&3 = w311y + 30y + 73373
dY = anily +anady + Tnsds + ...+ oundy

But this shows that we have the following equality of algebras:
<d>=<d; >

Now since d; is the adjacency matrix of Ly, viewed as graph, this proves our claim,
and we obtain the result from Theorem 9.16. O

Our purpose now is to understand which representation of Oy produces by twisting
the magic representation of Oy. In order to solve this question, we will need:
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Proposition 9.18. The Fourier transform over Z% is the map

a:()(zgv) — C*(ZY)

5 ‘ 2N Z <m> 11 gN

J1--JN

with the usual convention < i,j >= Y, ixji, and its inverse is the map

B:C(Zy) — C(Zy))

_> <Z7]>5 ]N
z : ..gN

Ji---JN

with all the exponents being binary, iy, ... iy, j1,---,jn € {0,1}.
Proof. Observe first that the group ZY can be written as follows:

Thus both «, 8 are well-defined, and it is elementary to check that both are morphisms
of algebras. We have as well af = fa = id, coming from the standard formula:

Ly - fi{tzon)

Ji--JN k=1 Jr
= dio
Thus we have indeed a pair of inverse Fourier morphisms, as claimed. Il

As an illustration here, at N = 1, with Zy = {1, g}, the map « is given by:

1 1
o= 5(+g) , = 5(1-g)
As for its inverse [, this is given by the following formulae:
1—=00+0, , g—01—90,
By using now these Fourier transforms, we obtain following formula:
Theorem 9.19. The magic unitary for the embedding Oy C S;N 15 given by
1 cien e (1 #(0€7)
Wi iy krky = 5N Z Z (—1)<Hhwd (N) u{})l ug{[VbN
Ji-JN b1...by

where ky = (ky,, ..., k), with respect to multi-indices i,k € {0,1}" as above.
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Proof. By composing the coaction map ® from Theorem 9.16 with the above Fourier
transform isomorphisms «, 3, we have a diagram as follows:

oz ®— C*(Z}) ® C(Oy)
o B®id
S17/ ) m— Yo = C(ZY)® C(On)

In order to compute the composition on the bottom W, we first recall from Theorem
9.16 above that the coaction map & is defined by the formula:

q)(gb> = Z Ya & Ugp

Now by making products of such quantities, we obtain the following global formula for
®, valid for any exponents i1,...,iy € {1,...,N}:

. : 1\ #(0€9) . . . A
oo = () X dealy o,
b1..by

The term on the right can be put in “standard form” as follows:

71 IN szzliz sz 23
gbl...ng—gl ...gN

We therefore obtain the following formula for the coaction map ®:
i i 1) 0 Dpp=1ta 2pp=n io i i
Pyt gN) = (N> Yoo gy Y @, gy,
bi...by

Now by applying the Fourier transforms, we obtain the following formula:

\I](égilmg%\f)

1 o .
= (B®id)® (2—N 3 (—1)<w>g{1...gg¢v>

J1--JN

1 <ig> [ 1 #(0€5) Sy da SN Ja i in

J1-JN b1...by
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By using now the formula of § from Proposition 9.18, we obtain:

1 1 #(0€5)
W) - X XY ()
J1---JN bi..by k1...kn
(_1)<’i7j>(_1)<(zb2:1 jIr"vaz:NjI)v(kl""ka)>
59?1.“911@\]]\] ® Uy, - - UNp,y

Now observe that, with the notation k, = (ky,, .. ., ks, ), we have:

<<ij7a jx)a(kl7"'akN)>:<jakb>
be=1 be=N

Thus, we obtain the following formula for our map W:
U(s

g1 gy )

1 <itky,j> 1 oD J1 IN

J1--JN b1..bn k1...kN
But this gives the formula in the statement for the corresponding magic unitary, with
respect to the basis {6g¢1 giN} of the algebra C(Z5'), and we are done. O
19N

We can now solve our original question, namely understanding where the magic repre-
sentation of Oy really comes from, with the following final answer to it, from [10]:

Theorem 9.20. The magic representation of Oy, coming from its action on the N-cube,
corresponds to the antisymmetric representation of Oy, via twisting.

Proof. This follows from the formula of w in Theorem 9.19, by computing the character,
and then interpreting the result via twisting, as follows:

(1) By applying the trace to the formula of w, we obtain:

1 o 1\ #0e) ,
XS (v ) (5) e,

(2) By computing the Fourier sum in the middle, we are led to the following formula,
with binary indices ji,...,jy € {0,1}, and plain indices by, ..., by € {1,...,N}:

1\ #(0€9) , .
X = Z Z (N) 5j17zbz:1 Jx tt (SjN7sz:ijU]1})1 tee u?VI\;)N

Ji--Jn b1...bn

(3) With the notation r = #(1 € j) we obtain a decomposition of type:

N
X = ZXT
r=0
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To be more precise, the variables y, are as follows:
1 , ‘
Xr = W Z Z 5j172bz:1 Jo ¢ 6jN7sz:Nja:u{})1 tet u?\%)]\r
#(lej):'r’ ble
(4) Consider now the set A C {1,..., N} given by:
A= {a|ja = 1}
The binary multi-indices j € {0,1}" satisfying #(1 € j) = r being in bijection with

such subsets A, satisfying |A| = r, we can replace the sum over j with a sum over such
subsets A. We obtain a formula as follows, where j is the index corresponding to A:

! E E ) )
Xr = NN—r T2 by =1 e CIN Dy, =N e H Uaba
|Aj=r by...by a€A

(5) Let us identify b with the corresponding function b : {1,..., N} — {1,..., N}, via
b(a) = b,. Then for any p € {1,..., N} we have:

0jp3y, i = 1 = 07 (p) N A] = xa(p) (mod 2)

We conclude that the multi-indices b € {1,..., N} which effectively contribute to the
sum are those coming from the functions satisfying b < A. Thus, we have:

1
I 3D Y | ()

|A|=r b<A acA

(6) We can further split each y, over the sets A C {1,..., N} satisfying:
|A| =r
The point is that for each of these sets we have:

1
v 2 [T = 3 [ o

b<A a€A sesh acA

Thus, the magic character of Oy splits as:

To be more precise, the components are:

o= > ] taota

|Al=r ges5 a€A

(7) The twisting operation Oy — Oy makes correspond the following products:

(o) H Ugo(a) — H Ugo(a)

acA a€A
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Now by summing over sets A and permutations o, we conclude that the twisting oper-
ation Oy — Oy makes correspond the following quantities:

Z Z e(o) Huaa(a) — Z Z Huao(a)

|A|=r o-eSX‘] acA |Al=r ggsff acA
Thus, we are led to the conclusion in the statement. Il

Let us go back now to the square problem. In order to present the correct, final solution
to it, the idea will be that to look at the quantum group G*(| |) instead, which is equal
to it, according to Theorem 9.2 (3). We will need the following result, from [49]:

Theorem 9.21. Given closed subgroups G C Uy, H C S, with fundamental corepre-
sentations u,v, the following construction produces a closed subgroup of U, :

C(G L H) = (C(G)* « C(H))/ < [ulf, va) = 0 >

ij
In the case where G, H are classical, the classical version of G . H s the usual wreath
product GV H. Also, when G is a quantum permutation group, so is G, H.

Proof. Consider indeed the matrix wjq ;s = ul(-j)vab, over the quotient algebra in the state-
ment. Then w is unitary, and in the case G C Sj;, this matrix is magic. With these
observations in hand, it is routine to check that G ¢, H is indeed a quantum group, with
fundamental corepresentation w, by constructing maps A, e, S as in section 1 above, and
in the case G C Sf;, we obtain in this way a closed subgroup of Sy,. See [49]. O

We refer to [13], [49], [132] for more details regarding the above construction. With
this notion in hand, we can now formulate a non-trivial result, as follows:

Theorem 9.22. Given a connected graph X, and k € N, we have the formulae
G(kX) =G(X) Sk
GHkX)=G"(X)u S
where kX = X U...U X 1is the k-fold disjoint union of X with itself.
Proof. The first formula is something well-known, which follows as well from the sec-

ond formula, by taking the classical version. Regarding now the second formula, it is
elementary to check that we have an inclusion as follows, for any finite graph X:

GH(X) . S Cc G (kX)

Regarding now the reverse inclusion, which requires X to be connected, this follows by
doing some matrix analysis, by using the commutation with u. To be more precise, let us
denote by w the fundamental corepresentation of G*(kX), and set:

W' =S wi Vgp = Y 0
ij ia,jb ab — ab
b i
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It is then routine to check, by using the fact that X is indeed connected, that we have
here magic unitaries, as in the definition of the free wreath products. Thus, we obtain:
GH(kX) Cc GT(X)n S
But this gives the result. See [13]. O
We are led in this way to the following result, from [20]:

Theorem 9.23. Consider the graph consisting of N segments.

(1) Its symmetry group is the hyperoctahedral group Hy = Zo ! Sy.
(2) Its quantum symmetry group is the quantum group Hy = Zy . Sy

Proof. Here the first assertion is clear from definitions, with the remark that the relation
with the formula Hy = G(Oy) comes by viewing the N segments as being the [—1,1]
segments on each of the N coordinate axes of RY. Indeed, a symmetry of the N-cube is
the same as a symmetry of the N segments, and so, as desired:

G(DN> = Zg l SN

As for the second assertion, this follows from Theorem 9.22 above, applied to the
segment graph. Observe also that (2) implies (1), by taking the classical version. O

Now back to the square, we have G*((J) = H), and our claim is that this is the
“good” and final formula. In order to prove this, we must work out the easiness theory
for Hy, Hy;, and find a compatibility there. We first have the following result:

Proposition 9.24. The algebra C(Hy;) can be presented in two ways, as follows:

(1) As the universal algebra generated by the entries of a 2N x 2N magic unitary
having the “sudoku” pattern w = (¢ %), with a,b being square matrices.

(2) As the universal algebra generated by the entries of a N x N orthogonal matrix
which is “cubic”, in the sense that u;ju;, = wjur; = 0, for any j # k.

As for C(Hy), this has similar presentations, among the commutative algebras.

Proof. We must prove that the algebras Ay, A. coming from (1,2) coincide.
We can define a morphism A, — A by the following formula:

p(uij) = aij — b
We construct now the inverse morphism. Consider the following elements:

2 2
Uz; + Uij Ugs — Ujj

o= Y
92 ) 62] 9

These are projections, and the following matrix is a sudoku unitary:

v (5 )

Oéij =
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Thus we can define a morphism A, — A. by the following formula:

U+ wgy u? — uy;
w<aij) = ]TJ ) w(sz) = ]Tj

We check now the fact that 1, ¢ are indeed inverse morphisms:

voluig) = (ai; — biy)
uz; + ug B Uz — g
2 2

As for the other composition, we have the following computation:

b T Ui
p(ay) = s@(%)

(aij — bij)® + (ai; — byy)
2

= aij

A similar computation gives ¢ (b;;) = b;;, which completes the proof.

We can now work out the easiness property of Hy, Hy, with respect to the cubic
representations, and we are led to the following result, which is fully satisfactory:

Theorem 9.25. The quantum groups Hy, HY are both easy, as follows:

(1) Hy corresponds to the cateqory Peyen.
(2) Hy corresponds to the category NCeyen.

Proof. These assertions follow indeed from the fact that the cubic relations are imple-

mented by the one-block partition in P(2,2), which generates NClyep.

As a final conclusion now, to the long story told here, the correct analogue of the
hyperoctahedral group Hy is the quantum group H}; constructed above, with Hy — Hy;

being a liberation, in the sense of easy quantum group theory.
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10. REFLECTION GROUPS

These quantum groups Hy and H3 belong in fact to series, depending on a parameter
s € NU {oo}, as follows:
HY =Zs15n
H =170, S
We discuss here, following [11], [44], the algebraic and analytic structure of these latter
quantum groups. The main motivation comes from the cases s = 1, 2, oo, where we recover
respectively Sy, Sy, and Hy, Hy, and the full reflection groups Ky, K.

Let us start with a brief discussion concerning the classical case. The result that we
will need, which is well-known and elementary, is as follows:

Proposition 10.1. The group HY, = Z;1 Sy of N X N permutation-like matrices having
as nonzero entries the s-th roots of unity is as follows:

(1) Hi = Sy is the symmetric group.
(2) H% = Hy is the hyperoctahedral group.
(3) HY = Ky is the group of unitary permutation-like matrices.
Proof. Everything here is clear from definitions. U
The free analogues of the reflection groups H3 can be constructed as follows:

Definition 10.2. C(Hy") is the universal C*-algebra generated by N* normal elements
u;;, subject to the following relations,
(1) u = (w) is unitary,
(2) u' = (uj;) is unitary,
(3) pij = uijuy; is a projection,
(4) Ufj = Dij,
with Woronowicz algebra maps A, e, S constructed by universality.

Here we allow the value s = oo, with the convention that the last axiom simply disap-
pears in this case. Observe that at s < oo the normality condition is actually redundant.
This is because a partial isometry a subject to the relation aa* = a® is normal. As a first
result, making the connection with H3;, we have:

Theorem 10.3. We have an inclusion as follows,
H{ Cc Hy

which is a liberation, in the sense that the classical version of HY", obtained by dividing
by the commutator ideal, is Hy.

Proof. This follows as for Oy C O} or Sy C Sy, by using the Gelfand theorem. O

In analogy with the results in section 9, we have the following result:
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Proposition 10.4. The algebras C(HY") with s = 1,2,00, and their presentation rela-
tions in terms of the entries of the matriz u = (u;;), are as follows.
(1) For C(HN") = C(S}), the matriz u is magic: all its entries are projections,
summing up to 1 on each row and column.
(2) For C(H%") = C(Hy) the matriz u is cubic: it is orthogonal, and the products of
pairs of distinct entries on the same row or the same column vanish.
(3) For C(Hy') = C(Ky,) the matriz u is unitary, its transpose is unitary, and all
its entries are normal partial isometries.

Proof. The idea here is as follows:
(1) This follows from definitions and from standard operator algebra tricks.
(2) This follows as well from definitions and from standard operator algebra tricks.
(3) This is just a translation of the definition of C(HY"), at s = oo. O

Let us prove now that Hy" with s < 0o is a quantum permutation group. For this
purpose, we must change the fundamental representation. Let us start with:

Definition 10.5. A (s, N)-sudoku matriz is a magic unitary of size SN, of the form

a o' ... a!
a* ' a® ... a2
m = .
at  a? a’
where a°, ..., a*' are N x N matrices.

The basic examples of such sudoku matrices come from the group H;. Indeed, with
w = e*™/* each of the N? matrix coordinates u;; : Hy — C takes values in the set:
S={0}u{l,w,...,w'}

Thus this coordinate decomposes as follows:

s—1
_ E r.r
r=0

Here each aj; is a function taking values in {0, 1}, and so a projection in the C*-algebra
sense, and it follows from definitions that these projections form a sudoku matrix. With
this notion in hand, we have the following result:

Theorem 10.6. The following happen:

(1) The algebra C(HY,) is isomorphic to the universal commutative C*-algebra gener-
ated by the entries of a (s, N)-sudoku matriz.

(2) The algebra C(HY") is isomorphic to the universal C*-algebra generated by the
entries of a (s, N)-sudoku matriz.
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Proof. The first assertion follows from the second one, via Theorem 10.3. In order to
prove now the second assertion, consider the universal algebra in the statement, namely:

qu)
<a” pi,qj

A=C" <afj

= (s, N) — sudoku )

Consider also the algebra C'(Hy'). According to Definition 10.2, this is presented by
certain relations R, that we will call here level s cubic conditions:

u=N x N level s cubic)

We will construct a pair of inverse morphisms between these algebras.

(1) Our first claim is that Uy; = Y w™Pay; is a level s cubic unitary. Indeed, by using
the sudoku condition, the verification of (1-4) in Definition 10.2 is routine.

(2) Our second claim is that the elements A}, = % w™uf;, with the convention
ugj = pij, form a level s sudoku unitary. Once again, the proof here is routine.

(3) According to the above, we can define a morphism ® : C(Hy") — A by the formula
®(uy) = Uy, and a morphism W : A — C(H}") by the formula W(af;) = A7

(4) We check now the fact that ®, ¥ are indeed inverse morphisms:

p
= % ; w™P ; pru:j

1
_ = (r=L)p,
= Sg W Uy
pr

As for the other composition, we have the following computation:

PU(al) = % > wruy,
— % ; w'™P ; w""qagj
_ % ; . Z W Pa)

— p
= aij

Thus we have an isomorphism C(H3") = A, as claimed. U
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Let us discuss now the interpretation of H3, Hy' as classical and quantum symmetry
groups of graphs. We will need the following simple fact:

Proposition 10.7. A sN x sN magic unitary commutes with the matrix

0 Iy 0 ... 0

0 0 Iy ... 0
Y=

0 0 0 ... Iy

Iy 0 0 ... 0

if and only if it is a sudoku matriz in the sense of Definition 10.5.

Proof. This follows from the fact that commutation with ¥ means that the matrix is
circulant. Thus, we obtain the sudoku relations from Definition 10.5 above. U

Now let Z, be the oriented cycle with s vertices, and consider the graph N Z, consisting
of N disjoint copies of it. Observe that, with a suitable labeling of the vertices, the
adjacency matrix of this graph is the above matrix 3. We obtain from this:

Theorem 10.8. We have the following results:
(1) Hy, is the symmetry group of NZs.
(2) Hy is the quantum symmetry group of NZ.
Proof. The idea here is as follows:
(1) This follows from definitions.

(2) This follows from Theorem 10.6 and Proposition 10.7, because C(Hy') is the quo-
tient of C'(S]y) by the relations making the fundamental corepresentation commute with
the adjacency matrix of N Z;. O

Next in line, we must talk about wreath products. We have here:

Theorem 10.9. We have the following results:
(1) HY = 7Zs 1 Sn.
Proof. This follows from the following formulae, valid for any connected graph X, and
explained in the previous section, applied to Z,:
G(INX) = G(X)1Sn
GT(NX) = GT(X)un Sy

Alternatively, (1) follows from definitions, and (2) can be proved directly, by construct-

ing a pair of inverse morphisms. For details here, we refer to [44]. U

Regarding now the easiness property of the quantum groups Hy,, Hy'", we already know
that this happens at s = 1,2. In general, we have the following result, from [11]:
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Theorem 10.10. The quantum groups Hi, Hy" are easy, the corresponding categories
P cP
NC®* C NC
consisting of partitions having the property
#o —#He =10(s)
as a weighted sum, in each block.
Proof. Observe that the result holds at s = 1, trivially, and at s = 2 as well, where our

condition is equivalent to # o +#e = 0(2), in each block. In general, this follows as in
the proof for Hy, H};, by using the one-block partition in P(s,s). See [11]. O

The above proof was of course quite brief, but we will not be really interested here in
the case s > 3, which is quite technical. In fact, the above result, dealing with the general
case s € N, is here for providing an introduction to the case s = oo, where we have:

Theorem 10.11. The quantum groups Ky, Ky are easy, the corresponding categories
Peven C P
NCepery C NC

consisting of partitions having the property
Yo = fhe

as a weighted equality, in each block.

Proof. This follows from Theorem 10.10, or rather by proving the result directly, a bit
as in the s = 1,2 cases, because the s = oo case is needed first, in order to discuss the
general case, s € NU {oo}. For details here, we refer once again to [11]. O

Let us discuss now, following [44], the classification of the irreducible representations
of Hy", and the computation of their fusion rules. For this purpose, let us go back to the
elements u;;, p;; in Definition 10.2 above. We recall that, as a consequence of Proposition
10.4, the matrix p = (p;;) is a magic unitary. We first have the following result:

Proposition 10.12. The elements u;; and p;; satisfy:

(1) pijuij = i

(2) u;?j = ufj_l‘

(3) wijuwipy =0 for j # k.
Proof. We use the fact that in a C*-algebra, aa® = 0 implies a = 0.

(1) This follows from the following computation, with a = (p;; — 1)u;:
aa” = (pij — 1)pi;(pij — 1)
=0
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(2) With a = uj; — ufj_l we have aa* = 0, which gives the result.
(3) With a = u;;u;, we have aa® = 0, which gives the result. O
In what follows, we make the convention u?j = pi;- We have then:

Theorem 10.13. The algebra C(Hy") has a family of N-dimensional corepresentations

{u|k € Z}, satisfying the following conditions:

(1) w, = (uf;) for any k> 0.
(2) up = upys for any k € Z.
(3) ar = u_y, for any k € Z.

Proof. The idea here is as follows:

(1) Let us set u, = (uy;). By using Proposition 10.12 (3), we have:

k E

We have as well, trivially, the following two formulae:
e(ug;) = by

kN _  xk

S (%g) = Uj;

(2) This follows once again from Proposition 10.12 (3), as follows:

“Z’Jrs = “fj“fj
= Ufjpzj
(3) This follows from Proposition 10.12 (2), and we are done. 0

Let us compute now the intertwiners between the various tensor products between the
above corepresentations u;. For this purpose, we make the assumption N > 4, which
brings linear independence. In order to simplify the notations, we will use:

Definition 10.14. Foriy,...,1; € Z we use the notation
Uiy gy = Uiy O .o Q) Uy,
where {u;|i € Z} are the corepresentations in Theorem 10.13.

Observe that in the particular case iy,...,i; € {£1}, we obtain in this way all the
possible tensor products between u = u; and @ = u_;, known by [147] to contain any
irreducible corepresentation of C(H3"). Here is now our main result:
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Theorem 10.15. We have the following equality of linear spaces
p € NC(ir .. i, jr .- .jl)}

where the set on the right consists of elements of NC(k,l) having the property that in
each block, the sum of © indices equals the sum of 7 indices, modulo s.

Hom(u;, iy, uj,..5,) = span {Tp

Proof. This result is from [44], the idea of the proof being as follows:

(1) Our first claim is that, in order to prove D, we may restrict attention to the case
k = 0. This follow indeed from the Frobenius duality isomorphism.

(2) Our second claim is that, in order to prove D in the case k = 0, we may restrict
attention to the one-block partitions. Indeed, this follows once again from a standard
trick. Consider the following disjoint union:

k=011...7%

This is a set of labeled partitions, having property that each p € N is noncrossing,
and that for p € NCj, any block of p is in NCy. But it is well-known that under these
assumptions, the global algebraic properties of NCy can be checked on blocks.

(3) Proof of D. According to the above considerations, we just have to prove that the
vector associated to the one-block partition in NC(I) is fixed by w;,. ;,, when:

sljv+ ...+
Consider the standard generators e,, € My (C), acting on the basis vectors by:
eap(€c) = Opeea
The corepresentation u;, . j, is given by the following formula:
Uy, = Z Z uillbl .. .ufflbl ® €arpy D ... D eqp,
ai...ap by..by
As for the vector associated to the one-block partition, this is:

ézzZe;@l

b
By using now several times the relations in Proposition 10.12, we obtain, as claimed:

u, 5, (1®&) = Z Zuf;lb o uf}lb Req V... R eq

ai...a; b
_ E Jit.. 4 ®l
- uab ®ea
ab

= 1®¢§
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(4) Proof of C. The spaces on the right in the statement form a Tannakian category
in the sense of [148], so they correspond to a certain Woronowicz algebra A.

This algebra is by definition the maximal model for the Tannakian category. In other
words, it comes with a family of corepresentations {v;}, such that:

pE NCS(il---ikajl---jl)}

On the other hand, the inclusion D that we just proved shows that C(H3") is a model
for the category. Thus we have a quotient map as follows:

A— C(H3)

Vi — Uy

Hom(vi, .i,, vj,..5,) = span {Tp

But this latter map can be shown to be an isomorphism, by suitably adapting the proof
from the s = 1 case, for the quantum permutation group Sy. See [11], [44]. O

As an illustration for the above result, we have the following statement:

Theorem 10.16. The basic corepresentations ug, . .., us_1 are as follows:

(1) uy,...,us—q are irreducible.

(2) ug = 1+ rg, with ro irreducible.

(3) ro,u1, ..., us_1 are distinct.
Proof. We apply Theorem 10.15 with k =1 =1 and 4y, = i, j; = j. This gives:

dim(Hom(u;, uj)) = #NCs(1, j)
We have two candidates for the elements of NC(i,7), namely the two partitions in

NC(1,1). So, consider these two partitions, with the points labeled by i, j:

We have to check for each of these partitions if the sum of ¢ indices equals or not the
sum of j indices, modulo s, in each block. The answer is as follows:

p € NCs(i,j) <= i=]j
q€ NCs(i,j) <= i=j=0
By collecting together these two answers, we obtain:
0 ifi#y
#NCs(i,7) =11 ifi=35#0
2 ifti=353=0
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Now (1) follows from the second equality, (2) follows from the third equality and from
the fact that we have 1 € u,, and (3) follows from the first equality. O

Let us record as well, as a second consequence, the following result:
Theorem 10.17. We have the formula

where the set on the right consists of noncrossing partitions of {1, ..., k} having the prop-
erty that the sum of indices in each block is a multiple of s.
Proof. This is clear indeed from Theorem 10.15 above. O

We can now compute the fusion rules for Hy". The result here, from [44], is as follows:
Theorem 10.18. Let F' =< Z, > be the words over Zs, with involution
(17 .. i) = (—ig) ... (—101)
and with fusion product given by:
(1. i) (1) =d1. ikl + 71)J2- - Ji

The irreducible representations of HY" can then be labeled r, with x € F, such that the
inwvolution and fusion rules are ¥, = rz and

e ® ry = § Tow + Tyaw
T=VZ,Yy=ZwW

and such that we have r; = u; — 6,01 for any i € Z.

Proof. This basically follows from Theorem 10.15, the idea being as follows:

(1) Consider the monoid A = {a,|r € F'}, with multiplication a,a, = a,,. We denote
by NA the set of linear combinations of elements in A, with coefficients in N, and we
endow it with fusion rules as in the statement:

ay @ Ay = E Ay + Ay
T=VZ,Yy=ZwW

With these notations, (NA, +, ®) is a semiring. We will use as well the set ZA, formed
by the linear combinations of elements of A, with coefficients in Z. The above tensor
product operation extends to ZA, and (ZA, +,®) is a ring.

(2) Our claim is that the fusion rules on ZA can be uniquely described by conversion
formulae as follows, with C being positive integers, and D being integers:

J1---J1
ah ®alk § : E :Czl ’Lka’jln-jl

I j1-J1

E E J1---J1 X
a/ll A Dzl zkajl . ® a]l

I J1...01
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Indeed, the existence and uniqueness of such decompositions follow from the definition
of the tensor product operation, and by recurrence over k for the D coefficients.

(3) Our claim is that there is a unique morphism of rings ® : ZA — R, such that
®(a;) = r; for any i. Indeed, consider the following elements of R:

, E E : g1t ,
Tiy.ip = Dz1 Zkrjl S QT
I ji-di

In case we have a morphism as claimed, we must have ®(a,) = r, for any € F. Thus
our morphism is uniquely determined on A, so it is uniquely determined on ZA.

In order to prove the existence, we can set ®(a,) = r, for any x € F, then extend ® by
linearity to the whole ZA. Since ® commutes with the above conversion formulae, which
describe the fusion rules, it is indeed a morphism.

(4) Our claim is that ® commutes with the linear forms x — #(1 € z). Indeed, by
linearity we just have to check the following equality:

#(1 6ai1®...®aik) :#(1 67’@1@...@7“7%)

Now remember that the elements r; are defined as r; = u; — d;01. So, consider the
elements ¢; = a; + d;01. Since the operations r; — u; and a; — ¢; are of the same nature,
by linearity the above formula is equivalent to:

#(1 EC“®®C%):#(1 Eu“®®ulk)

Now by using Theorem 10.15, what we have to prove is:

#(1 €c, ®... ®Clk) = #NCS(’Ll . Zk)

In order to prove this formula, consider the product on the left:

P = (CLil + (51'101) (24 (CLiQ + (51'201) ®...Q (aik + (Slkol)

This quantity can be computed by using the fusion rules on A. A recurrence on k shows
that the final components of type a, will come from the different ways of grouping and
summing the consecutive terms of the sequence (iy,...,i), and removing some of the
sums which vanish modulo s, as to obtain the sequence x. But this can be encoded by
families of noncrossing partitions, and in particular the 1 components will come from the
partitions in NCs(iy .. .ix). Thus #(1 € P) = #NCs(iy .. .14x), as claimed.

(5) Our claim now is that ® is injective. Indeed, this follows from the result in the
previous step, by using a standard positivity argument:

P(a)=0 = P(aa™)=0
= #(leP(aa’))=0
= #(leaa")=0
= a=0
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Here « is arbitrary in the domain of ®, we use the notation af = az, where a — #(1, a)
is the unique linear extension of the operation consisting of counting the number of 1’s.
Observe that this latter linear form is indeed positive definite, according to the identity
#(1,a,a;) = 04y, which is clear from the definition of the product of ZA.

(6) Our claim is that we have ®(A) C R;,. This is the same as saying that r, € Ry,
for any x € F, and we will prove it by recurrence on the length of x.
Assume that the assertion is true for all the words of length < k, and consider an
arbitrary length k& word, x =1 ...1;,. We have:
Uiy @ iy iy = O F Qiyyigig...ix T Oiytin,00is. ik
By applying ® to this decomposition, we obtain:
Tiy @ Tig. iy, = To T Tiytioig...ix T 0iyti,07is...ix
We have the following computation, which is valid for y = iy + 19,13 . .. 1, as well as for
Yy =13...14; in the case i; + 15 = 0:
#(ry €Eriy Orig.iy) = #(L, 15 @13 ®1iy4,)
= #(1,a5 ® a;, @ Gy 4,)
= #(ay € iy ® aizn-ik)
=1
Moreover, we know from the previous step that we have r;, 4, is. iy 7 Tis.ip, SO We
conclude that the following formula defines an element of R*:
o = ril ® T’iz...ik - ri1+i2,i3...ik - 5i1+i2,0ri3...ik
On the other hand, we have o = r,, so we conclude that we have r, € R™. Finally, the
irreducibility of r, follows from the following computation:
#(1 S ®77x) = #(1 S ®Ti)
— #(1 E ax ® a@)
= #(l€a,®a,)
=1
(7) Summarizing, we have constructed an injective ring morphism:
®:7ZA— R
CD(A) C R;r
The remaining fact to be proved, namely that we have ®(A) = R;,,, is clear from the
general results in [147]. Indeed, since each element of NA is a sum of elements in A,
by applying ® we get that each element in ®(NA) is a sum of irreducible corepresenta-

tions in ®(A). But since ®(NA) contains all the tensor powers between the fundamental
corepresentation and its conjugate, we get ®(A) = R;,.., and we are done. U
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Let us discuss now the computation of the asymptotic laws of characters. We begin
with a discussion for Hy, from [20], which has its own interest:

Theorem 10.19. The asymptotic law of x; for the group Hy is given by
s =L (t/2)k+2p
—t
=< D 0D
| |
o = Uk p)ip!
where 0y, is the Dirac mass at k € 7.

Proof. We regard the hyperoctahedral group Hy as being the symmetry group of the
graph Iy = {I',..., IV} formed by N segments. The diagonal coefficients are then:

0 if g moves I°
ui(g) = { +1if g fixes I
—1if g returns I

Let s = [tN], and denote by 1 g, g the number of segments among {I', ... I*} which
are fixed, respectively returned by an element g € Hy. With this notation, we have:

Uy + .o F Uss :Tg_ig

We denote by Py probabilities computed over the group Hy. The density of the law
of uyy + ...+ ug at a point £ > 0 is given by the following formula:

D(k) = Pn(tg—1g=k)
= > Px(tg=k+plg=p)
p=0

Assume first £ = 1. We use the fact that the probability of ¢ € Sy to have no fixed
points is asymptotically Py = % Thus the probability of o € Sy to have m fixed points
In terms of probabilities over Hy, we obtain:

is asymptotically P +m = (e;u

=

. . k+2p
— k+2p —
Jim D(k) = lim p§:0(1/2) (k p) Py(tg+Lg=Fk+2p)
Zoo k +2p 1
= k+p ) e(k+2p)

B 100 (1/2)k+2p
epz(kﬂ?)‘p'
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The general case t € (0,1] follows by performing some modifications in the above
computation. The asymptotic density is computed as follows:

. . - k+2p
— k+2p —
tm o) = g S0 () g Lo =2
—
— i 1/2 k+2p (k + 2]9) thep
pard k+p ) et(k+2p)
_ - i t/2 k+2p
p:() k; —+ p 'p'

On the other hand, we have D(—k) = D(k), so we obtain the result. O

Observe that the measure found above is of the form:

Next, we have the following result, once again from [20]:
Theorem 10.20. The Bessel laws by have the additivity property
bs * by = bspy
so they form a truncated one-parameter semigroup with respect to convolution.

Proof. The Fourier transform of b, is given by:

[e.e]

Fo(y) =e" D e filt/2)

k=—o00

We compute now the derivative with respect to ¢:

—t o0

Fh(y) = —Fbi(y) + 5 Y & fi(t/2)

k=—o00
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On the other hand, the derivative of f; with k£ > 1 is given by:

fit) =

i (k + 2p)tk+2p—1
s (k+p)'p!

(k, +p>tk+2p—1 o ptk—l—Qp—l
Ip! Ip!
< (k+p)p! s (k+p)'p!

NE

p:
i tht2p—1 N i tht2p—1
= (k+p—1)p! ~ (k+p)(p—1)!

t(k=1)+2p o t(k+1)+2(p—1)

1M)#

[e=]

(CEOERT 2 (k+1)+(@-1))p-1)

p=1

Je1(t) + fresa(t)

This computation works in fact for any k, so we get:

Fby(y)'

Thus the log of the Fourier transform is linear in ¢, and we get the assertion.

In order to discuss now the free analogue f; of the above measure b;, as well as the
s-analogues 07, 37 of the measures b, B;, we need some free probability. We have the

—t oo

= —Fb(y)+ - D M (t/2) + frn(t/2))

2

k=—00

= PN+ S ) )

k=—o00
eV +e?

= —Fb(y) + —— Fbu(y)
— (M _ 1) Fbt(y)

2

following notion, extending the Poisson limit theory from section 5:

Definition 10.21. Associated to any compactly supported positive measure p on R are

the probability measures

where ¢ = mass(p), called compound Poisson and compound free Poisson laws.

In what follows we will be interested in the case where p is discrete, as is for instance
the case for p = ¢, with ¢ > 0, which produces the Poisson and free Poisson laws.

1 *n
pp, = lim (1—£>50+—p
n—+00 n n

c 1 Hn
%ZE&(@—;>%+50
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The following result allows one to detect compound Poisson/free Poisson laws:

Proposition 10.22. For p = Zle ¢i0,, with ¢; > 0 and z; € R we have

F,,(y) = exp <Z ci(e¥ — 1)>

R (y) =Y —

prih

where F', R denote respectively the Fourier transform, and Voiculescu’s R-transform.

Proof. Let i, be the measure in Definition 10.21, under the convolution signs:
c 1

= (1= Yo L

n n

In the classical case, we have the following computation:

& 1 ® iuz:
Fu,(y) = <1_ﬁ>+ﬁzci€yl

=1

= Fun(y) = <<1 - %) + %Zcieiy%)
— I, (y) =exp (Z ci(e™ — 1))

=1

In the free case now, we use a similar method. The Cauchy transform of u, is:

eyl 1S ¢
Gu©=(1-2)2+=3 =
.U‘n(f) n f + n p 5_ 2
Consider now the R-transform of the measure p&", which is given by:

Ran(y) = nR, (y)

The above formula of G, shows that the equation for R = R @n is as follows:

S

c 1 1 C;
(1_ﬁ> y—l—i-R/n—i_ﬁZy_l—l—R/n—zi:y

=1

S

c 1 1 C;
— 1——)— l i —1
( n 1+yR/n+nzl+yR/n—yzi

i=1
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Now by multiplying by n, rearranging the terms, and letting n — oo, we get:

s

C-'-ZJR _Z Ci
1+yR/n 1+yR/n—yz

i=1

s

Ci
— Rﬂ_ =
c+yRa,(y) ; pm—
® CiZ;
— Rﬂ_ =
() z; Iy
This finishes the proof in the free case, and we are done. O

We have as well the following result, providing an alternative to Definition 10.21:

Theorem 10.23. For p =3 _, ¢;0,, with ¢; > 0 and z; € R we have

Pp/ T, = law (Z ziai>
i—1

where the variables o are Poisson/free Poisson(c;), independent/free.

Proof. Let a be the sum of Poisson/free Poisson variables in the statement. We will show
that the Fourier/R-transform of « is given by the formulae in Proposition 10.22.
Indeed, by using some well-known Fourier transform formulae, we have:

Fo(y) =exp(ci(e¥ — 1)) = F.a,(y) = exp(c;(e¥* — 1))

— Fu(y) = exp (Z (e - 1))

i=1
Also, by using some well-known R-transform formulae, we have:

Ci CiZ;
Ra- = - Rz-a- -
() =2 ) = T
z CiZ;
— ROL =
(v) ; Ty
Thus we have indeed the same formulae as those in Proposition 10.22. Il

We can go back now to quantum reflection groups, and we have:

Theorem 10.24. The asymptotic laws of truncated characters are as follows, where €
with s € {1,2,...,00} is the uniform measure on the s-th roots of unity:

(1) For Hj, we obtain the compound Poisson law b] = pye, .
(2) For H}" we obtain the compound free Poisson law [ = m.,.

These measures are in Bercovici-Pata bijection.
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Proof. This follows from easiness, and from the Weingarten formula. To be more precise,
at t = 1 this follows by counting the partitions, and at ¢t € (0, 1] general, this follows in
the usual way, for instance by using cumulants. For details here, we refer to [11]. O

The Bessel and free Bessel laws have particularly interesting properties at the parameter
values s = 2,00. So, let us record the precise statement here:
Theorem 10.25. The asymptotic laws of truncated characters are as follows:

(1) For Hy we obtain the real Bessel law by = pye,.

(2) For Ky we obtain the complex Bessel law By = pye, .

(3) For Hy; we obtain the free real Bessel law By = m.,.

(4) For K}, we obtain the free complex Bessel law By = .. .

Proof. This follows indeed from Theorem 10.24 above, at s = 2, co. ]

Our next task will be that upgrading our results about 7; in this setting, using a
parameter s € NU {oco}. We have here the following result:

Theorem 10.26. The moments of the various central limiting measures, namely

Bts Vi I

bf gt Gy

are always given by the same formula, involving partitions, namely
we ¥
weD(k)

where the sets of partitions D(k) in question are respectively

NCS NCQ NC2
p# Py Ps
and where |.| is the number of blocks.
Proof. This follows by putting together the various moment results that we have. U

As already mentioned, in what regards the Bessel and free Bessel laws b7, 57, the im-
portant particular cases are s = 1,2,00. It is therefore tempting to leave one of these 3
cases aside, and fold the corresponding diagram into a cube.
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Quite surprisingly, in order to do so, in a correct way, the case which must be left aside
is the most important one, namely s = 1, corresponding to the Poisson and free Poisson
laws p;, m. We will comment later on this, but let us just start by doing so:

Theorem 10.27. The moments of the various central limiting measures, namely
B —— I}

e

Bt Vi

B, Gy
b ————

are always given by the same formula 1mwvolving partitions, namely

— Y ¢

weD(k)
where the sets of partitions D(k) in question are respectively

Nceven -~ NC2

e'uen

Proof. This follows by putting together the various moment results that we have. O

even

PEU@TL

and where |.| is the number of blocks.

In addition to what has been said above, there are as well some interesting results
about the Bessel and free Bessel laws involving the multiplicative convolution x, and the
multiplicative free convolution X from [136]. For details, we refer here to [11].
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11. LIBERATION THEORY

We have seen in the previous section that the basic reflection groups H3 = Zs! Sy
have free analogues Hy' = Z l. S¥, and that the theory of these quantum groups, both
classical and free, is very interesting, algebrically and analytically speaking.

The world of quantum reflection groups is in fact much wider than this. In the classical
case already, the classification theorem for the complex reflection groups, a celebrated
result by Shephard and Todd [128], from the 50s, is as follows:

Theorem 11.1. The irreducible complex reflection groups are

H = {U e H3|(det U)e = 1}

along with 34 exceptional examples.

Proof. This is something quite advanced, and we refer here to the paper of Shephard and
Todd [128], and to the subsequent literature on the subject. O

In the general quantum case now, the axiomatization and classification of the quantum
reflection groups is a key problem, which is not understood yet. We will be interested
in what follows in the “twistable” case, where the theory is more advanced than in the
general case. Let us start with the following definition:

Definition 11.2. A closed subgroup G C Uy; is called:

(1) Half-homogeneous, when it contains the alternating group, Ay C G.
(2) Homogeneous, when it contains the symmetric group, Sy C G.
(3) Twistable, when it contains the hyperoctahedral group, Hy C G.

These notions are mostly motivated by the easy case. Here we have by definition
Sy C G C Uy, and so our quantum group is automatically homogeneous. The point now
is that the twistability assumption corresponds to the following condition, at the level of
the associated category of partitions D C P:

D C PE’UCTL

We recognize here the condition which is needed for performing the Schur-Weyl twisting
operation, explained in section 9 above, and based on the signature map:

€ Popen — {1}

As a conclusion, in the easy case our notion of twistability is the correct one. In general,
there are of course more general twisting methods, usually requiring ZY C G only. But
in the half-homogeneous case, the condition ZY C G is equivalent to Hy C G.

With this discussion done, let us formulate now the following definition:
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Definition 11.3. A twistable quantum reflection group is an intermediate subgroup
Hy C K C K},
between the group Hy = Zo ! Sy, and the quantum group K =T, Sf.

Here is now another definition, which is important for general compact quantum group
purposes, and which provides motivations for our formalism from Definition 11.3:

Definition 11.4. Given a closed subgroup G C Uy which is twistable, in the sense that
we have Hy C G, we define its associated reflection subgroup to be

K=GnK}
with the intersection taken inside Uy,. We say that G appears as a soft liberation of its

classical version Guess = G N Uyn when G =< Ggss, K >

These notions are important in the classification theory of compact quantum groups,
and in connection with certain noncommutative geometry questions as well. As a first
observation, with K being as above, we have an intersection diagram, as follows:

K G

Kclass Gclass

The soft liberation condition states that this diagram must be a generation diagram.
We will be back to this in a moment, with some further theoretical comments. Let us
work out some examples. As a basic result, we have:

Theorem 11.5. The reflection subgroups of the basic unitary quantum groups

Un Uy Uy

On Ox o
are as follows,

Ky K3, K}

Hy Hy HY,

and these unitary quantum groups all appear via soft liberation.
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Proof. The fact that the reflection subgroups of the quantum groups on the left are those
on the right is clear in all cases, with the middle objects being by definition:
Hy = HyvN Oy
Ky =KynUy
Regarding the second assertion, things are quite tricky here, as follows:

(1) In the classical case there is nothing to prove, because any classical group is by
definition a soft liberation of itself.

(2) In the half-classical case the results are non-trivial, but can be proved by using the
technology developed by Bichon and Dubois-Violette in [54].

(3) In the free case the results are highly non-trivial, and the only known proof so far
uses the recurrence methods developed by Chirvasitu in [68]. u

Summarizing, we are here into recent and interesting quantum group theory. We will
discuss a bit later the concrete applications of Theorem 11.5. There is a connection here
as well with the notion of diagonal torus, introduced in section 1 above. We can indeed
refine Definition 11.4, in the following way:

Definition 11.6. Given Hy C G C Uy, the diagonal tori T = G N'T}, and reflection
subgroups K = G N K3, for G and for Guuss = G N Uy form a diagram as follows:

T K G

Tclass

Kclass

Gclass

We say that G appears as a soft/hard liberation when it is generated by Geqass and by
K/T, which means that the right square/whole rectangle should be generation diagrams.

It is in fact possible to further complicate the picture, by adding free versions as well,
with these free versions being by definition given by the following formula:

Gree =< G, S% >

Importantly, we can equally add the parameter N € N to the picture, the idea being
that we have a kind of “ladder”, whose steps are the diagrams in Definition 11.6, perhaps
extended with the free versions too, at fixed values of N € N.

The various generation and intersection properties of this ladder are important proper-
ties of G = (Gy) itself, with subtle relations between them. In fact, as already mentioned
in the proof of Theorem 11.5 above, the proof of the soft generation property for O, Uy
uses in fact this ladder, via the recurrence methods developed in [68].
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All this is quite technical, so as a concrete result in connection with the above hard
liberation notion, we have the following statement, improving Theorem 11.5:

Theorem 11.7. The diagonal tori of the basic unitary quantum groups

Un Uy Uy

On Ox o
are as follows,

Ty T T,

Tn TN Ty

and these unitary quantum groups all appear via hard liberation.

Proof. The first assertion is something that we already know, from section 1 above. As
for the second assertion, this can be proved by carefully examining the proof of Theorem
11.5, and performing some suitable modifications, where needed. O

As an interesting remark, some subtleties appear in the following way:

Proposition 11.8. The diagonal tori of the basic quantum reflection groups

Ky K3 K}

Hy Hy, HY,
are as follows,

Ty T T,

Tn TX% Ty

and these quantum reflection groups do not all appear via hard liberation.
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Proof. The first assertion is clear, for instance as a consequence of Theorem 11.7, because
the diagonal torus is the same for a quantum group, and for its reflection subgroup:
GNTL=(GNKy)NTL
Regarding the second assertion, things are quite tricky here, as follows:

(1) In the classical case the hard liberation property definitely holds, because any
classical group is by definition a hard liberation of itself.

(2) In the half-classical case the answer is again positive, and this can be proved by
using the technology developed by Bichon and Dubois-Violette in [54].

(3) In the free case the hard liberation property fails, due to some intermediate quantum
groups H][\?O], K][\?o], where “hard liberation stops”. We will be back to this. U

As a conjectural solution to these latter difficulties, coming from Proposition 11.8, we
have the notion of Fourier liberation, that we will discuss now. Let us first discuss the
group dual subgroups of the arbitrary compact quantum groups G' C Uy;,. To start with,
we have the following basic statement:

Proposition 11.9. Let G C Uy be a compact quantum group, and consider the group
dual subgroups AcC G, also called toral subgroups, or simply “tori”.
(1) In the classical case, where G C Uy is a compact Lie group, these are the usual
tori, where by torus we mean here closed abelian subgroup.
(2) In the group dual case, G = T with T =< J1,---,9n > being a discrete group,
these are the duals of the various quotients I' — A.

Proof. Both these assertions are elementary, as follows:

(1) This follows indeed from the fact that a closed subgroup H C Uy is at the same
time classical, and a group dual, precisely when it is classical and abelian.

(2) This follows from the general propretles of the Pontrjagin duality, and more precisely
from the fact that the subgroups AcT correspond to the quotients I' — A. U
At a more concrete level now, most of the tori that we met appear as diagonal tori.
However, for certain quantum groups like the bistochastic ones, or the quantum permu-

tation group ones, this torus collapses to {1}, and so it cannot be of use in the study of
G. In order to deal with this issue, the idea, from [41], will be that of using:

Proposition 11.10. Given a closed subgroup G C Uy and a matriz Q € Uy, we let
Ty C G be the diagonal torus of G, with fundamental representation spinned by Q:

C(Tg) = C(G) [ {(Qua); = 0]vi # )

This torus is then a group dual, Ty = /A\Q, where Ag =< g1, ...,gn > 18 the discrete group
generated by the elements g; = (QuQ*);i, which are unitaries inside C(1g).
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Proof. This follows indeed from our results, because, as said in the statement, Tj; is by
definition a diagonal torus. Equivalently, since v = Qu@Q* is a unitary corepresentation,
its diagonal entries g; = v;;, when regarded inside C'(Ty), are unitaries, and satisfy:

Algi) = 9 ® g;

Thus C(TY) is a group algebra, and more specifically we have C(Ty) = C*(Ag), where
Ag =< g1,...,gn > is the group in the statement, and this gives the result. U

Summarizing, associated to any closed subgroup G C Uy is a whole family of tori,
indexed by the unitaries U € Uy. As a first result regarding these tori, we have:

Theorem 11.11. Any torus T' C G appears as follows, for a certain () € Uy:
TclyopcG
In other words, any torus appears inside a standard torus.

Proof. Given a torus T C G, we have an inclusion T'C G C Uy;. On the other hand, we

know that each torus T = A C Uy, coming from a discrete group A =< gy,..., gy >, has
a fundamental corepresentation as follows, with Q) € Uy:

u = Qdiag(g,...,9n)Q"
But this shows that we have T' C Tj, and this gives the result. 4
Let us do now some computations. In the classical case, the result is as follows:
Proposition 11.12. For a closed subgroup G C Uy we have
To =GN (QTYQ)
where TV C Uy is the group of diagonal unitary matrices.

Proof. This is indeed clear at () = 1, where I'; appears by definition as the dual of the
compact abelian group G N TY. In general, this follows by conjugating by Q. 0

In the group dual case now, we have the following result, from [47]:

Proposition 11.13. Given a discrete group I' =< g1, ..., gy >, consider its dual compact
quantum group G =T, diagonally embedded into Uy;. We have then

Ao =T/ {g: = 55| 3k, Qus # 0, Q1 #0)

with the embedding Ty C G = r coming from the quotient map I' — Aq.
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Proof. Assume indeed that I' =< ¢y,...,gny > is a discrete group, with T c Uy coming
via u = diag(gy, ..., gn). With v = QuQ*, we have:

ZQsivsk - ZQsiQst@ktgt

st
= Z 0it Qrt e
t

= Qkigi
Thus v;; = 0 for ¢ # j gives QriVi = Qrigi, which is the same as saying that Qp; # 0
implies g; = vg,. But this latter equality reads:

9i = Z 1Qkil*g;
J

We conclude from this that Q; # 0,Qk; # 0 implies g; = g;, as desired. As for the
converse, this is elementary to establish as well. U

In view of the above, we can expect the collection {T|Q € Un} to encode various
algebraic and analytic properties of G. We have the following result, from [41]:

Theorem 11.14. The following results hold, both for the compact Lie groups, and for the
duals of the finitely generated discrete groups:

(1) Generation: any closed quantum subgroup G C Uy has the generation property
G =<Ty|Q € Uy >. In other words, G is generated by its tori.

(2) Characters: if G is connected, for any nonzero P € C(Q)centrar there ezists Q € Uy
such that P becomes nonzero, when mapped into C(1g).

(3) Amenability: a closed subgroup G C Uy, is coamenable if and only if each of the
tori Ty is coamenable, in the usual discrete group sense.

(4) Growth: assuming G C Uy, the discrete quantum group G has polynomial growth
if and only if each the discrete groups Ty has polynomial growth.

Proof. In the classical case, where G C Uy, the proof is elementary, based on standard
facts from linear algebra, and goes as follows:

(1) Generation. We use the following formula, established above:
To =GNQTYQ
Since any group element U € G is diagonalizable, U = Q*DQ with Q € Uy, D € TV,
we have U € Ty for this value of () € Uy, and this gives the result.

(2) Characters. We can take here Q € Uy to be such that QT'Q* C TV, where T' C Uy
is a maximal torus for G, and this gives the result.

(3) Amenability. This conjecture holds trivially in the classical case, G C Uy, due to
the fact that these latter quantum groups are all coamenable.
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(4) Growth. This is something nontrivial, well-known from the theory of compact Lie
groups, and we refer here for instance to the literature.

Regarding now the group duals, here everything is trivial. Indeed, when the group duals
are diagonally embedded we can take () = 1, and when the group duals are embedded by
using a spinning matrix () € Uy, we can use precisely this matrix Q). O

The various statements above are conjectured to hold for any compact quantum group.
We refer to [41] and to subsequent papers for a number of verifications, notably covering
many basic examples of easy quantum groups, as well as half-liberations.

Let us focus now on the generation property. We will need:

Proposition 11.15. Given a closed subgroup G C Uy, and a matriz Q € Uy, the corre-
sponding standard torus and its Tannakian category are given by

T,=GNT,
OTQ =< Cg,CTQ >

where Tg C Uy is the dual of the free group Fy =< g1,...,gn >, with the fundamental
corepresentation of C(Tg) being the matriz v = Qdiag(gi, - .., gn)Q*.

Proof. The first assertion comes from the well-known fact that given two closed subgroups
G, H C U}, the corresponding quotient algebra C(Uy) — C(G'N H) appears by dividing
by the kernels of both the quotient maps

CUy) = C(G) , C(Uy) = C(H)

Indeed, the construction of Ti; amounts precisely in performing this operation, with H =
Tg, and so we obtain T = G'N Ty, as claimed. As for the Tannakian category formula,
this follows from this, and from the general duality formula Cgrng =< Cg, Cy >. O

We have the following Tannakian reformulation of the generation property:

Theorem 11.16. Given a closed subgroup G C Uy, the subgroup
G =< TQlQ e Uy >

generated by its standard tori has the following Tannakian category:

CG/ = m < CGf,C']I‘Q >
QeUn

In particular we have G = G' when this intersection reduces to Cg.

Proof. Consider indeed the subgroup G’ C G constructed in the statement. We have:
Co= () Cr,

Together with the formula in Proposition 11.15, this gives the result. U
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The above result can be used for investigating the toral generation conjecture, but the
combinatorics is quite difficult, and there are no results yet, along these lines. Let us
further discuss now the toral generation property, with some modest results, regarding its
behaviour with respect to product operations. We first have:

Proposition 11.17. Given two closed subgroups G, H C Uy, and Q € Uy, we have:
<Tg(G), To(H) >C To(< G, H >)
Also, the toral generation property is stable under the operation <, >.

Proof. The first assertion can be proved either by using Theorem 11.16, or directly. For
the direct proof, which is perhaps the simplest, we have:

To(G)=GNTg C<G,H>NTg =To(< G, H >)
We have as well the following computation:
To(H)=HNTy C<G,H>NTg=Ty(< G, H >)

Now since A, B C C implies < A, B >C (), this gives the result. Regarding now the
second assertion, we have the following computation:

<G H> = <<Th(G)|Q € Uy >, < To(H)|Q € Uy >>
= <Tp(G),Tu(H)|Q € Uy >
= <<Tph(G), To(H) > |Q € Uy >
C <To(<G H>)QeUy >
Thus the quantum group < G, H > is generated by its tori, as claimed. U
We have as well the following result:
Proposition 11.18. We have the following formula, for any G, H and R, S':
Tres(G x H) =Tg(G) x Ts(H)
Also, the toral generation property is stable under usual products X.

Proof. The product formula is clear. Regarding now the second assertion, we have:

<To(Gx H)QeUyn > DO <Tres(GXx H)|ReUy,S Uy >
= <Tgr(G)xTs(H)|R € Uy, S €Uy >
= <Tr(G) x{1},{1} x Ts(H)|R € Uy, S € Uy >
= <Tr(G|ReUy >x<Tg(H)|H € Uy >
G x H

Thus the quantum group G x H is generated by its tori, as claimed. U
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Let us go back now to the quantum permutation groups. In relation with the tori, let
us start with the following basic fact, which generalizes the embedding D,, C S} that we
met in section 2 above, when proving that we have S} # Sy:

Proposition 11.19. Consider a discrete group generated by elements of finite order,
written as a quotient group, as follows:

Zn, % ... %Ly, — T

1

We have then an embedding of quantum groups Tc S¥%, where N = Ny + ... + N.

Proof. We have a sequence of embeddings and isomorphisms as follows:

~

I' C ZNl */\*ZNk

= Zn % ... %Ly,
~ Zn, % ... %Ln,
C Sy % ... %8N,
C Sf % ... %St
c Sy
Thus, we are led to the conclusion in the statement. U

The above result is quite abstract, and it is worth working out the details, with an
explicit formula for the associated magic matrix. Let us start with a study of the simplest
situation, where k = 1, and where I' = Zy,. The result here is as follows:

Proposition 11.20. The magic matrixz for the quantum permutation group
Zy ~ Ty C Sy C SF
with standard Fourier isomorphism on the left, is given by the formula
u=FIF*

2mi/N s the Fourier matriz, and where

where F' = \/Lﬁ(w"j) with w = e

1

N-1
is the diagonal matriz formed by the elements of Zy, regarded as elements of C*(Zy).
Proof. The magic matrix for the quantum group Zy C Sy C S}; is given by:
vij = X <O’ € ZN‘O'<j) = 1)
= 5,
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Let us apply now the Fourier transform. According to our Pontrjagin duality conven-
tions from section 1 above, we have a pair of inverse isomorphisms, as follows:

1 )
O:C(Zn) = C(Zy) , 6 — N ngkgk

v O*(ZN) — O(ZN) , gi — Zw—ik(gk
k

Here w = ¢*™/N | and we use the standard Fourier analysis convention that the indices

are 0,1,...,N —1. With F' = \/Lﬁ(wij) and I = diag(g’) as above, we have:
uj = P(vy)
1 iy
= ¥ Zw(% Pk g
k
1 ) .
_ N Z wzkgkwfjk
k
= Y Fudu(F*)
k
= (FIF");
Thus, the magic matrix that we are looking for is u = FIF*, as claimed. O
With the above result in hand, we can refine Proposition 11.19, as follows:

Theorem 11.21. Given a quotient group Zy, * ... * Zy, — I', we have an embedding
[ C Sy, with N = Ny + ...+ Ny, with magic matriz given by the formula

Fn, 1 Fy,
u =
Fr IuF5,
where Fy = \/Lﬁ(wﬁ\],) with wy = >N are Fourier matrices, and where
1
gr
I, =
gt

with g1, ..., gr being the standard generators of I
Proof. This follows indeed from Proposition 11.19 and Proposition 11.20. O
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As explained in [51], as a consequence of the orbit theory developed there, any group

dual subgroup T C S appears in the above way, from a partition N = Ny + ... + Ny,
and then a quotient group Zy, * ... * Zy, — I'. We will be back to this in section 13
below, when discussing the orbit theory developed in [51], and its applications.

In the meantime, we can recover this result, that we will need in what follows, by using
our maximal torus method. Following [12], we have indeed the following result:

Theorem 11.22. For the quantum permutation group Sy, we have:

(1) Given Q € Uy, the quotient Fx — Ag comes from the following relations:

gi=1 if >,Qu#0
gig; =1 if >, QuQu #0
9i9i9k =1 if 32, QuQuQu # 0
(2) Given a decomposition N = Ny+ ...+ Ny, for the matriz Q = diag(Fy,, ..., Fn,),
where Fy = \/Lﬁ(fij)ij with & = e*™/N s the Fourier matriz, we obtain:

AQ:ZNl*---*ZNk

(3) Given an arbitrary matriz QQ € Uy, there exists a decomposition N = Ny+. ..+ N,
such that Ag appears as quotient of Zn, * ... * Ly, .

Proof. This is more or less equivalent to the classification of the group dual subgroups
[' C S from [51], and can be proved by a direct computation, as follows:

(1) Fix a unitary matrix ) € Uy, and consider the following quantities:
C; = Zz Qi
Cij = D QilQi'l
diji = Y QuQ Qi

We write w = QuQ*, where v is the fundamental corepresentation of C'(S};). Assume
X ~{1,...,N}, and let a be the coaction of C'(S%) on C(X). Let us set:

0 = ZQﬂCSl € C(X)

]
Also, let g; = (QuQ*);; € C*(Ag). If B is the restriction of o to C*(Ag), then:
Blei) =i ® gi

Now recall that C'(X) is the universal C*-algebra generated by elements d1, . .., dy which
are pairwise orthogonal projections. Writing these conditions in terms of the linearly
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independent elements ¢; by means of the formulae 6; = ), Qu¢;, we find that the universal
relations for C'(X) in terms of the elements ¢; are as follows:

Zi cipi =1
S Zj CijPj
PiP; = Ek dijk()ok

Let /~\Q be the group in the statement. Since 3 preserves these relations, we get:

ci(gi—1)=0
cij(9ig; —1) =0
diji(9i9; — g9r) =0
We conclude from this that Ag is a quotient of Ag. On the other hand, it is immediate
that we have a coaction map as follows:

C(X) = C(X) ® C*(Ag)

Thus C(Ag) is a quotient of C(Sy). Since w is the fundamental corepresentation of Sy
with respect to the basis {¢;}, it follows that the generator w;; is sent to g; € /N\Q, while
wy; is sent to zero. We conclude that Ag is a quotient of Ag. Since the above quotient
maps send generators on generators, we conclude that Ag = /NXQ, as desired.

(2) We apply the result found in (1), with the N-element set X used in the proof there
chosen to be the following set:

X =7y U.. . UZy,

With this choice, we have ¢; = d;9 for any i. Also, we have ¢;; = 0, unless ¢, j, k belong
to the same block to @, in which case ¢;; = 9,40, and also d;j; = 0, unless ¢, j, k belong
to the same block of @, in which case d;j; = 6;1;%. We conclude from this that Ag is the
free product of k£ groups which have generating relations as follows:

99 = Givj > Ui =g
But this shows that our group is Ag = Zy, * ... * Zy,, as stated.
(3) This follows indeed from (2). See [47]. O

As already mentioned, there are many other possible ways of recovering the above
results, the standard way being via orbit theory. We will be back to this in section 13
below, when discussing the orbit theory developed in [51], and its applications.

In connection with our liberation questions now, in the quantum permutation group
case, the standard tori parametrized by Fourier matrices play a special role.

This suggests the following definition:
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Definition 11.23. Consider a closed subgroup G C Uy.

(1) Its standard tori Tp, with F = Fy, ® ... ® Fy,, and N = Ny + ... + Ny being
regarded as a partition, are called Fourier tori.

(2) In the case where we have Gy =< G5, (Tr)r >, we say that G appears as a
Fourier liberation of its classical version G¢;.

The conjecture is that the easy quantum groups should appear as Fourier liberations.
With respect to the basic examples, the situation in the free case is as follows:

1) Of, Uy are diagonal liberations, so they are Fourier liberations as well.

3

4 H;{,, K}, remain to be investigated, by using the general theory in [125].

(1)

(2) B]T,, C}; are Fourier liberations too, with this being standard.

(3) Sy is a Fourier liberation too, being generated by its tori [62], [69].
(4)

As a word of warning here, observe that an arbitrary classical group Gy C Uy is not
necessarily generated by its Fourier tori, and nor is an arbitrary discrete group dual, with
spinned embedding. Thus, the Fourier tori, and the related notion of Fourier liberation,
remain something quite technical, in connection with the easy case.

As an application of all this, let us go back to quantum permutation groups, and more
specifically to the quantum symmetry groups of finite graphs, from section 9 above. One
interesting question is whether G (X)) appears as a Fourier liberation of G(X). Generally
speaking, this is something quite difficult, because for the empty graph itself we are in
need of the above-mentioned technical results from [62], [69].

In order to discuss this, let us begin with the following elementary statement:

Theorem 11.24. In order for a closed subgroup G C Uj: to appear as G = G*(X), for
a certain graph X having N vertices, the following must happen:

(1) We must have a representation G C Uy;.

(2) This representation must be magic, G C S};.

(3) We must have a graph X having N wvertices, such that d € End(u).

(4) X must be in fact such that the Tannakian category of G is precisely < d >.

Proof. This is more of an empty statement, coming from the definition of the quantum
automorphism group G*(X), as formulated in section 9 above. O

In the group dual case, forgetting about Fourier transforms, and imagining that we
are at step (1) in the general strategy outlined in Theorem 11.24, we must compute the

Tannakian category of I' C Uy, diagonally embedded, for the needs of (3,4). We have:
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Proposition 11.25. Given a discrete group I' =< ¢1,...,gn >, embed diagonally T c
Uy, via the unitary matriz u = diag(g, ..., gn). We have then the formula

Hom (u®*, u®") = {T = (T;

Jl---jz7i1---ik)

gi1 s glk 7é 9]1 cee g]l - El---jl,il---’ik - O}
and in particular, with k =1 =1, we have the formula
End(u) = {T = (Tj)|g: # 9; — Ty =0}

with the linear maps being identified with the corresponding scalar matrices.

Proof. This is well-known, and elementary, with the first assertion coming from:
T € Hom(u®* u®) <= Tu® =u®'T
= (Tu)j i = WT)jy i
<~ T ji.irGin -9 = Gir - G Ljr . jiis.in
= Ty jirir(Gir - Gy — G- Gir) =0
As for the second assertion, this follows from the first one. O

Let us go ahead now, with respect to the general strategy outlined in Theorem 11.24,
and apply [51] in order to solve (2), and then reformulate (3,4), by using Proposition
11.25, and by choosing to put the multi-Fourier transform on the graph part. We are led
in this way into the following refinement of Theorem 11.24, in the group dual setting:

Theorem 11.26. In order for a group dual T to appear as G = GT(X), for a certain
graph X having N wvertices, the following must happen:

(1) First, we need a quotient map Zy, * ... * Zy, — L.

(2) Let u = diag(ly, ..., 1), with I, = diag(Zy,), for any .

(3) Consider also the matriz F' = diag(Fy,, - .., Fn,).

(4) We must then have a graph X having N wvertices.

(5) This graph must be such that F*dF #0 = I, = I;.
6) In fact, < F*dF > must be the category in Proposition 11.25.

(

Proof. This is something rather informal, the idea being as follows:

(1) This is what comes out from the classification result in [51], explained above, modulo
a unitary base change, as explained before.

(2) This is just a notation, with I, = diag(Zy,) meaning that I, is the diagonal matrix
formed by 1,g,¢%,...,¢" "1, with g € Zy,_ being the standard generator.

(3) This is another notation, with each Fourier matrix Fy, being the standard one,

namely Fy, = \/L]T(wij), with w = *™/Nrand with indices 0,1,..., N, — 1.

(4) This is a just a statement, with the precise graph formalism to be clarified later on,
in view of the fact that X will get Fourier-transformed anyway.
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(5) This is an actual result, our claim being that the condition d € End(u) from
Theorem 11.24 (3) is equivalent to the condition F*dF # 0 = I; = I; in the statement.
Indeed, we know that with F, I being as in the statement, we have u = F'I F*. Now with
this formula in hand, we have the following equivalences:

I'nX < du=ud
<~ dFIF*=FIF*d
< [F*dF,I]=0
Also, since the matrix [ is diagonal, with M = F*dF have:
MI=IM << (MI);;=IM);
= M;l; = I,M;;
= [M;;#0 = [, =1
We therefore conclude that we have, as desired:
I X < [F'dF £0 — I, = I]]
(6) This is the Tannakian condition in Theorem 11.24 (4), with reference to the explicit
formula for the Tannakian category of G = I' given in Proposition 11.25. U

Going ahead now, in connection with the Fourier tori, we have:
Proposition 11.27. The Fourier tori of GT(X) are the biggest quotients
Zn, * ... %Ly, =T
whose duals act on the graph, T~ X.

Proof. We have indeed the following computation, at F' = 1:
C(Ti(GT(X))) = C(GT(X))/ <uy=0,Vi#j>
(C(SD)/ < [du] = 0>]/ < sy = 0,¥i # j >
— [C(S3)] < gy = 0,%i £ >)/ < [dyu] = 0 >
= C(TW(S}))/ < [d,u] =0 >
Thus, we obtain the result, with the remark that the quotient that we are interested in
appears via relations of type d;; =1 = ¢; = g;. The proof in general is similar. U

In connection now with the above-mentioned questions, we have:

Theorem 11.28. Consider the following conditions:
(1) We have G(X) = G(X).
(2) G(X) C GT(X) is a Fourier liberation.
(3) T' ~ X implies that T is abelian.

We have then (1) <= (2) + (3).
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Proof. This is something elementary, the proof being as follows:
(1) = (2,3) Here both the implications are trivial.

(2,3) = (1) Assuming G(X) # GT(X), from (2) we know that G™(X) has at least
one non-classical Fourier torus, and this contradicts (3). 4

With this in hand, our question is whether (3) = (1) holds. We believe that this is a
good question, which in practice would make connections between the various conjectures
that can be made about a given graph X, and its quantum symmetry group G*(X).

As an illustration for the potential interest of such considerations, it is known from
[115] that the random graphs have no quantum symmetries, with this being something
highly non-trivial. Our point now is that, assuming that one day the general compact
quantum Lie group theory will solve its Weyl-type questions in relation with the tori,
and in particular know, as a theorem, that any G*(X) appears as a Fourier liberation of
G(X), this deep graph result from [115] would become accessible as well via its particular
case for the group dual subgroups, which is something elementary, as follows:

Proposition 11.29. For a graph X having N vertices, the probability for having an action
I~ X

with ' being a non-abelian group goes to O with N — oo.

Proof. This is something quite elementary, the idea being as follows:

(1) First of all, the graphs X having a fixed number N € N of vertices correspond to the
matrices d € My(0,1) which are symmetric, and have 0 on the diagonal. The probability
mentioned in the statement is the uniform one on such 0-1 matrices.

(2) Regarding now the proof, our claim is that this should come in a quite elementary
way, from the du = ud condition, as reformulated before. Indeed, observe first that in the
cyclic case, where F' = Fl is a usual Fourier matrix, associated to a cyclic group Zy, we
have the following formula, with w = e2™/V:

(F*dF);; = Z(F*)ikdklﬂj
ki
—_ Zwljfikdkl
Kl
= 3wl

k~l
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(3) In the general setting now, where we have a quotient map Zy, *...*Zy, — I', with
Ny + ...+ N, = N, the computation is similar, as follows, with w; = >™/N::

(F*dF);; = Z(F*)ikdlelj
kl
= D (Faky
ke
= Z (wNi)_ik(wNj)lj
k:i,l:g,k~l1
Here the conditions k : ¢ and [ : j refer to the fact that k,l must belong respectively
to the same matrix blocks as ¢, 7, with respect to the partition N; + ...+ Ny = N, and
k ~ [ means as usual that there is an edge between k, [, in the graph X.

(4) The point now is that with the partition Ny + ...+ Ny = N fixed, and with d €
Mny(0,1) being random, we have (F*dF);; # 0 almost everywhere in the N — oo limit,
and so we obtain I; = I; almost everywhere, and so abelianity of I', with N' — oo. U
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12. TWISTED REFLECTIONS

We discuss here the twisted analogues of the complex reflection groups, obtained by
using generalized quantum permutation groups, Sj- with F being an arbitrary finite quan-
tum space. Let us first recall from section 4 above that we have:

Definition 12.1. A finite quantum space F is the abstract dual of a finite dimensional
C*-algebra B, according to the following formula:

C(F)=B

The number of elements of such a space is by definition the number |F| = dim B. By
decomposing the algebra B, we have a formula of the following type:

C(F) = M,,(C)&...& M,,(C)

Withny = ... =ng = 1 we obtain in this way the space F = {1,... k}. Also, when k =1
the equation is C(F) = M, (C), and the solution will be denoted F' = M,,.

As explained in section 4, each such finite quantum space F’ has a counting measure,
corresponding as the algebraic level to the following integration functional, obtained by
applying the regular representation, and then the normalized matrix trace:

tr: C(F) — B(I*(F)) = C
As basic examples, for both F' = {1,..., N} and F' = My we obtain the usual trace.

In general, with C(F) = M,,(C) & ... & M,, (C), the weights of ¢r are:

2
n;

Let us also mention that the canonical trace is precisely the one making C C B a

Markov inclusion. Equivalently, the counting measure is the one making F' — {.} a
Markov fibration. For a discussion of these facts, see [2], and also [5], [22].

C; =

We will also need the definition and main properties of the quantum symmetry groups
S} of such spaces F. The result here, from section 4 as well, is as follows:

Theorem 12.2. Given a finite quantum space F', there is a uniwversal compact quantum
group S} acting on F, leaving the counting measure invariant. We have

C(Sf) = C(U§)/<,u € Hom(u®*,u),n € sz(u)>
where N = |F| and where u,n are the multiplication and unit maps of C(F'). For F =
{1,..., N} we have S} = S%. Also, for the space F = My we have S} = SOj.

Proof. This is something that we know as well from section 4, with the proof being based
on the fact that the coaction axioms for a map ® : C(F) — C(F) ® C(G), written as
®(e;) = >_;€; ® uy;, correspond to the fact that u = (u;;) must be a corepresentation,

satisfying the conditions p € Hom(u®?,u) and n € Fiz(u) in the statement. O
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For our purposes here it will be very useful to have bases and indices. We will use a
single index approach, based on the following formalism:

Definition 12.3. Given a finite quantum space F', we let {e;} be the standard multimatriz
basis of B = C(F), so that the multiplication, involution and unit of B are given by

*
ee; =¢ej , € =€ 122 €
i=i

where (i,7) — ij is the standard partially defined multiplication on the indices, with the
convention ey = 0, and where 1 — 1 s the standard involution on the indices.

To be more precise, let {e/,} C B be the multimatrix basis. We set then i = (abr), and
with this convention, the multiplication, coming from e’ e, = d,,0p.€.,, is given by:

(adr) ifr=p, b=c

(abr)(cdp) = {@

otherwise
As for the involution, coming from (e!,)* = e},, this is given by:
(a,b,7) = (b,a,7)
Finally, the unit formula comes from the following formula for the unit 1 € B:

I:Zeza

ar
Regarding now the generalized quantum permutation groups S7, the construction in
Theorem 12.2 reformulates as follows, by using the single index formalism:

Theorem 12.4. Given a finite quantum space F, with basis {e;} C C(F) as above, the
algebra C(S}) is generated by variables u;; with the following relations,

E Uik Uj1 = Up gl E Uik Uj1 = Uigp

ij=p kl=p
ZUU = (5jj ) Zuij = 03
i=i i=J
Uiy = i
with the fundamental corepresentation being the matriz v = (u;;). We call a matriz

u = (u;;) satisfying the above relations “generalized magic”.

Proof. Once again, this is something that we know from section 4 above, the idea being
that the relations y € Hom(u®? u) and n € Fiz(u) in Theorem 12.2 produce the 1st and
4th relations, then the biunitarity of u gives the 5th relation, and finally the 2nd and 3rd
relations follow from the 1st and 4th relations, by using the antipode. U
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As an illustration, consider the case F' = {1,..., N}. Here the index multiplication is
it = 1 and ij = () for 7 # j, and the involution is ¢ = ¢. Thus, our relations read:

Uikli = Ok Ui Ujp = 5ijuik
E Ui = 1 s E Ui = 1
i J
* R

We recognize here the standard magic conditions on a matrix u = (u;;).

Getting now to the point where we wanted to get, namely the quantum symmetries of
the finite “quantum” graphs, and the generalized quantum reflection groups, let us start
with the following straightforward extension of the usual notion of finite graph, from [91],
obtained by using a finite quantum space as set of vertices:

Definition 12.5. We call “finite quantum graph” a pair of type
X = (F,d)
with F being a finite quantum space, and with d € My (C).

Such a quantum graph can be represented as a colored oriented graph on {1,..., N},
with the vertices being decorated by single indices ¢ as above, and with the colors being
complex numbers, namely the entries of d. This is quite similar to the formalism from
section 9 above, but there is a discussion here in what regards the exact choice of the
colors, which are normally irrelevant in connection with our G*(X) problematics, and so
can be true colors instead of complex numbers. More on this later.

With the above notion in hand, we have the following definition, also from [91]:
Definition 12.6. The quantum automorphism group of X = (F,d) is the subgroup
G*(X) c S}
obtained via the relations du = ud.

We refer to [91] and to [132] for more on this notion, and for a number of advanced
computations, in relation with the free wreath products.

At an elementary level, a first problem is that of working out the basics of the cor-
respondence X — G7(X), following [6]. There are 5 things to be done here, namely
simplices, complementation, color independence, multi-simplices, and reflections.

Let us start with the simplices. The result here is as follows:
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Theorem 12.7. Given a finite quantum space F, we have
G+<Fempty) - G+(FfUll) - S;

where Feppyy s the empty graph, coming from the matriz d = 0, and where Fyy is the
simplex, coming from the matric d = NP, — 1y.

Proof. This is something quite tricky, the idea being as follows:

(1) First of all, the formula G*(F,,) = Sf is clear from definitions, because the
commutation of u with the matrix d = 0 is automatic.

(2) Regarding G*(Fyu) = S7, let us first discuss the classical case, F' = {1,...,N}.
Here the simplex F',; is the graph having having edges between any two vertices, whose
adjacency matrix is d = Iy — 1y, where Iy is the all-1 matrix. The commutation of u
with 1y being automatic, and the commutation with Iy being automatic too, u being
bistochastic, we have [u,d] = 0, and so G (Fy,) = S7 in this case, as stated.

(3) In the general case now, we know from Theorem 12.2 that we have n € Fix(u),
with 7 : C — C(F) being the unit map. Thus we have P, € End(u), and so [u, P;] =0 is
automatic. Together with the fact that in the classical case we have the formulaly = NPy,
this suggests to define the adjacency matrix of the simplex as being d = NP, — 15, and
with this definition, we have G (Fy,;) = Sf, as claimed.

(4) Thus, we have the result, and the only piece of discussion still needed concerns the
understanding of what the simplex FY,; really is, say pictorially speaking. According to
our conventions, the adjacency matrix of the simplex is:

dij = (Npl — 1N)ij

= 05055 — dij
(5) For F = {1,...,N}, where the involution on the index set is i = 4, we obtain

d;j =1 — 0;;, as we should. In the case ' = M, now, by using double indices we have:

dab,cd = §ab,ba50d,dc - 5ab,cd
= 5ab50d - (5ac6bd

Thus, we obtain a matrix d € My(—1,0,1), which generically has 0 entries. This
matrix is symmetric. It has not 0 on the diagonal, the self-edges, worth 1, appearing at
the off-diagonal points of F'. The case of edges worth -1 is possible too. O

With the above result in hand, we can now talk about complementation, as follows:
Theorem 12.8. For any finite quantum graph X we have the formula
GT(X) =GT(X°)

where X — X is the complementation operation, given by dx + dxe = dp,,,-
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Proof. This follows from Theorem 12.7, and more specifically from the fact that the
condition [u,dp,,,] = 0 is automatic, as explained there. There is of course still some
discussion here to be done, in what concerns the pictorial representation of X¢, as a
continuation of the discussion in (4) from the proof of Theorem 12.7. U

As basic examples, with F' = {1,..., N} we recover the usual G*(X) quantum groups.
For F' = M, we have S} = Sp = SOs, and for the few graphs here, having |M,| = 4
vertices, we recover certain subgroups of SOs, to be determined.

Before getting into color independence, let us discuss some interesting examples, coming
from the Cayley graphs. Let us start with the following well-known fact:

Proposition 12.9. For any finite quantum group G, the counting measure is the Haar
measure.

Proof. Given an arbitrary finite quantum group G, we must prove that the counting
measure is left and right invariant, in the sense that we have:

(tr @ id)A = (id @ tr)A = tr

But this is something well-known, which follows from the definition of the canonical
trace, as being the following composition:

tr: C(G) — B(I*(@)) — C
Indeed, this composition is left and right invariant, as desired. U
As a consequence, we have a Cayley theorem in the present setting, as follows:

Theorem 12.10. For any finite quantum group G, we have:
G C S,
That is, the Cayley theorem holds, in the present setting.

Proof. We have an action G ~ G, well-known to leave invariant the Haar measure. Now
since by Proposition 12.9 the Haar measure is the counting measure, we conclude that
G ~ G leaves invariant the counting measure, and so we have G C SZ, as claimed. [

By adding now edges, we are led to the following result:

Theorem 12.11. Given a finite quantum group G, the following happen:
(1) We have G C GT(Xg) with X¢ = (G, d) when the matriz d € Mg(C) belongs to

the tmage of the right reqular representation.

(2) In this context, we can always arrange as for the inclusion G C GT(Xg) to be
“optimal”, in the sense that {d}' = End(u).

(3) In fact, we can always arrange as for having a formula of type G = G*(X¢), for
a certain quantum graph Xq.
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Proof. This follows from Theorem 12.10, and from the basic properties of the left and
right regular representation, for the finite quantum groups. Il

Following now [6], let us discuss an important point, namely the “independence on the
colors” question. The idea indeed is that given a classical graph X with edges colored by
complex numbers, or by other types of colors, G(X) does not change when changing the
colors. This is obvious, and a quantum analogue of this fact, involving G*(X), can be
shown to hold as well, as explained in [6], and in section 9 above.

In the quantum graph setting things are more complicated, with the independence on
the colors not necessarily being true. Let us start with the following definition:

Definition 12.12. We say that a quantum graph X = (F,d) is washable if, whenever we
have another quantum graph X' = (F,d') with same color scheme, in the sense that

dij = dkl <~ d;] = d;cl
we have GT(X) = GT(X').

As already mentioned, it was proved in [6] that in the classical case, F' = {1,..., N},
all graphs are washable. This is a key result, and this for several reasons: (1) first of all,
it gives some intuition on what is going on with respect to colors, in analogy with what
happens for G(X), which is very intuitive, and trivial, (2) also, it allows the use of true
colors (black, blue, red...) when drawing colored graphs, instead of complex numbers,
and (3) this can be combined with the fact that G*(X) is invariant as well via similar
changes in the spectral decomposition of d, at the level of eigenvalues, with all this leading
to some powerful combinatorial methods for the computation of G*(X).

All these things do not necessarily hold in general, and to start with, we have:

Proposition 12.13. There are quantum graphs, such as the simplex in the homogeneous
quantum space case, F' = My x {1,..., L} with K, L # 2, which are not washable.

Proof. We know that the simplex, in the case F' = Mg x {1,...,L}, has as adjacency
matrix a certain matrix d € My(—1,0,1), with N = K2L. Moreover, assuming K, L > 2
as in the statement, entries of all types, —1,0, 1, are possible. Now assuming that this
simplex is washable, it would follow that we have dim(End(u)) > 3, a contradiction. [

In order to come up with some positive results as well, the idea will be that of using
the method in [6]. Let us start with the following statement, coming from there:

Proposition 12.14. The following matriz belongs to End(u), for any n € N:

4 = Z Z diyiy - - i,

i=ky ..k j=l1...ln

In particular, in the classical case, F'={1,..., N}, all graphs are washable.
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Proof. We have two assertions here, the idea being as follows:

(1) Consider the multiplication and comultiplication maps of the algebra C'(F'), which
in single index notation are given by:

ple ® ej) = ey
v(ei) = Z €j & ek
i=jk

Observe that we have u* = v, with the adjoint taken with respect to the scalar product
coming from the canonical trace. We conclude that we have:

p € Hom(u®? u)
v € Hom(u,u®?)

n

The point now is that we can consider the iterations ™, ~y™ of u,~, constructed in

the obvious way, and we have then:
p™ € Hom(u®", u)
7™ e Hom(u,u®")

Now if we assume that we have d € End(u), we have d*" € End(u®") for any n, and
we conclude that we have:

pMd®m ™ ¢ End(u)
In single index notation, we have the following formula:
(uMd® ™) = 3TN iy, i,
i=k1..kn j=l1..ln

Thus, we are led to the conclusion in the statement.

(2) Assuming that we are in the case F' = {1,..., N}, the matrix d*™ in the statement
is simply the componentwise n-th power of d, given by:

Xn __ gn

As explained in [6], a simple analytic argument, using n — oo and then a recurrence
on the number of colors, shows from this that we have washability indeed. O

In order to exploit now the findings in Proposition 12.14, we will assume that we are
in the case F' = My x {1,...,L}, and we will use an idea which is familiar in random
matrices and quantum information, namely assuming that d is “split”.

To be more precise, we have the following result:
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Theorem 12.15. Assuming that we are in the case F = My x {1,..., L}, and that the
adjacency matrix is split, in the sense that one of the following happens,

dab,cd = eabfcd

dab,cd - 6acfbd

dab,cd = eadfbc
the quantum graph is washable.

Proof. The idea here is that of computing first the matrix d*™ from Proposition 12.14,
and then adapting the proof from the K = 1 case, from [6], explained above. We know
from Proposition 12.14 that we have the following formula, in single index notation:

Xn __
it =y > diy, - dy,
=k j=l1..ln
In double index notation, which is more convenient for our purposes here, we have:
Xn -
dab,cd - § : E : dazhcyl d$1$2,y1y2d$2$3,y2y3 """
Z1---Tn—1Y1---Yn—1
""" dxn—an—lyyn—Qyn—ldxn—lb:yn—ld
We have 3 cases to be investigated, and here are the computations of this matrix:
(1) In the case dupca = €apfea We have the following computation:
xn o
dab,cd = E , § , Cazy Jey €xrs Sy1ys €roms fynys - - - - - -
L1 Tn—1Y1---Yn—1

""" €$n72In71 fyn72yn71 eznflbfynfld

= Z Cax1 CrymyCromy + + v v - - €z omm_ 1€z _1b
Tr1...Tn—1
Z fcy1fy1y2fy2y3 ------ fyn—Zyn—lfyn—ld
Yi1---Yn—-1

= (e")a([")ea

(2) In the case dgpca = €acfoa We have the following computation, where the x operation
at the end is the usual componentwise product of the square matrices, and where F is
the total sum of the entries of a given square matrix:

xn _
dab,cd - E E 6acle y1 €11 fxzyz Cxoys faz3y3 ......
Z1..-Tn—1Y1---Yn—1

""" exn72yn72 fxnflynfl exnflynfl fbd

eaCfbd Z Z (6 X f)x1y1 (6 X f)IQyQ """ (6 X f)xn—lyn—l

Z1.-Tn—1Y1---Yn—1

eacede [(6 X f)nil]
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(3) In the case dup.cd = €aafoe We have the following computation, in a rough form, with
the general case depending on the parity of n:

xn o
dab,cd - E E €ay, fmlc€z1y2 f172y1 €xoys f:png ......

Z1.--Tn—1Y1---Yn—1
""" exn—Qyn—l fmn—lyn—2ezn—1dfbyn—l

= Z Z Cayr (ft>y1:v2€ﬂc2y3 ----- (ft>cm1ex1y2 (ft)myza -----

T Tn—1 Y1---Yn—1
= [(eft)”/21| ad [(fte)n/Q] cb

With these formulae in hand, we are led to the conclusion in the statement. Il

Let us discuss now some basic examples of quantum symmetry groups of quantum
graphs. We first have the following result:

Theorem 12.16. We have the following results:
(2) G ~ X implies Gl S ~ NX.

Proof. These results are standard, following the proofs from the usual graph case, where
F ={1,...,N}, and we refer here to [91], and to [132]. O

Let us also mention that under suitable connectedness assumptions on X, similar to
those in the classical case, taken in a functional analytic sense, the action in (2) above
can be shown to be universal, when taking G = G*(X), and so we have:

GT(NX)=G"(X) . SE

For more on this material, we refer to [91], [132] and related papers.

With the above technology in hand, we can talk about multi-simplices, and quantum
reflections. The idea is that the quantum automorphism groups S} ., of the Markov
fibrations ' — FE, which correspond by definition to the Markov inclusions of finite
dimensional C*-algebras C'(E) C C(F'), were studied in [4].

As explained in [6] and in subsequent papers, in the classical case, F' = {1,..., N}, the
quantum groups S} . are of the form G*(X), with X being a multi-simplex, obtained
as a union of simplices, and correspond to the notion of quantum reflection group.

In the general case, the quantum groups of type S} ., with F© — F being a Markov
fibration, can be thought of as being “generalized quantum reflection groups”.

In order to discuss this, let us start with the following definition:
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Definition 12.17. Let B C D be an inclusion of finite dimensional C*-algebras and let
¢ be a state on D. We define the universal C*-algebra A.(B C D) generated by the
coefficients v;; of a unitary matriz v subject to the conditions

m € Hom(v®* v) , we€ Hom(l,v) , e€ End(v)

where m : D @ D — D s the multiplication, u : C — D 1s the unit and e : D — D 1is the
projection onto B, with respect to the scalar product < x,y >= @(xy*).

By universality we can construct maps A, e, S, and so we have a Woronowicz algebra
in the sense of section 1 above. The matrix v is a corepresentation of A, (B C D) on the
Hilbert space D. The three “Hom” conditions translate into the fact that v corresponds
to a coaction of A, (B C D) on the C*-algebra D, which leaves ¢ and B invariant.

Let us discuss now the corepresentation theory of A,,(B C D). Following [4], we will
prove that under Markov assumptions on B C D, the corresponding Tannakian category
is the Fuss-Catalan category, introduced by Bisch and Jones in [57].

The Fuss-Catalan category, as well as other categories to be used in what follows, is a
tensor C*-category having (N, +) as monoid of objects. Such a tensor category will be
called a N-algebra. If C' is a N-algebra we use the following notations:

C(m,n) = Homec(m,n) , C(m)= Endc(m)

As a first class of examples, which is very wide, associated to any object O in a tensor
C*-category is the N-algebra NO given by the following formula:

NO(m,n) = Hom(O%®™, O®™)

Let us first discuss in detail the Temperley-Lieb algebra, as a continuation of the ma-
terial presented in sections 1-4 above. We have the following definition:

Definition 12.18. The N-algebra TL? of index 6 > 0 is defined as follows:
(1) The space TL*(m,n) consists of linear combinations of noncrossing pairings be-
tween 2m points and 2n points:
------ — 2m points
TL*(m,n) = Z a W <+ m+n strings
- — 2n points

(2) The operations o, ®, x are induced by the vertical and horizontal concatenation
and the upside-down turning of diagrams:

B
A

(3) With the rule O =4, erasing a circle is the same as multiplying by 0.

AoBz() ., A®B=AB , A*=V
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Our first task will be that of finding a suitable presentation for this algebra. Consider
the following two elements u € TL*(0,1) and m € TL?*(2,1):

u=67210 , m=042|U]
With this convention, we have the following result:

Theorem 12.19. The following relations are a presentation of T L? by the above rescaled
diagrams v € TL*(0,1) and m € TL*(2,1):

m(l@u)=m(u®1) =1,

)
g m(m®1) =m(l®m).
) (me1D)(1em*) =1m)(m*®1)=m*m.

Proof. This is something very standard, well-known, and elementary, which follows by
drawing diagrams. O

In more concrete terms, the above result says that w, m satisfy the above relations,
which is something clear, and that if C' is a N-algebra and v € C'(0,1) and n € C(2,1)
satisfy the same relations then there exists a N-algebra morphism as follows:

TL? -C , u—v , m—=n

Now let D be a finite dimensional C*-algebra with a state ¢ on it. We have a scalar
product < x,y >= @(zy*) on D, so D is an object in the category of finite dimensional
Hilbert spaces. Consider the unit u and the multiplication m of D:

weND(0,1) , meND(2,1)

The relations in Theorem 12.19 are then satisfied if and only if the first one, namely
mm* = §2, is satisfied, and this is automatic when ¢ is the standard trace. One can
deduce from Theorem 12.19 that in this case, the category of corepresentations of the
Hopf algebra A,.:(D) is the completion of T'L?, in the sense of [148].

Getting now to Fuss-Catalan algebras, we have here:

Definition 12.20. A Fuss-Catalan diagram is a planar diagram formed by an upper row
of 4m points, a lower row of 4n points, both colored

cCeeocoCcee. . .

and by 2m + 2n noncrossing strings joining these 4m + 4n points, with the rule that the
points which are joined must have the same color.
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Fix § > 0 and w > 0. The N-algebra F'C' is defined as follows. The spaces FC(m,n)
consist of linear combinations of Fuss-Catalan diagrams:

Ceeo00ceeO ... ... < 4m colored points
m + n black strings
FC(m,n) = Z a 20 — and
m + n white strings
0Cee00ee0 . . .... < 4n colored points

As before with the Temperley-Lieb algebra, the operations o, ®, * are induced by
vertical and horizontal concatenation and upside-down turning of diagrams, but this time
with the rule that erasing a black/white circle is the same as multiplying by (/w:

AOB:(i) , A B=AB , A=V

black = () = (3 , white = () = w
Let 0 = fw. We have the following bicolored analogues of the elements u, m:

u=6: [ . m=s: Y]

These elements generate in F'C' a N-subalgebra which is isomorphic to T'L?.

Consider also the black and white Jones projections, namely:
U
_ g1
12 r=

We have f = 37%(1 ® me)m*, so we won’t need f for presenting FC. For simplifying
writing we identify x and x ® 1, for any z. We have the following result:

Theorem 12.21. The following relations, with f = 37%(1 ® me)m*, are a presentation
of FC by m e FC(2,1), u e FC(0,1) and e € FC(1):
(1) The relations in Theorem 12.19, with § = Pw.
(@) e=ct=c", f=f and (1@ f)f = f(1® ).
(3) eu = u.
(4) mem* = m(1 ® e)ym* = 2.
(5) mme®e®e) =emm(e®1®e).

Proof. As for any presentation result, we have to prove two assertions:
(I) The elements m, u, e satisfy the relations (1-5) and generate the N-algebra F'C.

(II) If M, U and E in a N-algebra C satisfy the relations (1-5), then there exists a
morphism of N-algebras F'C' — C sending m — M, u — U, e — F.

The proof will be based on the results from the paper of Bisch and Jones [57], plus some
diagrammatic computations for (I), and some purely algebraic computations for (II).
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(I) First, the relations (1-5) are easily verified by drawing pictures.

Let us show now that the N-subalgebra C' =< m,u,e > of FC is equal to FC. First,
C contains the infinite sequence of black and white Jones projections:

1, U

p=e=wl||

U
_ _ np—1
p=f=8" 121
U
_ -1
pr=lee=w ||| 2|

. U
pa=1®f =8Il Al

The algebra C' contains as well the infinite sequence of bicolored Jones projections:
eg =uu* =6" %
e = 6 2mrm = 57 | % |

e3=1®mf=alnuﬁ

s =51 @mm) = 7 [l g1

By the results of Bisch and Jones in [57], these latter projections generate the diagonal
N-algebra AFC'. Thus we have inclusions as follows:

AFC cCcCFC
By definition of C', we have as well the following equality:
AFC = AC

Also, the existence of semicircles shows that the objects of C' and F'C' are self-dual, and
by Frobenius reciprocity we obtain that for m + n even, we have:

dim(C(m,n)) = ﬁm(C(m;n))

- anre(=52)

= dim(FC(m,n))
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By tensoring with v and u* we get embeddings as follows:
C(m,n) C C(m,n+1)
FC(m,n) C FC(m,n+1)

But this shows that the above dimension equalities hold for any m and n. Together
with AFC C C' C FC, this shows that C' = FC.

(IT) Assume that M,U, E in a N-algebra C' satisfy the relations (1-5). We have to
construct a morphism FC — C sending:

m—-M , u—U , e—FE
As a first task, we would like to construct a morphism AFC — AC sending:
m'm— MM | w —-UU" |, e—=>FE
By constructing the corresponding Jones projections E; and P;, we must send:
ee—E , p—P (i=1,2,3,..))
In order to construct these maps, we use now the fact, from [57], that the following
relations are a presentation of AFC:
(a) €2 = e;, eie; = eje; if |i — j| > 2 and e;eiie; = 0 %€
(b) p = p; and Pibj = PjPs-
(c) e;pi = pie; = e; and pe; = e;p; if |t — j| > 2.
(d) egiz1paicait1 = B %egix1 and €g;pait1e2 = W ey,
() paicoit1p2; = B2 pait1pai and poii1€2iPais1 = W P2iP2it-
Thus, it remains to verify that we have the following implication, where m, u, e are now
abstract objects, and we are no longer allowed to draw pictures:
(1-5) = (a—e)
First, by using e,,02 = 1 ® e, and p,12 = 1 ® p,, these relations to be checked reduce
to the following new collection of relations:
=¢; fori =1,2, ejeae; = 6 2e; and ezeies = J 26y,

@) €
) p7 = p; for i =1,2 and [p1, ps] = [1 ® p1,p2) = [1 ® pa,po] = 0.
)

B

e

(
(
() [e2, 1 ®p2] = [p2,1 ® €3] = 0 and e;p; = pie; = e; for i = 1,2.
(01) expoer = 7%e1 and (1@ e)pa(1 @ er) = f2(1 @ ey).
(02)
(e1) BPpaeips = w?preapr = pipa.
(e2) B*p2(1 @ e1)py = w?(1 @ p1)ea(1 @ py) = (1 @ py)po.

2) espres = 62(1 R p1)es = w2es.
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With e; = uu*, es = §72m*m, p1 = e and p, = f we can see that most of these relations
are trivial. What is left can be reformulated in the following way:

(x) em*me = 3°f*e.

(v) 1@ )m m(l®e) =2 (1®e).

(z) f*=

(t) [e,f] [ ®e, f]=[m*m,1® f] =[f,1 ®m*m] = 0.

By multiplying the relation (5) by v and by 1®1®w to the right we obtain the following
useful formula, to be used many times in what follows:

m(e®e) =em(l®e) = eme
Let us verify now the above conditions (x-t). First, we have:
B fre=me®e)(l®m")
By replacing m(e ® e) with eme we get em*me, so (x) is true. Also, we have:
(1eemm(l®e) =m(1® (em(l1®e))")
By replacing em(1 ® e) with eme we get 2f*(1 ®¢), so (y) is true. We have:
ff =p7*'m(l ® em* me)m*

By replacing em*me with eme(1 ® m*), then eme with m(e ® e) we get f*, so (z) is
true. The first two commutators are zero, because fe and f(1 ® e) are self-adjoint. The
same happens for the others, because of the following formulae:

mm*(1® ff) =*1®1@me)m* m mm(l®1®em*)
(1@m* m)ff* = B*(1 @ m*me)m*m(l ® em*m)
The conclusion is that we constructed a certain N-algebra morphism, as follows:

AJ : AFC — AC

We have to extend now this morphism into a morphism J : FC' — C sending u — U
and m — M. We will use a standard argument. For w > k,[ we define:

¢: FC(l,k) = FC(w)

z— (WP 1)z ()Y e1)

We can define as well a morphism as follows:
0: FC(w)— FC(l, k)
T — ((u*)®(wfk) ® 1k) T (u®(wfl) ® 11)
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Here 1;, = 19%, and the convention =  ® 1 is no longer used. We define ® and © in
C by similar formulae. We have 8¢ = ©® = [d. We define a map J by:

FO(1,k) C(l, k)

FC(w) —2L— C(w)

Since the element J(a) does now depend on the choice of w, these J maps are the
components of a global map, as follows:

J:FC —C

This map J extends AJ and sends u — U and m — M. It remains to prove that J is
a morphism. We have:

Im(¢) = {x € FC(UJ)‘J? = ((wu*)®™ P @ 1) z ((wu*)®*@ ) @ 11)}
We have as well as a similar description of Im(®), and so J sends:
Im(¢) — Im(P)
We have also ©® = Id, so ®O = Id on Im(®P). Thus the following diagram commutes:

FC(, k) C(l, k)

FC(w) —2L— O(w)

It follows that J is multiplicative, because we have:
J(ab) = O(AJp(a)AJ (b))
= ( J(a)®.J (b))
= O®(J(a)J(b))
= J(a)J(b)
In order to finish, it remains to prove that we have:
J(a®b)=J(a)® J(b)

Since we have a ® b = (a ® 15)(1; ® b) for certain s and ¢, it is enough to prove the
above formula for pairs (a,b) of the form (1;,b) or (a,1s). For (a,1;) this is clear, so it
remains to prove that the following set equals F'C"

B= {b e FC‘J(lt b =1,® J(b), Vt e N}
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For this purpose, observe first that AJ being a N-algebra morphism, we have:
AFC CB
On the other hand, a direct computation gives:
JLiouel)=1,U® 1,

Also, J being involutive and multiplicative, B is stable by involution and multiplication.
Thus B contains the compositions of elements of AFC with 1; @ u® 1, and 1; ® u* ® 15
maps. But any b € FC' is equal to 0¢(b), so it is of this form, and we are done. O

Getting back now to the inclusions B C D of finite dimensional C*-algebras, as in
Definition 12.17 above, we have the following result:

Theorem 12.22. If ¢ is a (5,w)-form on B C D then:
<m,u,e >= FC

Proof. 1t is routine to check that the linear maps m, u, e associated to an inclusion B C D
as in the statement satisfy the relations (1-5) in Theorem 12.21. Thus, we obtain a certain
N-algebra surjective morphism, as follows:

J:FC =< m,u,e >

It remains to prove that this morphism J is faithful. For this purpose, consider the
following map, where v = m*u € FC(0,2):

¢n: FC(n) - FC(n—1)
z— (120D @ v*)(z @ 1) (12" @ v)
Consider as well the following map, where v = m*u € FC(0,2) is as above:
tp : C(n) — C(n—1)
z— (19 @ J(0)) (@@ 1) (1" ® J(v))

These maps make then the following diagram commutative:

FC(n) C(n)

¢TL Iwn

FCn—1)—1—=C(n-1)

By gluing such diagrams we get a factorization by J of the composition on the left of
conditional expectations, which is the Markov trace. By positivity .J is faithful on AFC,
then by Frobenius reciprocity faithfulness has to hold on the whole F'C. U

Getting back now to quantum groups, we have:
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Theorem 12.23. If ¢ is a (5,w)-form on B C D then the tensor C*-category of finite
dimensional corepresentations of Agu:(B C D) is the completion of FC.

Proof. The algebra A,(B C D) being by definition presented by the relations corre-
sponding to m,u, e, its tensor category of corepresentations has to be completion of the
tensor category < m,u,e >. On the other hand, the linear form ¢ being a (3, w)-form,
Theorem 12.22 applies and gives an isomorphism < m,u,e >~ FC. U

We refer to [4] and related papers for more on these topics.
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13. Orbits, orbitals

The notions of orbits, and of transitivity, for the subgroups G' C S}; go back to Bichon’s
paper [51]. Bichon constructed there the orbits, and used them for classifying the group

dual subgroups Tc S%. We will explain here this material. Let us start with:

Theorem 13.1. Given a closed subgroup G C Sy, with standard coordinates denoted
u;; € C(G), the following defines an equivalence relation on {1,..., N},

i~j = u; #0
that we call orbit decomposition associated to the corresponding action:
Gn{l,...,N}
In the classical case, G C Sy, this is the usual orbit equivalence.
Proof. We first check the fact that we have indeed an equivalence relation:
(1) The reflexivity axiom i ~ i follows by using the counit, as follows:
e(uy) =90 = e(uy) =1
= u; #0
(2) The symmetry axiom i ~ j = j ~ i follows by using the antipode:
S(uij) =u;; = [u; #0 = uy; # 0]

(3) As for the transitivity axiom i ~ j,j ~ k = i ~ k, this follows by using the
comultiplication. Consider indeed the following formula:

A(uzk) = Z uij & Ujk
J

On the right we have a sum of projections, and we obtain from this:
ui; 7 0,uj 0 = U @ujp >0
= A(uy) >0
= ujp #0

Finally, in the classical case, where G C Sy, the standard coordinates are:
Uij = X <O' € G‘O’(j) = Z)

Thus u;; # 0 is equivalent to the existence of an element o € G such that o(j) = i.
But this means that ¢, 7 must be in the same orbit under the action of GG, as claimed. [J

Generally speaking, the theory from the classical case extends well to the quantum
group setting, and we have in particular the following result, also from [51]:
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Theorem 13.2. Given a closed subgroup G C Sy, with magic matriz denoted u = (u;;),
consider the associated coaction map, on the space X = {1,..., N}:

P:OX) 5 CX)RCG) , e e @uy;

The following three subalgebras of C(X) are then equal
Fia(u) = {€ € C(X)|ug = ¢
Fia(®) = {¢ e C(X)|o(¢) =¢ @1}
F={cecx)|i~j = ¢ =<0}

where ~ 1is the orbit equivalence relation constructed in Theorem 13.1.

Proof. The fact that we have Fix(u) = Fiz(®) is standard, with this being valid for
any corepresentation v = (u;;). Regarding now the equality with F, we know from
Theorem 13.1 that the magic unitary u = (u;;) is block-diagonal, with respect to the
orbit decomposition there. But this shows that the algebra Fiz(u) = Fiz(®) decomposes

as well with respect to the orbit decomposition, and so in order to prove the result, we
are left with a study in the transitive case, where the result is clear. See [51]. u

We have as well a useful analytic result, as follows:

Theorem 13.3. Given a closed subgroup G C SF;, consider the following matriz:

P :/Uij
G

Then P is the orthogonal projection onto the linear space
F={¢eCinj = &=¢}
and so the orbits and their sizes can be deduced from the knowledge of P.

Proof. This follows from the above results, and from the standard fact, coming from the
Peter-Weyl theory, that P is the orthogonal projection onto Fiz(u). U

There are of course many explicit formulae that can be deduced from Theorem 13.3,
and we will work out some of them in the next section, in connection with the transitive
case, the idea being that G C S}, is transitive precisely when the following happens:

/ 1
Uy = —
¢« N

As another comment, the result in Theorem 13.3 makes it clear that the various notions
in relation with the orbit decomposition, coming from Theorem 13.1, in the quantum
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permutation group case, G C S}, can be normally extended, for instance by using an
analytic approach, to the general quantum symmetry group case:

G C Sy

There is quite some work to be done here, but instead of getting into this subject, which
is quite technical, let us stay with the usual quantum permutation groups, G C S}, and
try to understand how the orbit theory can be further developed.

As a main application of the above orbit theory, we can recover the group duals results
from section 11 above. Let us first recall from there that we have:

Proposition 13.4. Given a quotient group Zn, * ... * Zyn, — I', we have an embedding
[ C Sy, with N = Ny + ... + Ny, with magic matriz given by the formula

Fy 1L F,
u =

Fr o F5,

where Fy = \/Lﬁ(fw;\],) with wy = >N are Fourier matrices, and where
1
9r
I =
g

with g1, ..., gr being the standard generators of T'.

Proof. This is something that we already know. To be more precise, given a quotient
group Zpy, * ... * Zy, — I' as in the statement, we have an embedding as follows:

f C ZN1*---*ZNk

= Zn % ... %Ly,
~ T k.. KLy,
C SN1>T<. ~>T‘SN;€
C Shk... %SE
c Sy

Here all the embedings and identifications are standard, with the ~ sign standing
for a multi-Fourier transform, and when working out what happens at the level of the
correseponding magic unitaries, we are led to the formula in the statement. O

We have also seen in section 11 that any group dual subgroup T c S appears as
above, as a consequence of the maximal torus theory developed there, and of a direct
computation. We can now recover this result in a more conceptual way, as follows:
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Theorem 13.5. Consider a quotient group as follows, with N = Ny + ...+ Ng:

ZN **ZNk—>F

1

We have then T C S, and any group dual subgroup of SY; appears in this way.

Proof. In one sense, this is something that we already know, from Proposition 13.4. Con-
versely now, assume that we have a group dual subgroup I' C S¥. By Peter-Weyl, the
corresponding magic unitary must be of the following form, with U € Uy:

g1
uw=U U*
gnN

Now if we denote by N = Nj + ... 4+ N}, the orbit decomposition for I c Sy, coming
from Theorem 13.1, we conclude that v has a N = Ny + ...+ N; block-diagonal pattern,
and so that U has as well this N = N; 4+ ... + N; block-diagonal pattern.

But this discussion reduces our problem to its k = 1 particular case, with the statement
here being that the cyclic group Zy is the only transitive group dual T c S5 The proof
of this latter fact being elementary, we obtain the result. See [51]. g

Summarizing, we have now a second proof for the classification of the group dual
subgroups I' C S¥. We should mention that the story is not over here, and we will be
back to this key result, in the finite quantum group case, with a third proof as well.

Following Lupini, Mané¢inska, Roberson [115], let us discuss now the higher orbitals.
To start with, we have the following standard result, from the classical case:
Proposition 13.6. Given a subgroup G C Sy, consider its magic unitary:

Uij = X (0 € G’O‘(j) = z)
We have then the following equivalence,
Wirjy - - Ui 70 <= Jo € G, o(iy) =71,...,0(ik) = Jk
and these conditions produce an equivalence relation
(i1, yik) ~ (J1s -+ Jk)
whose equivalence classes are the k-orbitals of G.

Proof. The fact that we have indeed an equivalence as in the statement, which produces
an equivalence relation, is indeed clear from definitions. U

In the quantum case, the situation is more complicated. We follow the approach to the
orbits and orbitals developed in [115]. We first have:
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Theorem 13.7. Let G C S5, be a closed subgroup, with magic unitary u = (u;;), and let
k € N. The relation

(11, sig) ~ (J1,- - Jk) == Uiy - Uiy, 70
s then reflexive, symmetric, and transitive at k =1, 2.
Proof. This is known from [115], the proof being as follows:
(1) The reflexivity simply follows by using the counit:
e(uii,) = 1L,Vr = Uiy -+ Uipiy,) = 1
= Uiy - Ui, 70
= (i1, 0) ~ (i1, -+, 1)
(2) The symmetry follows by applying the antipode, and then the involution:
Uiy, - Wigj, 7 0
WUjpiy - - Wjpiy 70
WUjpiy - Ujpip, 7 0
(J1s- o) ~ (i1, ..., ig)
(3) The transitivity is something more tricky. We need to prove that we have:
Uirjy - Uige 7 05 Wity -+ Ujr, 70 = Wiygy - Uiy, 70

In order to do so, we use the following formula:

A(Uiygy - Uyg,) = g Uiysy - Wi s, @ Usyiy - - - Usyly

(ilw"allf-k) ~ (jlaajk)

Ll

At k = 1 the result is clear, because on the right we have a sum of projections, which
is therefore strictly positive when one of these projections is nonzero.

At k = 2 now, the result follows from the following trick, from [115]:
(uiljl ® ujlh)A<uill1ui212)(ui2j2 ® uj2l2)

= E Wiy jy Wiysy Winsy Uinjo & Ugyly syl syl Uiply
S$189
Wiy jy Wiy @ Ujyly Ujsly
Indeed, we obtain from this that we have u;,;, u;,, # 0, as desired. 4
In general, the above equivalence relation is not transitive, the basic counterexample

at k = 3 being the Kac-Paljutkin quantum group. For a proof of this latter fact, and for
further orbital theory, with examples and counterexamples, we refer to [119].

In view of the results that we have so far, we can formulate:
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Definition 13.8. Given a closed subgroup G C S}, consider the relation defined by:
(il,...,ik) ~ (jl,,jk) < Uiy gy - - - Wi g, # 0
(1) The equivalence classes with respect to ~y are called orbits of G.
(2) The equivalence classes with respect to ~o are called orbitals of G.
In the case where ~, with k > 3 happens to be transitive, and so is an equivalence relation,

we call its equivalence classes the algebraic k-orbitals of G.

Summarizing, things are quite complicated in the quantum group case.

We have as well an analytic approach to this higher orbital problematics, which is
particularly useful when ~y is not transitive, that we will explain now.

Let us begin with the following standard result:

Proposition 13.9. For a subgroup G C Sy, which fundamental corepresentation denoted
u = (u;;), the following numbers are equal:

(1) The number of k-orbitals.
(2) The dimension of space Fix(u®*).
(3) The number [, x*, where x =3, ;.

Proof. This is well-known, the proof being as follows:

(1) = (2) Given o € G and vector £ = ) Qi€ @ ... ® e, we have:

i1k

O'®l€£ = Z Qi ..i, €o(ir) ®...8 €o(iy,)

i1k
§ = Z Qg (iy)...o(in) €oir) @ - - @ €o(iy)
1.0
Thus 0®%¢ = ¢ holds for any o € G precisely when « is constant on the k-orbitals of
G, and this gives the equality between the numbers in (1) and (2).

(2) = (3) This follows from the Peter-Weyl theory, because x = ). u;; is the character
of the fundamental corepresentation w. O

In the quantum case now, G C S5, by the general Peter-Weyl type results established
by Woronowicz in [147], we still have the following formula:

dim Fiz(u®*) = / X"
G

The problem is that of understanding the k-orbital interpretation of this number. We
first have the following result, basically coming from [51], [115]:
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Proposition 13.10. Given a closed subgroup G C S, and a number k € N, consider
the following linear space:

Fk — {5 c ((CN)®1~:
We have Fy, C Fiz(u®*).
At k= 1,2 we have F}, = Fix(u®*).

1)

2)

3) In the classical case, we have Fy, = Fiz(u®*).

4) For G = S§; with N > 4 we have Fy # Fiz(u®?).

lelk = €j1...jkav(i1a s 7216) ~ (jl? s 7]16)}

(
(
(
(

Proof. The tensor power u®* being the corepresentation (Wiy g g1t Vit omipojr..gns THE COL-
responding fixed point space Fiz(u®*) consists of the vectors ¢ satisfying:

Z Ugy gy - - ~uz‘kjkfj1...jk = §zlzk , o Vig, i
J1--Jk
With this formula in hand, the proof goes as follows:
(1) Assuming & € F}, the above fixed point formula holds indeed, because:
Z Uiy gy - - 'uikjkéjlmjk = Z Wsygq - - U”Lk]kglllk = lezk
J1--Jk J1--Jk
(2) This is something more tricky, coming from the following formulae:

Wi, (Z uii&G — &) = Ui (& — &)

Wiy key (Z uiljlui2j2£j1j2 - 62'11'2) Wigky = Uiyky Wisks (€k1k2 - £i1i2)
Jije
(3) This follows indeed from Proposition 13.9 above.

(4) This follows from the representation theory of S% with N > 4, and from some
elementary computations, the dimensions of the two spaces involved being 4 < 5. To be
more precise, let us start with the symmetric group Sy. It follows from definitions that
the k-orbitals are indexed by the partitions 7 € P(k), as follows:

C, = {(il,...,ik)‘ keri = 7r}
In particular at £ = 3 we have 5 such orbitals, corresponding to:
L N L L

Regarding now S3, the 3-orbitals are exactly as for Sy, except for the fact that the )
and ||| 3-orbitals get merged. Thus, we have 4 such orbitals, corresponding to:

Mmoo Al AN,

On the other hand, the number of analytic orbitals is the same as for Sy, namely 5. [J
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The above considerations suggest formulating the following definition:

Definition 13.11. Given a closed subgroup G C Uy, the integer

dim Fiz(u®*) = / X"
G

is called number of analytic k-orbitals.

To be more precise, in the classical case the situation is of course well understood, and
this is the number of k-orbitals. The same goes for the general case, with £ = 1,2, where
this is the number of k-orbitals. At £ = 3 and higher, however, even in the case where
the algebraic 3-orbitals are well-defined, their number is not necessarily the above one.

In the particular case kK = 3, we have as well the following result, which brings some
more support for the above definition:

Proposition 13.12. For a closed subgroup G C Sy, and an integer k < 3, the following
conditions are equivalent:

(1) G is k-transitive, in the sense that Fiz(u®*) has dimension 1,2,5.

(2) The k-th moment of the main character is [, x* =1,2,5.
(3) Jo tirjy - - - Uipj, = % for distinct indices i, and distinct indices j,.
(4) [ tirjy - - - Uiy, equals w when ker¢ = ker 7, and equals 0, otherwise.

Proof. Most of these implications are known, the idea being as follows:

(1) <= (2) This follows from the Peter-Weyl type theory from [147], because the
k-th moment of the character counts the number of fixed points of u®*.

(2) <= (3) This follows from the Schur-Weyl duality results for Sy, Sy and from
P(k) = NCO(k) at k < 3.

(3) <= (4) Once again this follows from P(k) = NC(k) at & < 3, and from a
standard integration result for Sy. U
As a conclusion to all these considerations, we have:
Theorem 13.13. For a closed subgroup G C S;, and an integer k € N, the number
dim(Fiz(u®)) = Ja ¥ of “analytic k-orbitals” has the following properties:
(1) In the classical case, this is the number of k-orbitals.

(2) In general, at k = 1,2, this is the number of k-orbitals.
(3) At k = 3, when this number is minimal, G is 3-transitive in the above sense.

Proof. This follows indeed from the above considerations. O

Let us discuss now an alternative take on these questions, in the finite quantum group
case. We start with the following standard definition:
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Definition 13.14. Associated to any finite quantum group F' is its dual finite quantum
group G = F, given by C(G) = C(F)*, with Hopf C*-algebra structure as follows:

Multiplication (¢¥)a = (¢ @ ¥)A(a).
Unit1 = «.

1)
)
) Involution p*(a) = (S(a)*).

) Comultiplication (Ap)(a ® b) = @(ab).
) Counit () = p(1).

) Antipode (S¢)a = ¢(S(a)).

Our aim in what follows will be that of reformulating in terms of G = F the condition
F c Si. We will see later how this can potentially helps, by dropping the assumption
that F,G are finite, in connection with various quantum permutation group questions.

In order to get started, we have the following well-known fact:
Proposition 13.15. Given F and G = F as in Definition 13.14, the formula

m:C(G) = My(C)

v = [o(uy)li

defines a x-algebra representation precisely when u is a corepresentation.

Proof. In one sense, the fact that 7 is multiplicative follows from the fact that u is co-
multiplicative, in the sense that A(u;;) = >, wir ® ugj, as follows:

() = [(p¥)uislis
= [(p®@¥)A(uy)lij
ZQD uzk uk] ]

= [QD(UU)] W)(uw)]]
= m(p)m(¥)

The fact that 7 is unital is clear, coming from the fact that u is counital, in the sense
that e(u;;) = 0y, as follows:

m(e) = [e(uy)liy =1

Regarding now the fact that 7 is involutive, observe first that we have:

©" (uij) = @(S(uiy)*) = o(uj)



232 TEO BANICA

Thus, we can prove that 7 is indeed involutive, as follows, using the fact that u is

coinvolutive, in the sense that S(u;;) = u};, as follows:
m(e*) = [ (wi)lis
= lo(w)ly
= [[@(uij)]z‘j]*
= 7lp)

Finally, the proof in the other sense follows from exactly the same computations. [

In order to reach now to the condition F' C Sy, we must impose several conditions on
the matrix u = (u;;).

Let us start with the bistochasticity condition. We have here:

Proposition 13.16. Given F and G = F as in Proposition 13.15, the matriz v = (u;;)
15 bistochastic, in the sense that all the row and column sums are 1, precisely when the
associated *-algebra representation m : C(G) — My (C) satisfies the conditions

T(p) = p(1)§
()€ = p(1)¢

where £ € CV is the all-one vector.

Proof. We want the following two conditions to be satisfied:

Zuij =1
J
Zuij =1

In what regards the condition ) i =1, observe that in terms of 7, we have:

Z m(p)iy = Z o (uij)

- o (2]

Thus, we want this quantity to be (1), for any 4, and this leads to the condition
(@) = p(1)¢€ in the statement. As for the second condition, namely ). u;; = 1, this
leads to the second condition in the statement, namely 7(¢)'¢ = p(1)E. d

Independently of the above result, we must impose the condition that the coordinates
u;; are self-adjoint. The result here is as follows:
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*

Proposition 13.17. Given F and G = F as in Proposition 13.15, we have u;; = uj;

precisely when the associated x-algebra representation m: C(G) — My(C) satisfies:

mS(p) = ()

Proof. According to the antipode formula (Syp)a = ¢(S(a)) from Definition 13.14, we
have the following computation:

mS(p) = [Se(uy)li

= [‘P(Uji)]ij
Now u;; = uj; means that this latter matrix should be [p(uj;)]i; = 7(¢)", as claimed. O
Let us put now what we have together. We are led to the following statement:

Proposition 13.18. Given F and G = F as in Proposition 13.15, the matriz u = (wij) is
bistochastic, with self-adjoint entries, precisely when associated x-algebra representation

m:C(G) = My(C)
p = [p(uy)li
satisfying the following conditions,

()€ = p(1)§
()€ = p(1)¢

TS (p) = m(p)*

with &€ € CN being the all-one vector.

Proof. This follows indeed from Proposition 13.16 and Proposition 13.17. O

In order to reach now to F' C Sj;, we must impose one final condition, stating that the
entries of u = (u;;) are idempotents, u?j = u;;. This is something more technical:

Proposition 13.19. Given F and G = F as in Proposition 13.18, we have u?j = U
precisely when the associated x-algebra representation 7 : C(G) — My (C) satisfies

m(m @ m)A(p) = 7 (p)m

as an equality of maps CN @ CN — CV, where m is the multiplication of CV.
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Proof. This is something which is quite routine. We have indeed the following computa-
tion, valid for any indices ¢, 7, by using the Sweedler notation:

m(m @ T)A(p)(e; ®e;) = m(r@m) (Z 1 %02> (e @ ¢j)
- m (Z m(p1) ® 7T(902)> (ei ®e;)
= m (Z m(p1)e; ® 7(802)63‘)

= m (Z ; o1 (U e, ® wz(uzj)ez>
= > ; 1 (uni)erspa(us;)er

= D> erlur)es(uns)er

_ Z 2::(% ® p2) (Ugi @ ugj)er

= Xk: A(p) (ug; ® ukj)ex

— ; o(unitig )ex

On the other hand, we have as well the following computation:
T(p)mle; ®e;) = m(p)de;
= [e(uwig)] ;06
8y Y pluni)e
k

Thus, the condition in the statement simply reads, for any 1, j, k:
UkiUkj = 5ijuki
In particular with ¢+ = 5 we obtain, as desired, the idempotent condition:
Uiz = Uk

Conversely now, if this idempotent condition is satisfied, then u = (u;;) follows to be
a matrix of projections, which is bistochastic. Thus this matrix is magic, and so we have
Uitk; = 05U, for any 4, 7, k, and this leads to the formula in the statement. O

Let us put now what we have together. We are led to the following statement:



QUANTUM PERMUTATIONS 235

Theorem 13.20. Given F and G = F as in Definition 13.14, we have F C S§;, with
associated magic matriv u = (u;;), precisely when we have a *-algebra representation

m: C(G) - My(C)

v = [o(uig)li
satisfying the following conditions,

()€ = (1)¢
m()'E = (1)
mS(p) = 7(p)’

m(r @ m)A(p) = 7(p)m

where £ € CV s the all-one vector, and m is the multiplication of CV.

Proof. This follows indeed from Proposition 13.18 and Proposition 13.19, and from the
well-known fact, already mentioned in the proof of Proposition 13.19, that a magic matrix
u = (u;;) is the same as a matrix of projections which is bistochastic. U

Let us discuss now some basic illustrations of Theorem 13.20.

In the classical case, the result, or rather illustration of our result, is something very
simple, as follows:

Proposition 13.21. Given a closed subgroup F' C Uy, the associated x-algebra represen-
tation constructed in Theorem 153.20 is given by

m:C*(F) — My(C)
Zkgg — Z)\gg

and we have F C Sy precisely when the conditions in Theorem 13.20 are satisfied.

Proof. Here the first assertion is clear from definitions. As for the second assertion, this
is something that we know from Theorem 13.20, but here is a direct check as well:

(1) For p € C*(F) given by ¢ = > A\sg we have m(¢) = > Agg, and also (1) = > A,
via C*(F) ~ C(F)* so the bistochasticity condition F' C Cy corresponds indeed to the
conditions m(p)¢ = p(1)¢ and 7(¢)*¢ = ¢(1)§ from Theorem 13.20.

(2) Once again with ¢ = > 4 g9, we have the following formulae:

TSp=m (Z /\gg1> — Z /\ggfl
g g
t
= (Z )\gg> = Z)\ggt
g g9
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Thus F C Oy, which is the same as saying that ¢g~! = ¢!, for any g € F, is indeed
equivalent to the condition 75(p) = m(p)" from Theorem 13.20.

(3) As before with ¢ = 37 \,g, assuming F' C Sy, we have the following formula:

m(r @ m)A(p)(e; ®ej) = m (Z Agg @ g) (e; ®ej)

= m (Z Ag€q(i) @ egu))
g
8ij Y Ageq(i)

geG

On the other hand, we have as well the following formula:

T(p)m(e; ®e;) = (Z )\gg) m(e; @ €;)

= (Z /\gg) (0ije:)
g
0ij Z 0g€4(i)
g

Thus the condition m(7 @ m)A(p) = 7(¢)m in Theorem 13.20 must be indeed satisfied,
and the proof of the converse is similar, using the same computations. O

In the group dual case now, the result is a priori something more subtle, related to
Bichon’s classification in [51] of the group dual subgroups I' C S}.

However, and here comes our point, in the present dual setting everything drastically
simplifies, and the complete result, with complete proof, is as follows:

Theorem 13.22. Given a finite group G, and setting F = @, the associated *-algebra
representation constructed in Theorem 13.20 appears as follows, for a certain family of
generators g1, ...,y € H, and for a certain unitary U € Uy,

m:C(G) = My(C)

v — Udiag(g1,...,9n)U"

and we have F C Sy, precisely when the conditions in Theorem 13.20 are satisfied, which
in turn mean that the representation © appears as in [51].
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Proof. Here the first assertion is standard, coming from Woronowicz’s Peter-Weyl type
theory from [146]. As for the second assertion, this is a priori something which is less

obvious, related to Bichon’s classification of the group dual subgroups T c S in [51].
However, in our dual formulation this is something clear, because the algebra C(G) is
commutative, so its matrix representation 7 must appear diagonally, spinned by a unitary.
Thus, we obtain the result, without a single computation needed. U

There are many things that can be done with finite quantum permutation groups, that
can be sometimes simpler by using the present dual formalism.

In order to discuss this, let us start with:
Proposition 13.23. Given G = F as in Theorem 13.20, the x-algebra representation
m:C(G) — My(C)
gives rise to a family of x-algebra representations as follows, for any k € N,
7 C(G) — My(C)®F
ok — Ok AR
that we will still denote by w, when there is no confusion, which are given by

7Ti1---ik,j1---jk(90) = Qp(uilh s uikjk)
®k.

in standard multi-index notation for the elements of My(C)
Proof. Let us begin with the following computation, in Sweedler notation:
< 7AW (p)(e;, ®...®ej) 6, Q... Qe >

- <7T®k <Z¢1 ®...®¢k) (e, ®...®ej), e ®...®eik>

= Z < (1) @...07(pr))(ej; ®...Qe€j), 4 ... Qe >

= Z <7(p1)ej, ® ... m(pr)ej, e ... e, >

= Z < 7(p1)ej, € > ... < w(pr)es,, €, >

= Z ©1(tiygy) - - - Pr(igy)

= Z(gpl ® .. @ ) (Ui gy & .. @ Uiy )
A (@) (uiygy - - uiyz,)

- @(uilh . Ulk]k)

Thus, we have the following formula, valid at any k£ € N:
7T®kA(k)(90) = [@(uilh - qu]k)}

U1ty J1 Tk
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Equivalently, the representation m = 7®*A®) is given by the following formula:
7Ti1---ik,j1---jk(90) = Qp(uilh s uikjk)
Thus, we are led to the conclusion in the statement. Il

Following [26], let us discuss now integration results. We have:

Theorem 13.24. The polynomial integrals over G are given by

|:/ Uiygy - - qu]k:| = 7T®kA(k)(f)
U1kl Jk

and the moments of the main character x =Y, u;; are given by

/ X = Tr(x® A0 (1))

where [ € C(G) is the Haar integration functional.

Proof. The first formula is clear from Proposition 13.23. Regarding now the moments of
the main character, observe first that we have the following general formula:

TT(7T®kA(k)(SO)) = Z @(uiﬂi st ulklk)

010k

= (Z Uiy - - u,m>

i1k
= o(x")
In particular, with ¢ = f , the Haar integration, we obtain:

Tr(r*A®)([)) = / x'“

Thus, we are led to the conclusions in the statement. Il

As a second topic, which is of key interest, let us discuss the orbit and orbital theory,
following [51], [115]. Regarding the orbits, following [51] we have:

Theorem 13.25. The orbits of F C Sy can be defined dually by i ~ j when
ij(p) >0
for a certain positive linear form ¢ > 0.

Proof. We know from [51] that i ~ j when u;; # 0 is an equivalence relation on {1, ..., N}.
Here is a proof of this fact, using our present, dual formalism:

(1) The reflexivity of ~ as defined in the statement is clear, coming from:
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(2) The symmetry is clear too, coming from wS(p) = 7(p)". Alternatively:

(@) =7(p)" = my;(¢*) = mi;(p)
(3) Regarding now the transitivity, things are a bit more tricky. We have:

mi () = Y ma(p)mii (1)

Now since ¢ > 0 implies ¢(u;;) > 0 for any 4, j, we obtain the result. O
Regarding the orbitals, following [115], we first have:
Proposition 13.26. The relation on {1,..., N}* given by i ~ j when
iy oignogi () > 0
for a certain positive linear form ¢ > 0, is reflexive and symmetric.
Proof. The reflexivity is clear exactly as at kK = 1, coming from:
(l)=1 = Ty ipsin..ip 7 0

The symmetry is clear too, coming from 7S(p) = 7(p)'. Alternatively:

*

(") = 7(0)" = Tiriggidn(@7) = Tiy i i (©)
Thus, we are led to the conclusion in the statement. Il
Regarding the transitivity of the relation constructed in Proposition 13.26, things here
are fairly tricky, and we were unable to find something simple, using our dual formalism.

Nevertheless, following [115], [119], let us formulate an informal statement, as follows:

Theorem 13.27. The relation constructed in Proposition 13.26 is transitive at k = 2,
not necessarily transitive at k > 3, and these results can be both recovered in dual form.

Proof. As mentioned, all this is quite complicated, the situation being as follows:

(1) Tt is known from [115] that we have transitivity at k = 2, the proof being something
tricky, but fairly short, as follows:

(uiljl ® ujlll)A(uilllui2lz)(ui2j2 ® ujzlz)

= E Wiy gy Wiy s1 Uinsy Uinjo @ Ujyy Usyly Usoly Ujaly
8182
Uiy jy Wiy & Ujyty Ujaly
Indeed, we obtain from this that we have w;,, u;,, # 0, as desired.

(2) The challenge now is to reformulate the above proof from [115] in the dual setting,
somehow by applying linear forms on both sides. This is something non-trivial, and a
quite technical proof, using a conditioning method, and totalling about 1 page or so, can
be found in [119]. We do not know how to simplify that proof.
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(3) As good news however, the fact that we don’t necessarily have transitivity at k = 3,
which was something conjectured in [115] and in follow-up papers, and not accessible with
the methods there, was recently done in [119], using dual methods. 4
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14. TRANSITIVE GROUPS

We have seen in the previous section that a theory of orbits and orbitals can be de-
veloped for the closed subgroups G' C Sy, and that all this is particularly interesting in
connection with tori. In this section we restrict the attention to the transitive case.

Let us first review the basic theory, that we will need in what follows. The notion of
transitivity, which goes back to Bichon’s paper [51], can be introduced as follows:

Definition 14.1. Let G C Sy be a closed subgroup, with magic unitary u = (u;;), and
consider the equivalence relation on {1,..., N} given by i ~ j <= u;; # 0.

(1) The equivalence classes under ~ are called orbits of G.
(2) G is called transitive when the action has a single orbit.

In other words, we call a subgroup G C Sy transitive when u;; # 0, for any i, j.

This transitivity notion is standard, coming in a straightforward way from the orbit
theory. In the classical case, we obtain of course the usual notion of transitivity.

We will need as well the following result, once again coming from [51]:

Theorem 14.2. For a closed subgroup G C S§;, the following are equivalent:

(1) G is transitive.
(2) Fiz(u) = CE, where & is the all-one vector.

(3) Jyus = . for any iLj.
Proof. This is well-known in the classical case. In general, the proof is as follows:

(1) <= (2) We use the standard fact that the fixed point space of a corepresentation
coincides with the fixed point space of the associated coaction:

Fiz(u) = Fizx(®)

As explained in section 13 above, the fixed point space of the magic corepresentation
u = (u;;) has the following interpretation, in terms of orbits:

Fiz(u) = {5 eCX)|i~j = &(i) = é“(j)}

In particular, the transitivity condition corresponds to Fixz(u) = C&, as stated.

(2) <= (3) This is clear from the general properties of the Haar integration, and
more precisely from the fact that ([, u;;);; is the projection onto Fiz(u). O

Let us recall now that in the classical case, in the situation where we have a transitive
subgroup G C Sy, by setting H = {0 € G|o(1) = 1} we have:

G/H={1,...,N}

Conversely, any subgroup H C G produces an action G ~ G/H, given by g(hH) =
(gh)H, and so a morphism G — Sy, where N = [G : H].
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This latter morphism is injective when the following condition is satisfied:
hgh™* € HVYhe G = g=1

In the quantum case now, it is quite unclear how to generalize this structure result. To
be more precise, the various examples from [15] show that we cannot expect to have an
elementary generalization of the above G/H = {1,..., N} isomorphism.

However, we can at least try to extend the obvious fact that G = N|H| must be a
multiple of N. And here, we have the following result, from [25]:

Theorem 14.3. If G C S}, is finite and transitive, then N divides |G|. Moreover:

(1) The case |G| = N comes from the classical finite groups, of order N, acting on
themselves.

(2) The case |G| = 2N is possible, in the non-classical setting, an example here being
the Kac-Paljutkin quantum group, at N = 4.

Proof. In order to prove the first assertion, we use the coaction of C(G) on the algebra
CN =C(1,...,N). In terms of the standard coordinates u;;, the formula is:

e:CN > CVRC(G) , e— Y e Duy
J

For a € {1,..., N} consider the evaluation map ev, : C¥ — C at a. By composing ®
with ev, ® id we obtain a C'(G)-comodule map, as follows:

I, :CN = C(G) , e — g

Our transitivity assumption on G ensures that this map I, is injective. In other words,
we have realized CV as a coideal subalgebra of C(G).

We recall now that a finite dimensional Hopf algebra is free as a module over a coideal
subalgebra A provided that the latter is Frobenius, in the sense that there exists a non-
degenerate bilinear form b : A ® A — C satisfying b(zy, z) = b(z,yz).

We can apply this result to the coideal subalgebra I,(CY) c C(G), with the remark
that CV is indeed Frobenius, with bilinear form as follows:

W) =~ S ()

Thus C(G) is a free module over the N-dimensional algebra CV, and this gives the
result. Regarding now the remaining assertions, the proof here goes as follows:

(1) Since C(G) =< u;; > is of dimension N, and its commutative subalgebra < wu; >
is of dimension N already, C'(G) must be commutative. Thus G must be classical, and
by transitivity, the inclusion G C Sy must come from the action of G on itself.

(2) The closed subgroups G' C S are fully classified, and among them we have indeed
the Kac-Paljutkin quantum group, which satisfies |G| = 8, and is transitive. U
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Here is now a list of examples of transitive quantum groups, coming from the various
constructions from the previous sections:

Theorem 14.4. The following are transitive subgroups G C S} :
(1) The quantum permutation group Sy itself.

2) The transitive subgroups G C Sn. These are the classical examples.
3) The subgroups GcC S\q|, with G abelian. These are the group dual examples.
4) The quantum groups F C Sy which are finite, |F| < 0o, and transitive.

) The quantum automorphism groups of transitive graphs G*(X), with | X| = N.
) In particular, we have the hyperoctahedral quantum group H,” C S}, with N = 2n.
) We have as well the twisted orthogonal group O, ' C SY;, with N = 2",

In addition, the class of transitive quantum permutation groups {G C S%|N € N} is stable
under direct products X, wreath products ! and free wreath products (.

(
(
(
(5
(6
(7

Proof. All these assertions are well-known. In what follows we briefly describe the idea of
each proof, and indicate a reference. We will be back to all these examples, gradually, in
the context of certain matrix modelling questions, to be formulated later on.

(1) This comes from the fact that we have an inclusion Sy C S§;. Indeed, since Sy is
transitive, so must be S}, because its coordinates u;; map to those of Sy. See [36].

(2) This is again trivial. Indeed, for a classical group G C Sy, the variables u;; =
X(o € Sn|o(j) = i) are all nonzero precisely when G is transitive. See [36].

(3) This follows from the general results of Bichon in [51], who classified there all the
group dual subgroups I' C Sj;. For a discussion here, we refer to [36].

(4) Here we use the convention |F| = dimc C(F'), and the statement itself is empty,
and is there just for reminding us that these examples are to be investigated.

(5) This is trivial, because X being transitive means that G(X) ~ X is transitive, and
by definition of G*(X), we have G(X) C GT(X). See [7].

(6) This comes from a result from [21], stating that we have H = G (1,,), where I, is
the graph formed by n segments, having N = 2n vertices.

(7) Once again this comes from a result from [21], stating that we have O, ! = GT(K,,),
where K, is the n-dimensional hypercube, having N = 2" vertices.

Finally, the stability assertion is clear from the definition of the various products in-
volved, from [48], [139]. This is well-known, and we will be back later on to this. O

Summarizing, we have a substantial list of examples. We will see in the next sections
that there are several other interesting examples, coming from the matrix models.
We will be back with more general theory at the end of this section.

Let us discuss now classification results at small values of N.



244 TEO BANICA

In order to discuss the case N = 4, we will need a very precise result, stating that S;
is a twist of SO3. Let us start with the following definition, from [15]:

Definition 14.5. C(SO3;") is the universal C*-algebra generated by the entries of a 3 x 3
orthogonal matriz a = (a;;), with the following relations:
(1) Skew-commutation: a;ja = Eaga;;, with sign + if i # k,j # 1, and — otherwise.
(2) Twisted determinant condition: ¥,cs,015(1)020(2)030(3) = 1.

Normally, our first task would be to prove that C(SO;z') is a Woronowicz algebra.
This is of course possible, by doing some computations, but we will not need to do these
computations, because the result follows from the following result, from [15]:

Theorem 14.6. We have an isomorphism of compact quantum groups
S; = 850;*
given by the Fourier transform over the Klein group K = Zy X Zs.

Proof. Consider indeed the following matrix, corresponding to the standard vector space

action of SO3 ' on C*:
10
+
= 2)

We apply to this matrix the Fourier transform over the Klein group K = Zy X Zs:

1 1 1 1 1 0 0 0 1 1 1 1
1 1 -1 -1 1 0 ai; iz d4is 1 -1 -1 1
41 =1 1 —1[]0 an an as] |1 -1 1 -1
1 1 -1 -1 0 31 Q32 433 1 1 -1 -1

u =

It is routine to check that this matrix is magic, and vice versa, i.e. that the Fourier
transform over K converts the relations in Definition 14.5 into the magic relations. Thus,
we obtain the identification from the statement. U

We have the following classification result, also from [15]:

Theorem 14.7. The closed subgroups of Sj = SO3" are as follows:
(1) Infinite quantum groups: S;, Oy ", Des.
(2) Finite groups: Sy, and its subgroups.
(3) Finite group twists: S;*', As'.
(4) Series of twists: Dy (n > 3), DCy! (n > 2).
(5) A group dual series: D,, with n > 3.

Moreover, these quantum groups are subject to an ADFE classification result.

Proof. The idea here is that the classification result can be obtained by taking some
inspiration from the McKay classification of the subgroups of SOs. See [15]. O
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By restricting now the attention to the transitive case, we obtain:

Theorem 14.8. The small order transitive quantum groups are as follows:

(1) At N = 1,2,3 we have {1}, Zg, Zg, Sg.
(2) At N =4 we have Zy X Zy, Ly, Dy, Ay, Sy, O34, ST and S;t, A5t

Proof. This follows from the above result, the idea being as follows:
(1) This follows from the fact that we have Sy = S at N < 3, from [140].

(2) This follows from the ADE classification of the subgroups G C S, from [13], with
all the twists appearing in the statement being standard twists. See [13]. O

As an interesting consequence of the above result, we have:
Proposition 14.9. The inclusion of compact quantum groups
S, C Sf
18 maximal, in the sense that there s no quantum group in between.

Proof. This follows indeed from the above classification result. See [15]. g

It is conjectured in fact that Sy C S5 should be maximal, for any N € N. We will be
back to this.

Let us study now the quantum subgroups G C S5". We first have the following elemen-
tary observations, regarding such subgroups:

Proposition 14.10. We have the following examples of subgroups G C Si :
(1) The classical subgroups, G C Ss. There are 16 such subgroups, having order
1,2,3,4,4,5,6,6,8,10,12,12, 20, 24, 60, 120.
(2) The group duals, G =T C S&. These appear, via a Fourier transform construc-
tion, from the various quotients I' of the groups Zy, Lo * Lo, Lo x Z.s3.
In addition, we have as well all the ADE quantum groups G C S} C S5 from Theorem
14.7 above, embedded via the 5 standard embeddings S C Si .

Proof. These results are well-known, the proof being as follows:

(1) This is a classical result, with the groups which appear being respectively the cyclic
groups {1}, Zs, 73, Z,, the Klein group K = Zy X Z, then Zs, Zg, Ss, Dy, D5, Ay, then a
copy of S3 X Zs, the general affine group GA;(5) = Zs X Z4, and finally Sy, As, Ss.

(2) This follows from Bichon’s result in [51], stating that the group dual subgroups
G =T C S} appear from the various quotients Zy, *. . .xZy, — I', with Ni+...+ N, = N.
At N =5 the partitions are 5 =1+ 4,1+ 2+ 2,2 + 3, and this gives the result. U
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Summarizing, the classification of the subgroups G' C S¢ is a particularly difficult task,
the situation here being definitely much more complicated than at N = 4.

Consider now an intermediate compact quantum group, as follows:
Sy C G CSE

Then G must be transitive. Thus, we can restrict the attention to such quantum groups.

Regarding such quantum groups, we first have the following elementary result:

Proposition 14.11. We have the following examples of transitive subgroups G C Si :

(1) The classical transitive subgroups G C Ss. There are only 5 such subgroups, namely
Z57 D57 GA1(5>7 A57 55'

(2) The transitive group duals, G = Tc SZ. There is only one example here, namely
the dual of I' = Zs, which is Zs, already appearing above.

In addition, all the ADE quantum groups G C S} C S& are not transitive.
Proof. This follows indeed by examining the lists in Proposition 14.10:

(1) The result here is well-known, and elementary. Observe that GA;(5) = Zs X Zy,
which is by definition the general affine group of Fj5, is indeed transitive.

(2) This follows from the results in [51], because with Zy, * ... * Zy, — I" as in the
proof of Proposition 14.10 (2), the orbit decomposition is precisely N = Ny + ...+ N;.

Finally, the last assertion is clear, because the embedding S;” C S5 is obtained precisely
by fixing a point. Thus S} and its subgroups are not transitive, as claimed. U

In order to prove the uniqueness result, we will use the recent progress in subfactor

theory [108], concerning the classification of the small index subfactors.

For our purposes, the most convenient formulation of the result in [108] is:

Theorem 14.12. The principal graphs of the irreducible index 5 subfactors are:

(1) As, and a non-extremal perturbation of AD.
(2) The McKay graphs of Zs, Ds, GA1(5), As, Ss.
(3) The twists of the McKay graphs of As, Ss.

Proof. This is a heavy result, and we refer to [108] for the whole story. The above
formulation is the one from [108], with the subgroup subfactors there replaced by fixed
point subfactors [3], and with the cyclic groups denoted as usual by Zy. U

In the quantum permutation group setting, this result becomes:

Theorem 14.13. The set of principal graphs of the transitive subgroups G C S3 coincide
with the set of principal graphs of the subgroups Zs, Ds, GA(5), As, S5, Ss .
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Proof. We must take the list of graphs in Theorem 14.12, and exclude some of the graphs,
on the grounds that the graph cannot be realized by a transitive subgroup G' C Sy .
We have 3 cases here to be studied, as follows:

(1) The graph A, corresponds to S5 itself. As for the perturbation of AL this
dissapears, because our notion of transitivity requires the subfactor extremality.

(2) For the McKay graphs of Zs, D5, GA;(5), As, S5 there is nothing to be done, all
these graphs being solutions to our problem.

(3) The possible twists of As, S5, coming from the graphs in Theorem 14.12 (3) above,
cannot contain S5, because their cardinalities are smaller or equal than |S;| =120. O

In connection now with our maximality questions, we have:
Theorem 14.14. The inclusion S5 C S5 is mazimal.

Proof. This follows indeed from Theorem 14.13, with the remark that S5 being transitive,
so must be any intermediate subgroup S5 C G C S5 O

With a little more work, the above considerations can give the full list of transitive
subgroups G C S5". To be more precise, we have here the various subgroups appearing in
Theorem 14.13, plus some possible twists of As, S5, which remain to be investigated.

In general, the maximality of Sy C Sy is a difficult question. The only known general
result here is in the easy case, as follows:

Theorem 14.15. There is no intermediate easy quantum group Sy C G C Sy.

Proof. This follows by doing some combinatorics. To be more precise, the idea is to show
that any 7 € P — NC has the following property:

<m>=0P

And, in order to establish this formula, the idea is to cap 7 with semicircles, as to
preserve one crossing, chosen in advance, and to end up, by a recurrence procedure, with
the standard crossing. We refer to [32] for full details here.

We can actually prove this at easiness level 2, as follows. Our first claim is that,
assuming that G C H comes from an inclusion of categories of partitions D C F, the

maximality at order 2 is equivalent to the following condition, for any 7,0 € E, not both
in D, and for any «, 3 # 0:

< span(D), Ty + BT, >= span(E)

Consider indeed a category span(D) C C C span(FE), corresponding to a quantum
group G C K C H having order 2. The order 2 condition means that we have C =< C'N
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spans(P) >, where spany denotes the space of linear combinations having 2 components.
Since we have span(E) N spany(P) = spans(E), the order 2 formula reads:

C' =< C N spany(E) >

Now observe that the category on the right is generated by the categories C? con-
structed in the statement. Thus, the order 2 condition reads:

C= <C;:§

W,JEE,a,BEC>

Now since the maximality at order 2 of the inclusion G C H means that we have
C € {span(D), span(E)}, for any such C, we are led to the following condition:

C°8 ¢ {span(D), span(E)} , Vm,o€ E,a,3cC

Thus, we have proved our claim. In order to show now that Sy C S} is maximal at
order 2, we can use the old “semicircle capping” method. That method shows that any
m € P — NC has the property < m >= P, and in order to establish this formula, the idea
is to cap m with semicircles, as to preserve one crossing, chosen in advance, and to end
up, by a recurrence procedure, with the standard crossing.

In our present case now, at level 2, the statement that we have to prove is as follows:
“for € P— NC,o € P and o, 8 # 0 we have < oI, + T, >= span(P)”.

In order to do this, our claim is that the same method as at level 1 applies, after some
suitable modifications. We have indeed two cases, as follows:

(1) Assuming that m, o have at least one different crossing, we can cap the partition 7
as to end up with the basic crossing, and o becomes in this way an element of P(2,2)
different from this basic crossing, and so a noncrossing partition, from NC(2,2). Now by
substracting this noncrossing partition, which belongs to CS]+V = span(NC'), we obtain
that the standard crossing belongs to < a1, + f1, >, and we are done.

(2) In the case where 7,0 have exactly the same crossings, we can start our descent
procedure by selecting one common crossing, and then two strings of m,0 which are
different, and then joining the crossing to these two strings. We obtain in this way a
certain linear combination o'T, + 'T, €< o1, + 5T, > which satisfies the conditions
in (1) above, and we can continuate as indicated there. O

The corresponding orthogonal quantum group questions are somehow easier, and our
purpose in what follows will be that of discussing all this. We first have:

Theorem 14.16. There is only one proper intermediate easy quantum group
On C G C OF

namely the half-classical orthogonal group O3;.
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Proof. We must compute here the categories of pairings NCy C D C P,, and this can be
done via some standard combinatorics, in three steps, as follows:

(1) Let m € P, — NCy, having s > 4 strings. Our claim is that:

— If m € P, — Py, there exists a semicircle capping ©’ € P, — Pj.

—If m € Py — NCj, there exists a semicircle capping 7’ € Py — NCs.

Indeed, both these assertions can be easily proved, by drawing pictures.

(2) Consider now a partition m € Py(k, 1) — NCy(k,l). Our claim is that:

—If 7 € Py(k,l) — Py(k,l) then < 7 >= P5.

—If m € Py(k,l) — NCy(k,l) then < m >= Pj.

This can be indeed proved by recurrence on the number of strings, s = (k +1)/2, by
using (1), which provides us with a descent procedure s — s — 1, at any s > 4.

(3) Finally, assume that we are given an easy quantum group Oy C G C O3, coming
from certain sets of pairings D(k,l) C Pa(k,l). We have three cases:

~If D ¢ Py, we obtain G' = Oy.

~If D C P, D ¢ NCsy, we obtain G = Oy.

~If D C NCy, we obtain G = Of,.

Thus, we are led to the conclusion in the statement. O

We have as well the following result, from [21], going beyond easiness:

Theorem 14.17. The following inclusions are maximal:
(1) TOy C Un.
(2) POy C PUy.
(3) On C Ox.
Proof. In order to prove these results, consider as well the group TSOpy. Observe that

we have TSOy = TOy if N is odd. If N is even the group TOx has two connected
components, with TSOpx being the component containing the identity.

Let us denote by soy, uy the Lie algebras of SOy, Uy. It is well-known that uy consists
of the matrices M € My(C) satisfying M* = —M, and that soy = uy N My(R). Also, it
is easy to see that the Lie algebra of TSOy is soy @ iR.

Step 1. Our first claim is that if N > 2. the adjoint representation of SOy on the space
of real symmetric matrices of trace zero is irreducible.

Let indeed X € My (R) be symmetric with trace zero. We must prove that the following
space consists of all the real symmetric matrices of trace zero:

V= spcm{UXUt U e SON}
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We first prove that V' contains all the diagonal matrices of trace zero. Since we may
diagonalize X by conjugating with an element of SOy, our space V' contains a nonzero
diagonal matrix of trace zero. Consider such a matrix:

D= diag(dl, dg, ce ,dN)

We can conjugate this matrix by the following matrix:

0 -1 0
1 0 0 € SOpn
0 0 In_o

We conclude that our space V' contains as well the following matrix:
D/ = diag(dQ, dl, dg, . ,dN)

More generally, we see that for any 1 < 7,7 < N the diagonal matrix obtained from
D by interchanging d; and d; lies in V. Now since Sy is generated by transpositions, it
follows that V' contains any diagonal matrix obtained by permuting the entries of D. But
it is well-known that this representation of Sy on the diagonal matrices of trace zero is
irreducible, and hence V' contains all such diagonal matrices, as claimed.

In order to conclude now, assume that Y is an arbitrary real symmetric matrix of trace
zero. We can find then an element U € SOy such that UYU! is a diagonal matrix of
trace zero. But we then have UYU' € V, and hence also Y € V', as desired.

Step 2. Our claim is that the inclusion TSOy C Uy is maximal in the category of
connected compact groups.

Let indeed G be a connected compact group satisfying TSOy C G C Uy. Then G is a
Lie group. Let g denote its Lie algebra, which satisfies:

soy iR CgCuy

Let adg be the action of G on g obtained by differentiating the adjoint action of G on
itself. This action turns g into a G-module. Since SOy C G, g is also a SOy-module.
Now if G # TSOp, then since G is connected we must have soy @ iR # g. It follows
from the real vector space structure of the Lie algebras uy and soy that there exists a
nonzero symmetric real matrix of trace zero X such that:
1X €g
We know that the space of symmetric real matrices of trace zero is an irreducible

representation of SOy under the adjoint action. Thus g must contain all such X, and
hence g = uy. But since Uy is connected, it follows that G = Uy.

Step 3. Our claim is that the commutant of SOy in My (C) is as follows:

(1) SO, = {(_0‘6 g) a5 e c}.
(2) If N >3, SOy = {aly|a € C}.
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Indeed, at N = 2 this is a direct computation. At N > 3, an element in X € SO
commutes with any diagonal matrix having exactly N — 2 entries equal to 1 and two
entries equal to —1. Hence X is a diagonal matrix. Now since X commutes with any even
permutation matrix and N > 3, it commutes in particular with the permutation matrix
associated with the cycle (i, 7, k) for any 1 < i < j < k, and hence all the entries of X
are the same. We conclude that X is a scalar matrix, as claimed.

Step 4. Our claim is that the set of matrices with nonzero trace is dense in SOy.

At N = 2 this is clear, since the set of elements in SO, having a given trace is finite.
So assume N > 2 and let T € SOy ~ SORY) with Tr(T) = 0. Let £ C RY be a
2-dimensional subspace preserved by T', such that Tjp € SO(E).

Let e > 0 and let S. € SO(F) with ||Tig — S:|| < ¢, and with Tr(Tjg) # Tr(S:), in the
N = 2 case. Now define T, € SO(RY) = SOy by:

T5|E = Ss ) T5|EJ- - ,T|EJ-
It is clear that ||T"— T.|| < ||Tjg — S:|| < € and that:
Tr(T:) =Tr(S.) +Tr(Tjgr) #0
Thus, we have proved our claim.

Step 5. Our claim is that TOy is the normalizer of TSOy in Uy, i.e. is the subgroup
of Uy consisting of the unitaries U for which U='XU € TSOy for all X € TSOy.

It is clear that the group TOx normalizes TSSOy, so in order to prove the result, we
must show that if U € Uy normalizes TSOy then U € TOy.

First note that U normalizes SOy. Indeed if X € SOy then U7 'XU € TSOy, so
U™'XU = \Y for some A € T and Y € SOy. If Tr(X) # 0, we have A € R and hence:

\Y =U'XU € SOy

The set of matrices having nonzero trace being dense in SOy, we conclude that
U='XU € SOy for all X € SOy. Thus, we have:

X eSOy = UXUHUXU Y =Iy
— X'WU'UX =U'U
= U'U e SOy

It follows that at N > 3 we have U'U = aly, with a € T, since U is unitary. Hence
we have U = o'/2(a~/2U) with a=2U € Oy, and U € TOy. If N = 2, (U'U)! = U'U
gives again that U'U = al,, and we conclude as in the previous case.

Step 6. Our claim is that the inclusion TOxn C Uy is maximal in the category of
compact groups.

Suppose indeed that TOy C G C Uy is a compact group such that G # Uy. It is a
well-known fact that the connected component of the identity in G is a normal subgroup,
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denoted (GGy. Since we have TSSOy C Gy C Uy, we must have Gy = TSOp. But since G
is normal in G, the group G normalizes TSOy, and hence G C TOy.

Step 7. Our claim is that the inclusion POy C PUpy is maximal in the category of
compact groups.

This follows from the above result. Indeed, if POy C G C PUy is a proper intermediate
subgroup, then its preimage under the quotient map Uy — PUy would be a proper
intermediate subgroup of TOxy C Uy, which is a contradiction.

Step 8. Our claim is that the inclusion Oy C O;; is maximal in the category of compact
compact groups.

Consider indeed a sequence of surjective Hopf *-algebra maps as follows, whose com-
position is the canonical surjection:

C(0%) -5 A% c(oy)
This produces a diagram of Hopf algebra maps with pre-exact rows, as follows:

C——C(POy) —C(O)y) —=C(Z;) —=C

fi f
C PA A C(Zg) —C
9| g

C——PC(Oy) ——C(On) ——=C(Z) ——C

Consider now the following composition, with the isomorphism on the left being some-
thing well-known, coming from [54], that we will explain in section 16 below:

C(PUy) =~ C(PO%) 5 PA 25 PC(Oy) = C(POY)

This induces, at the group level, the embedding POy C PUy. Thus f| or g is an
isomorphism. If f is an isomorphism we get a commutative diagram of Hopf algebra
morphisms with pre-exact rows, as follows:

C—— C(POY) —— C(O%) — C(Zs) —C

Ox
|
A

C——— C(PO%) C(Zy) —=C

Then f is an isomorphism. Similarly if g| is an isomorphism, then g is an isomorphism.
For further details on all this, we refer to [21]. O
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Summarizing, we have many interesting questions here, and both the maximality of
Sy C S and of O% C OF are main problems in the area.

Let us go back now to theoretical questions, in relation with the notion of transitivity.
We will discuss in what follows some modifications of the usual notion of transitivity.

It is convenient to introduce a few more related objects, as follows:

Definition 14.18. Associated to a quantum group G C S¥, producing the equivalence
relation on {1,..., N} given by i ~ j when u;; # 0, are as well:

(1) The partition = € P(N) having as blocks the equivalence classes under ~.
(2) The binary matriz e € My(0,1) given by ;5 = du;;0-

Observe that each of the objects ~, m, e determines the other two ones.
We will often assume, without mentioning it, that the orbits of G C S}, come in
increasing order, in the sense that the corresponding partition is as follows:

m={1,....Kq},... . {Ki+...+ Ky1+1,....Ki+...+ Ky}
Indeed, at least for the questions that we are interested in here, we can always assume
that it is so, simply by conjugating everything by a suitable permutation o € Sy.
In terms of these objects, the notion of transitivity reformulates as follows:

Definition 14.19. We call G C S5 transitive when u;; # 0 for any i, j. Equivalently:

(1) ~ must be trivial, i ~ j for any i, 7.
(2) ™ must be the 1-block partition.
(3) € must be the all-1 matriz.

Let us discuss now the quantum analogue of the fact that given a subgroup G C Sy,
with orbits of lenghts K71, ..., Kj;, we have an inclusion as follows:

GCSle...XSKM

Given two quantum permutation groups G C S}, H C S}, with magic corepresenta-
tions denoted u, v, we can consider the following algebra, and matrix:

A=C(G)«C(H) , w=diag(u,v)

The pair (A, w) satisfies Woronowicz’s axioms, and since w is magic, we therefore obtain
a quantum permutation group, denoted G % H C S;QJFL. See [139].

With this notion in hand, we have the following result:
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Proposition 14.20. Given a quantum group G C S}, with associated orbit decomposition
partition m € P(N), having blocks of length K, ..., Ky, we have an inclusion

GCSf#... %Sf

where the product on the right is constructed with respect to the blocks of w. In the classical
case, G C Sy, we obtain in this way the usual inclusion G C Sk, X ... X Sk,

Proof. Since the standard coordinates w;; € C(G) satisfy u;; = 0 for i o j, the algebra
C(G) appears as quotient of the following algebra:

C(Sy) [ (ws = 0.¥i £ ) = C(Sk,) %+ C(SE,)
— C(SfF .. & SE)

Thus, we have an inclusion of quantum groups, as in the statement. Finally, observe
that the classical version of the quantum group Sj % ... %Sy is given by:

(S;;-l ¥ ... ;S[—;M)class = (SK1 X ... X SKM)class
SKl X ... XSKM
Thus in the classical case we obtain G C Sk, X ... x Sk,,, as claimed. O
Let us discuss now an extension of the notion of transitivity, from [36], as follows:

Definition 14.21. A quantum permutation group G C Sy is called quasi-transitive when
all its orbits have the same size. Equivalently:

(1) ~ has equivalence classes of same size.
(2) m has all the blocks of equal length.
(3) € is block-diagonal with blocks the flat matriz of size K.

As a first example, if G is transitive then it is quasi-transitive. In general now, if we
denote by K € N the common size of the blocks, and by M € N their multiplicity, then
we must have N = K M. We have the following result:

Proposition 14.22. Assuming that G C Sy is quasi-transitive, we must have
GCSEx... %Sk
—_——
M terms

where K € N is the common size of the orbits, and M € N is their number.
Proof. This follows indeed from definitions. O
Observe that in the classical case, we obtain in this way the usual embedding:

G CSkx...x Sk
————

M terms
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Let us discuss now the examples. Assume that we are in the following situation:
GCSEx. ... %Sk

If u,v are the fundamental corepresentations of C'(S5;), C(S}), consider the quotient
map 7; : C(S5) — C(S}) constructed as follows:

u%diag(lK,...,lK, v 71K7~--71K)

i—th term

We can then set C(G;) = m;(C(G)), and we have the following result:
Proposition 14.23. If G; is transitive for all ¢, then G is quasi-transitive.

Proof. We know that we have embeddings as follows:

Gix...xGyu CGCSEx... xSk
—_——

M terms

It follows that the size of any orbit of G is at least K, because it contains G x ... X Gy,
and at most K, because it is contained in S % ... % SE. Thus, G is quasi-transitive. [

We call the quasi-transitive subgroups appearing as above “of product type”. There
are quasi-transitive groups which are not of product type, as for instance:

G=5C S x5,CS,
o — (0,0)
Indeed, the quasi-transitivity is clear, say by letting G' act on the vertices of a square.
On the other hand, since we have G; = G5 = {1}, this group is not of product type.
In general, we can construct examples by using various product operations:

Proposition 14.24. Given transitive subgroups Gy,...,Gy C Si, the following con-
structions produce quasi-transitive subgroups as follows, of product type:

+ 2 5 Q+
GCSi*...%S;
~—_——

M terms

(1) The usual product: G = Gy x ... X Gy.
(2) The dual free product: G = Gy % ... *G .

Proof. All these assertions are clear from definitions, because in each case, the quantum
groups G; C S} constructed before are those in the statement. g

In the group dual case, we have the following result:
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Proposition 14.25. The group duals which are of product type

M terms

are precisely those appearing from intermediate groups of the following type:

Lyx... %Ly —1 =L X...X 7Ly
N s N 7

VvV
M terms M terms

Proof. In one sense, this is clear. Conversely, consider a group dual T'c S, coming from
a quotient group, as follows:

M T

The subgroups G; C T constructed above must be group duals as well, G, = =T, i, for
certain quotient groups I' = I';,. Now if T is of product type, F C S} must be transitive,
and hence equal to ZK Thus we have I' — Z. U

In order to construct now some other classes of examples, we use the notion of normality
for compact quantum groups. This notion, from [80], [141], is introduced as follows:

Definition 14.26. Given a quantum subgroup H C G, coming from a quotient map
m: C(G) — C(H), the following are equivalent:

(1) A={a e C(G)|(id® 7)A(a) = a ® 1} satisfies A(A) C A® A.
(2) B={a € C(G)|(r®id)A(a) =1® a} satisfies A(B) C B® B.
(3) We have A = B, as subalgebras of C(QG).

If these conditions are satisfied, we say that H C G is a normal subgroup.
Now with this notion in hand, we have, following [36]:

Theorem 14.27. Assuming that G C S}, is transitive, and that H C G is normal,
H C S follows to be quasi-transitive.

Proof. Consider the quotient map 7 : C(G) — C(H), given at the level of standard
coordinates by w;; — v;;. Consider two orbits Oy, Oy of H and set:

ZUZZE Wij yi:E Uiz

jE€OL Jj€O02
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These two elements are orthogonal projections in C'(G) and they are nonzero, because
they are sums of nonzero projections by transitivity of G. We have:

(domA(z:) = > Y ug® vy

k jeO1

= Z Zuik®vkj

k€01 jeO1

= Zuik@)l

keO,
Thus by normality of H we have the following formula:
On the other hand, assuming that we have i € Oy, we obtain:
(m @id)A(x;) = Z Z Vi @ Ugj = Z Uik, @ T,
k jeO1 k€02

Multiplying this by v;; ® 1 with k& € Os yields v, ® x = vy @ x;, that is to say, xp = ;.
In other words, x; only depends on the orbit of i. The same is of course true for y;. By
using this observation, we can compute the following element:

=Y Y= Y=o
k€02 j€01 keO2
On the other hand, by applying the antipode, we have as well:
S(z) = Z Z Ujk = Z yj = |O1ly;
k€03 j€O; j€01

We therefore obtain the following formula:

01
S(x;) = ——y;
( ) |02| J
Now since both z; and y; have norm one, we conclude that the two orbits have the
same size, and this finishes the proof. O

Finally, let us discuss the notion of double transitivity. We have here:
Definition 14.28. Let G C Sy, be a closed subgroup, with magic unitary v = (u;;), and
consider the equivalence relation on {1,...,N}* given by (i,k) ~ (j,1) <= wujup # 0.

(1) The equivalence classes under ~ are called orbitals of G.
(2) G is called doubly transitive when the action has two orbitals.

In other words, we call G C Sy doubly transitive when w;juy # 0, for any i #k,j # 1.
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To be more precise, it is clear from definitions that the diagonal D C {1,..., N}? is
an orbital, and that its complement D¢ must be a union of orbitals. With this remark in
hand, the meaning of (2) is that the orbitals must be D, D°.

Among the results established in [115] is the fact that, with suitable definitions, the
space Fiz(u®?) consists of the functions which are constant on the orbitals. We have:

Theorem 14.29. For a doubly transitive subgroup G C Sy, we have:

=~ ifi=k,j=1

/uijukl: 0 ifi=kj#lori#k,j=I
el e .

m if 4 7£ kf,j 7£ l
Moreover, this formula characterizes the double transitivity.
Proof. We use the standard fact, from [147], that the integrals in the statement form
the projection onto Fiz(u®?). Now if we assume that G is doubly transitive, Fiz(u®?)
has dimension 2, and therefore coincides with Fix(u®?) for the usual symmetric group

Swy. Thus the integrals in the statement coincide with those for the symmetric group Sy,
which are given by the above formula. Finally, the converse is clear as well. U
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15. MATRIX MODELS

One interesting method for the study of the subgroups G C Sj;, that we have not
tried yet, consists in modelling the coordinates u;; € C(G) by concrete variables U;; € B.
Indeed, assuming that the model is faithful in some suitable sense, that the algebra B
is something quite familiar, and that the variables U;; are not too complicated, all the
questions about G would correspond in this way to routine questions inside B.

We discuss here these questions, first for the arbitrary quantum groups G C Uy, and
then for the quantum permutation groups G C Sy. Regarding the choice of the target
algebra B, some very convenient algebras are the random matrix ones, B = Mg (C(T)),
with K € N, and T being a compact space. These algebras generalize indeed the most
familiar algebras that we know, namely the matrix ones My (C), and the commutative
ones C'(T'). We are led in this way to the following general definition:

Definition 15.1. A matriz model for G C Uy is a morphism of C*-algebras
m:C(G) - Mg(C(T))
where T 1s a compact space, and K > 1 is an integer.

There are many examples of such models, and will discuss them later on. For the
moment, let us develop some general theory. The question to be solved is that of under-
standing the suitable faithfulness assumptions needed on 7, as for the model to “remind”
the quantum group. As we will see, this is something quite tricky:.

The simplest situation is when 7 is faithful in the usual sense. This is of course some-
thing quite restrictive, because the algebra C(G) must be of type I in this case. However,
there are many interesting examples here, and all this is worth a detailed look. Following
[9], let us introduce the following notion, which is related to faithfulness:

Definition 15.2. A matriz model 7 : C(G) — My (C(T)) is called stationary when

fi= (e f)r

where fT 15 the integration with respect to a given probability measure on T'.

Here the term “stationary” comes from a functional analytic interpretation of all this,
with a certain Cesaro limit being needed to be stationary, and this will be explained later.
Yet another explanation comes from a certain relation with the lattice models, but this
relation is rather something folklore, not axiomatized yet. We will be back to this.

As a first result now, which is something which is not exactly trivial, and whose proof
requires some functional analysis, the stationarity property implies the faithfulness:
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Theorem 15.3. Assuming that a closed subgroup G C Uy, has a stationary model,
m:C(G) - Mg(C(T))
it follows that G must be coamenable, and that the model is faithful. Moreover, m extends
into an embedding of von Neumann algebras, as follows,
L%(G) € My(L=(T))
which commutes the canonical integration functionals.

Proof. Assume that we have a stationary model, as in the statement. By performing
the GNS construction with respect to fG, we obtain a factorization as follows, which
commutes with the respective canonical integration functionals:

7:C(G) = C(G)reqa C Mg (C(T))
Thus, in what regards the coamenability question, we can assume that « is faithful.
With this assumption made, we have an embedding as follows:
C(G) € Mk(C(T))
Now observe that the GNS construction gives a better embedding, as follows:
L*(G) € Mg (L™(T))

Now since the von Neumann algebra on the right is of type I, so must be its subalgebra
A = L*(G). This means that, when writing the center of this latter algebra as Z(A) =
L*>(X), the whole algebra decomposes over X, as an integral of type I factors:

In particular, we can see from this that C’ ) C L*(G) has a unique C*-norm, and so G
is coamenable. Thus we have proved our ﬁrst assertion, and the second assertion follows
as well, because our factorization of 7 consists of the identity, and of an inclusion. g

We refer to [26], [36] for more on this. Summarizing, what we have is a slight strength-
ening of the notion of faithfulness. We will see later that are many interesting examples
of such models, while remaining of course in the coamenable and type I setting.

Let us discuss now the general, non-coamenable case, with the aim of finding a weaker
notion of faithfulness, which still does the job, of “reminding” the quantum group. The
idea comes by looking at the group duals G = [. Consider indeed a general model for
the associated algebra, which can be written as follows:

7 C*(T) = Mg (C(T))

The point now is that such a representation of the group algebra must come by lin-
earization from a unitary group representation, as follows:

pF—)C(T,UK)
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Now observe that when p is faithful, the representation 7 is in general not faithful,
for instance because when 7' = {.} its target algebra is finite dimensional. On the other
hand, this representation “reminds” I', so can be used in order to fully understand I'.

Summarizing, we have an idea here, basically saying that, for practical purposes, the
faithfuless property can be replaced with something much weaker. This weaker notion is
called “inner faithfulness”, and the general theory here, from [16], is as follows:
Definition 15.4. Let 7 : C(G) — My (C(T)) be a matriz model.

(1) The Hopf image of w is the smallest quotient Hopf C*-algebra C(G) — C(H)
producing a factorization as follows:
7:C(G)— C(H) — Mg(C(T))
(2) When the inclusion H C G is an isomorphism, i.e. when there is no non-trivial
factorization as above, we say that 7 is inner faithful.

These constructions work in fact for any C*-algebra representation 7 : C'(G) — B, but

here we will be only interested in the random matrix case, B = Mg (C(T)). As a first

example, motivated by the above discussion, in the case where G' = Tisa group dual, 7
must come from a group representation, as follows:

p: T — C(T,Uk)
Thus the minimal factorization in (1) is obtained by taking the image:
p:I'—=ACC(T,Uk)
Thus, as a conclusion, 7 is inner faithful precisely when:
I'c C(T,Uk)

Dually now, given a compact Lie group G, and elements ¢q,...,9x € G, we have a
diagonal representation 7 : C'(G) — Mg (C), appearing as follows:

f(gl)
f—
flgx)

The minimal factorization of this representation 7, as in (1) above, is then via the
algebra C'(H), with H being the following closed subgroup of G:

H=<g,. .. ,9gx >
Thus, as a conclusion, 7 is inner faithful precisely when we have:
G=H

In general, the existence and uniqueness of the Hopf image comes from dividing C'(G)
by a suitable ideal. In Tannakian terms, as explained in [16], we have:
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Theorem 15.5. Assuming G C Uy, with fundamental corepresentation w = (u;;), the
Hopf image of a model w: C(G) — Mg (C(T)) comes from the Tannakian category

Cr = Hom(U®* U®)
where U;; = m(u;;), and where the spaces on the right are taken in a formal sense.

Proof. Since the morphisms increase the intertwining spaces, when defined either in a
representation theory sense, or just formally, we have inclusions as follows:

Hom(u®* u®) ¢ Hom(U®*, U®)

More generally, we have such inclusions when replacing (G, u) with any pair producing
a factorization of m. Thus, by Tannakian duality, the Hopf image must be given by the
fact that the intertwining spaces must be the biggest, subject to the above inclusions.

On the other hand, since u is biunitary, so is U, and it follows that the spaces on the
right form a Tannakian category. Thus, we have a quantum group (H,v) given by:

Hom(v®* v®) = Hom(U®*, U®")
By the above discussion, C'(H) follows to be the Hopf image of 7, as claimed. O

Regarding now the study of the inner faithful models, a key problem is that of computing
the Haar integration functional. The result here, from [35], [142], is as follows:

Theorem 15.6. Given an inner faithful model = : C(G) — Mg (C(T)), the Haar inte-
gration over G is given by

with the truncations of the integration on the right being given by

| =tomr

with ¢ x Y = (¢ ® Y)A, and with p = tr ® fT being the random matrix trace.

Proof. As a first observation, there is an obvious similarity here with the Woronowicz
construction of the Haar measure, explained in section 1 above. In fact, the above result
holds more generally for any model 7 : C(G) — B, with ¢ € B* being a faithful trace.
With this picture in hand, the Woronowicz construction simply corresponds to the case
m = id, and the result itself is therefore a generalization of Woronowicz’s result.

In order to prove now the result, we can proceed as in section 1. If we denote by fé
the limit in the statement, we must prove that this limit converges, and that we have:

Iy
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It is enough to check this on the coefficients of corepresentations, and if we let v = u®*
be one of the Peter-Weyl corepresentations, we must prove that we have:

(iae [Jo=(iae [ )

We already know, from section 1 above, that the matrix on the right is the orthogonal

projection onto Fix(v):
(id ® /) v = Proj[Fiz(v)]
e

Regarding now the matrix on the left, the trick in [147] applied to the linear form o7
tells us that this is the orthogonal projection onto the 1-eigenspace of (id ® pm)v:

(id ® /l) v = Proj[l € (id ® pm)v]

G
Now observe that, if we set V;; = m(v;;), we have the following formula:

(id @ pm)v = (id ® p)V

Thus, we can apply the trick in [147], or rather use the same computation as there,
which is only based on the biunitarity condition, and we conclude that the 1-eigenspace
that we are interested in equals Fiz(V'). But, according to Theorem 15.5, we have:

Fix(V) = Fixz(v)
Thus, we have proved that we have [ c/; = [, as desired. O
Regarding now the law of the main character, we have the following result:
Proposition 15.7. Assume that a model 7 : C(G) — Mg (C(T)) is inner faithful, let

= law(x)
and let u" be the law of x with respect to fé = (pom)*, where p =tr @ [,.
(1) We have the following convergence formula, in moments:

(2) The moments of u" are the numbers ¢, = Tr(T'), where:

Ehipins, = (e [ ) 3.0
Proof. These formulae are both elementary, by using the convergence result established
in Theorem 15.6, the proof being as follows:
(1) This follows from the limiting formula in Theorem 15.6.

(2) This follows from the definition of 7., by summing over equal indices, i, = j,.. O
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In order to detect the stationary models, we have the following criterion, from [17]:

Theorem 15.8. For a model w: C(G) — Mg (C(T)), the following are equivalent:
(1) Im(m) is a Hopf algebra, and the Haar integration on it is:

o~ (oo f)

(2) The linear form ¢ = (tr ® [,)m satisfies the idempotent state property:

Yoxp =1p
(3) We have T> =T,, Vp € N, Ve € {1, x}?, where:

T = (8 [ ) WU

If these conditions are satisfied, we say that w is stationary on its image.

Proof. Given a matrix model 7 : C(G) — Mg (C(T)) as in the statement, we can factorize
it via its Hopf image, as in Definition 15.4 above:
7:C(G) = C(H) — Mg(C(T))
Now observe that (1,2,3) above depend only on the factorized representation:
v:C(H)— Mg(C(T))

Thus, we can assume in practice that we have G = H, which means that we can assume
that 7 is inner faithful. With this assumption made, the integration formula in Theorem
15.6 applies to our situation, and the proof of the equivalences goes as follows:

(1) = (2) This is clear from definitions, because the Haar integration on any compact
quantum group satisfies the idempotent state equation:

Yoxp =1p
(2) = (1) Assuming ¢ *x ¢ = 1, we have ¢*" = 1) for any r € N, and Theorem 15.6
gives fG = 7). By using now Theorem 15.3, we obtain the result.

In order to establish now (2) <= (3), we use the following elementary formula, which
comes from the definition of the convolution operation:

VUl i) = (T )inigi.ody

(2) = (3) Assuming ) * ¢ = 1, by using the above formula at r = 1,2 we obtain
that the matrices T, and T2 have the same coefficients, and so they are equal.

(3) = (2) Assuming T? = T, by using the above formula at r = 1,2 we obtain that

the linear forms 1 and v x 1 coincide on any product of coefficients u;! u;?. . Now

T Ui
since these coefficients span a dense subalgebra of C'(G), this gives the result. O
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As a first illustration, we can apply the above criterion to certain models for Oy, Ux.
We first have the following result, coming from the work in [18], [33], [54]:

Proposition 15.9. We have a matrixz model as follows,

C(Oy) = My(C(Uy))

N 0 ’Uij
i T oy 0

where v is the fundamental corepresentation of C(Uy), as well as a model as follows,

C(Ux) = My(C(Uy x Un))

N 0 Uij
i wij 0

where v,w are the fundamental corepresentations of the two copies of C'(Uy).

Proof. 1t is routine to check that the matrices on the right are indeed biunitaries, and
since the first matrix is also self-adjoint, we obtain in this way models as follows:

C(O?\Lr) — My (C(Uy))
C(U) = My(C(Ux x Uy))

Regarding now the half-commutation relations, this comes from something general,
regarding the antidiagonal 2 x 2 matrices. Consider indeed matrices as follows:

0 ZT;
A= (y 0)

We have then the following computation:

0 =x; 0 =z 0 xp 0 TiYiTh
XZXX = J — J
o (y 0) (yj 0)(:% 0) (yixjyk 0 )

Since this quantity is symmetric in 4, k, we obtain X;X;X; = X;X,;X;. Thus, the
antidiagonal 2 x 2 matrices half-commute, and so our models factorize as claimed. U

We can now formulate our first concrete modelling theorem, as follows:
Theorem 15.10. The above antidiagonal models, namely
C(Oy) — Mz(C(Un))
C(Ux) = My(C(Uy x Un))

are both stationary, and in particular they are faithful.
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Proof. Let us first discuss the case of Oy. We will use Theorem 15.8 (3). Since the
fundamental representation is self-adjoint, the various matrices T, with e € {1, *}? are all
equal. We denote this common matrix by 7,,. We have, by definition:

_ 0 Viij1 0 Yipjp
@i = (o [) (o0, 5) (o, ")

Since when multipliying an odd number of antidiagonal matrices we obtain an atidiag-
onal matrix, we have 7, = 0 for p odd. Also, when p is even, we have:

S Virjy - - - Vi 0
(Tp)ll.‘.lp,]l...]p <t7’ ® /H) < 0 @iljl P Uipjp>
1 _ _
= g\ [ Vi Viggy [ Vi Vi,
H H

= Re(v,j, - . 0ij,)
H
We have Tp2 = T, = 0 when p is odd, so we are left with proving that for p even we
have Tp2 = T,. For this purpose, we use the following formula:
1
2

By using this identity for each of the terms which appear in the product, and multi-
index notations in order to simplify the writing, we obtain:

(T,)is
= Z (Tp)il...ip,kl...kp(Tp)kl...kp,jl...jp

ki..kp

— / / Z Re(iyg, - - - Uik, ) Re(wgyj, - . . Wy, j,)dvdw
HIH ) g,

1 Z - _ _
= 5 Re(vilklwkljl R vz-pkpwkpjp) + Re(vilkl Wiky4y -+ - - Uipkpwkpjp)dvdw
HJH
ki..k

Re(r)Re(y) = 5 (Re(ry) + Re(zy))

= % /H /H Re((vw)y j, - - - (T)ﬂ))ipjp) + Re((vw)m-l o (@w)ipjp)dvdw

Now since vw € H is uniformly distributed when v,w € H are uniformly distributed,
the quantity on the left integrates up to (7},);;. Also, since H is conjugation-stable, w € H
is uniformly distributed when w € H is uniformly distributed, so the quantity on the right
integrates up to the same quantity, namely (7},);;. Thus, we have:

(T3)ij = %((Tp)z’j + (Tp)z‘j> = (T})ij
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Summarizing, we have obtained that for any p, we have T 5 = T,. Thus Theorem 15.8
applies, and shows that our model is stationary, as claimed. As for the proof of the
stationarity for the model for Uy, this is similar. See [9], [18]. O

As a second illustration, regarding Hy, K, we have:

Theorem 15.11. We have a stationary matriz model as follows,
C(Hy) — M2(C(Ky))

N O Uz‘j
Wi T\ gy 0

where v is the fundamental corepresentation of C(Ky), as well as a stationary model

C(K;[) — MQ(C(KN X KN))

N 0 Uij
u” wij 0

where v,w are the fundamental corepresentations of the two copies of C(Ky).

Proof. This follows by adapting the proof of Proposition 15.9 and Theorem 15.10 above, by
adding there the H;;, K relations. All this is in fact part of a more general phenomenon,
concerning half-liberation in general, and we refer here to [18], [53], [54]. O

Let us go back now to the general problem of modelling a given quantum permutation
group G C S};. The “simplest” matrix models that we can use are as follows:

Definition 15.12. Given a subgroup G C S3;, a random matriz model of type
m:C(G) = Mg(C(T))
is called flat when the fibers Pf; = m(u;)(x) all have rank 1.
Observe that we must have N = K in this case. Also, the quantum permutation group

G C SF; to be modelled must be transitive, in order for such a model to exist.

Following [36], let us formulate as well a second definition, which is a bit more general,
covering many interesting examples of quantum permutation groups G' C S which are
not transitive, such as the quasi-transitive ones discussed in the previous section:

Definition 15.13. Given a subgroup G C S3;, a random matriz model of type
m:C(G) = Mg(C(T))
is called quasi-flat when the fibers Pg = m(u;)(z) all have rank < 1.

Observe that the functions x +— rj; = rank(P};) are locally constant over T, so they
are constant over the connected components of X. Thus, when T is connected, our
assumption is that we have rj; =r;; € {0,1}, for any = € T, and any ¢, j.

As a first result now, regarding the quasi-flat models, we have:
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Proposition 15.14. Assume that we have a quasi-flat model = : C(G) — Mg (C(T)),
mapping u;; — Py, and consider the matriz r;; = rank(P;;).

(1) r is bistochastic, with sums K.

(2) We have ri; < g5, for any i, 7.

(3) If G is quasi-transitive, with orbits of size K, then r;; = €;; for any i,j.

(4) If m is assumed to be flat, then G must be transitive.

Proof. These results are all elementary, the proof being as follows:

(1) This is clear from the fact that each P* = (P}) is bistochastic, with sums 1.

(2) This simply comes from u;; =0 = P,; = 0.

(3) The matrices r = (r;;) and € = (g;;) are both bistochastic, with sums K, and they
satisfy r;; < g;;, for any 4, j. Thus, these matrices must be equal, as stated.

(4) This is clear, because rank(P;;) = 1 implies u;; # 0, for any 1, j. O

In order to construct now universal quasi-flat models, it is convenient to identify the
rank one projections in My (C) with the elements of the complex projective space P(év -1
We first have the following observation, which goes back to [39]:

Proposition 15.15. The algebra C(S%) has a universal flat model, given by
TN - C(S]J'\}) — MN(C(XN))
T (uig) = [P — Byl
where Xy is the set of matrices P € My (P ') which are bistochastic with sums 1.

Proof. This is clear from definitions, because any flat model C'(S};) — My(C) must map
the magic corepresentation u = (u;;) into a matrix P = (P;;) belonging to Xy. O

Regarding now the general quasi-transitive case, we have here:

Theorem 15.16. Given a quasi-transitive subgroup G C Sf;, with orbits of size K, we
have a universal quasi-flat model 7 : C(G) — My (C(X)), constructed as follows:

(1) ForG = Skt % ... %Skt with N = KM, the model space is Xy x = Xg X ... X Xk,

I ; NS >

TV
M terms M terms

and with u = diag(u', ..., uM) the modelling map is:
.k (ul) = [(P',...,PM) = P/

(2) In general, the model space is the submanifold X¢ C Xy i obtained via the Tan-
nakian relations defining G.

Proof. This is standard by using Tannakian duality, as follows:

(1) This follows from Tannakian duality, by using Proposition 15.14 (3), which tells us
that the 0 entries of the model must appear exactly where u = (u;;) has 0 entries.
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(2) Assume that G C S} is quasi-transitive, with orbits of size K. We have then an

inclusion G C St % ... %S}, and in order to construct the universal quasi-flat model for
—_——

M terms
C(G), we need a universal solution to the following factorization problem:

—_——

i \J
C(G) —  Mg(C(Xg))

But, the solution to this latter question is given by the following construction, with the
Hom-spaces at left being taken as usual in a formal sense:

O(Xe) = C(Xnx) / (T € Hom(P®, P®Y) Wk,1 € N,YT € Hom(u®*, u®l)>

With this result in hand, the Gelfand spectrum of the algebra on the left is then an
algebraic submanifold Xo C Xy x, having the desired universality property. U

As an illustration, let us discuss now the classical case. With the convention that
we identify the rank one projections in Mg (C) with the corresponding elements of the
complex projective space Pg ~!. we have the following result, from [36]:

Theorem 15.17. Given a quasi-transitive group G C Sy, with orbits having size K, the
associated universal quasi-flat model space is Xg = Fx X L%K, where:

Ex — {Pl, ..., PrePKp L Pj,w,j}

L%’K:{0-1770-K€G

o1(i), ..., ox(i) distinet,¥i € {1, ... ,N}}

In addition, assuming that we have L% x 7 0, the universal quasi-flat model is stationary,
with respect to the Haar measure on Eyc times the discrete measure on L j.

Proof. This result is from [36], the idea being as follows:

(1) Let us call “sparse Latin square” any matrix L € My(x,1,..., K) whose rows and
columns consists of a permutation of the numbers 1,..., K, completed with * entries.

(2) Our claim is that the quasi-flat representations 7w : C'(Sy) — Mg (C) appear as
follows, where Py, ..., Px € Mg(C) are rank 1 projections, summing up to 1, and where
L € My(x,1,...,K) is a sparse Latin square, with the convention P, = 0:

U5 —> PLij

Indeed, assuming that 7 : C(Sx) — Mk (C) is quasi-flat, the elements P;; = m(u;;) are
projections of rank < 1, which pairwise commute, and form a magic unitary.
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Let Py,...,Px € Mg(C) be the rank one projections appearing in the first row of
P = (P;). Since these projections form a partition of unity with rank one projections,
any rank one projection () € Mk (C) commuting with all of them satisfies:

Qe{p,...,Px}

In particular we have P;; € {Py,..., Pk} for any 4, j such that P,; # 0. Thus we can
write ug; — Pr,;, for a certain matrix L € My(x,1,..., K), with the convention P, = 0.

In order to finish, the remark is that u;; — P, defines a representation m : C(Sy) —
M (C) precisely when the matrix P = (P, )i is magic. But this condition tells us
precisely that L must be a sparse Latin square, as desired.

(3) In order to finish, we must compute the Hopf image. Given a sparse Latin square
L € My(x,1,...,K), consider the permutations o1, ...,0x € Sy given by:

Our claim is that the Hopf image associated to a representation 7 : C'(Sy) — Mg (C),
u;; — P, as above is then the algebra C'(G), where:

G =< O1y...,0 >C Sn

Indeed, the image of m being generated by Pi,..., Px, we have an isomorphism of
algebras a : Im(m) ~ C(1,...,K) given by P, — §;. Consider the following diagram:

C(Sn) i Im(m)

Mg (C)

Here the map on the right is the canonical inclusion and ¢ = aw. Since the Hopf image
of 7 coincides with the one of ¢, it is enough to compute the latter. We know that ¢
is given by ¢(u;) = dr,;, with the convention 6, = 0. By Gelfand duality, ¢ must come
from a certain map o : {1,..., K} — Sy, via the transposition formula:

p(f)(@) = floz)
With the choice f = u;;, we obtain dr,,(x) = u;;(0,). Now observe that:

1 if Lj==x
or.. () = *
() {O otherwise
We have as well the following formula:

w0 = {1 if 0,(j) =i

0 otherwise
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We conclude that o, is the permutation in the statement. Summarizing, we have shown
that ¢ comes by transposing the map r — o,, with o, being as in the statement. Thus
the Hopf image of ¢ is the algebra C(G), with:

GL =<01,...,0g >
Thus, we are led to the conclusion in the statement. U

There are many other explicit computations in the quasi-flat case, especially in the
group dual case, and we refer here to [25], [306].

Following [25], [39] and related papers, we have the following result:
Proposition 15.18. Assuming that a model m : C(G) — Mg (C(X)) is inner faithful
and quasi-flat, mapping u;; — Proj(&f;), with |[£5]| € {0,1}, we have

7,= [ T
X
where the matriz T,(£) € My»(C), associated to an array & € My(CF) is given by

1
Tp(&)h...ip,jln-jp = ? < §i1j1’§i2j2 >< §i2j27 §i3j3 > < éipjp’ §i1j1 >
with the scalar product being the usual one on CX, taken linear at right.

Proof. We have the following well-known computation, valid for any vectors &i,...,§,
having norms ||&;|| € {0, 1}, with the scalar product being linear at right:

Proj(&)x =< &,z > &, Vi

=  Proj(&)...Proj(&,)(z) =< &,&% > ..., <1, >< & > &
= Tr(Proj(&)... Proj(§)) =< &, > ...... <Ep1,8p >< &, &1 >

Thus, the matrices T, can be computed as follows:

Ty = [t (Prof(€t, ) Prod(€s,) . Pros(es,,)) do

1 T T T T T T
= K /X i1 Sings =< Sy Siggy > - < Sipgpr Singy > AT
— [ Bl
X
We therefore obtain the formula in the statement. See [25], [39]. O

An even more conceptual result, from [17], [25], [39], is as follows:
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Theorem 15.19. Given an inner faithful quasi-flat model
m: C(G) = Mkg(C(X))
ui; — Proj(&;)
with ||&5|] € {0,1}, the law of the normalized character x /K with respect to the truncated
integral fG coincides with that of the Gram matrixz of the vectors

T

i1...zr - \/— 51122 ® 51213 - & €zrz1
with respect to the normalized matriz trace, and to the integration functional on X".

Proof. The moments C), of the measure that we are interested in are given by:

I ’
Gy = E/G <;Uu>

1 T
= ﬁ (Tp )il.“ip,il...ip
i1
1
= % -Tr(T)
The trace on the right is given by the following formula:
TT(T;) = Z (Tp)z% R E - I (Tp)zl RN

1
Zl...lp

In view of the formula in Proposition 15.18, this quantity will expand in terms of the
matrices T,(§) constructed there. To be more precise, we have:

X
/ E Tp(€ )it iy iziz - Tp (€ )ir g it .y do
21 z'

By using now the explimt formula of each 7,(), from Proposition 15.18, we have:

TT( 612, %123 > ...... 611127512 >
zl zT
<£M,§”§T1> ...... <§ml,§ >dx
By changing the order of the summation, we can write this formula as:
Tr(T; <§12, e > <§T1,§r1>
<§Z1Z2,£12 > <§2’;}17,§f:1 > dx
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But this latter formula can be written as follows:

—r 1 €T
Tr(ly) = K? /TZEQI? O 8 S @O & >

1
— <L 0.0 gml , L, Q... .Q&T, >dx
K p'p un 3
In terms of the vectors in the statement, and of their Gram matrix Gy, we obtain:
Tr(T,) = / Z <& i > <& s S > da

T
le

= K E (GY) (GY) d
= iLor ol e i1 gr 1 o QL
/r /70505000 r zp..‘z;,zlu.zl
1
iy

_ g / TG )

Summarizing, the moments of the measure in the statement are given by:

G = = /X TGy

= (tr@/) (GP)

This gives the formula in the statement of the theorem. Il

Following [39], let us study now the universal flat model for C'(S;). Given a flat magic
unitary, we can write it, in a non-unique way, as u;; = Proj(&;;). The array & = (&) is
then a “magic basis”, in the sense that each of its rows and columns is an orthonormal
basis of CV. We are therefore led to two spaces, as follows:

Definition 15.20. Associated to any N € N are the following spaces:
(1) Xy, the space of all N x N flat magic unitaries u = (u;;).
(2) Ky, the space of all N x N magic bases & = (&;).

Let us recall now that the rank 1 projections p € My(C) can be identified with the
corresponding 1-dimensional subspaces £ C C¥, which are by definition the elements
of the complex projective space P(év ~1. In addition, if we consider the complex sphere,
SEt = {z € CN| Y, |zi* = 1}, we have a quotient map 7 : S ' — PY™! given by
z — Proj(z). Observe that m(z) = 7(2’) precisely when 2z’ = wz, for some w € T.

Consider as well the embedding Uy C (S& ') given by 2 — (71,...,7y), where
x1,...,xy are the rows of x. Finally, let us call an abstract matrix stochastic/bistochastic
when the entries on each row/each row and column sum up to 1.
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With these notations, the abstract model spaces Xy, K that we are interested in, and
some related spaces, are as follows:

Proposition 15.21. We have inclusions and surjections as follows,
Ky C Ujj\y C MN(Sévil)

3 3 \

Xy C Yy C My(PYNY
where Xy, Yn consist of bistochastic/stochastic matrices, and Ky is the lift of Xy.

Proof. This follows from the above discussion. Indeed, the quotient map S§ ' — PY~!
induces the quotient map My (SE ') — My(PY™') at right, and the lift of the space of
stochastic matrices Yy C My(PY™!) is then the rescaled group UY, as claimed. U

In order to get some insight into the structure of Xy, Ky, we can use inspiration from
the Sinkhorn algorithm. This algorithm starts with a N x N matrix having positive
entries and produces, via successive averagings over rows/columns, a bistochastic matrix.

In our situation, we would like to have an “averaging” map Yy — Y}, whose infinite
iteration lands in the model space Xy. Equivalently, we would like to have an “averaging”
map UY — UY, whose infinite iteration lands in K.

In order to construct such averaging maps, we use the orthogonalization procedure
coming from the polar decomposition. First, we have the following result:

Proposition 15.22. We have orthogonalization maps as follows,

(SN — e (SEHN

(PN (PN

where a(x); = Pol([(z:);]i;), and B(p) = (P~Y?p,P~Y/%), with P =", pi.

Proof. Our first claim is that we have a factorization as in the statement. Indeed, pick
P1,-- ., pn € P and write p; = Proj(x;), with ||2;]| = 1. We can then apply a, as to
obtain a vector a(z) = (z});, and then set 5(p) = (p}), where p, = Proj(z}).

Our first task is to prove that § is well-defined. Consider indeed vectors Z;, satisfying
Proj(z;) = Proj(xz;). We have then z; = \u;, for certain scalars \; € T, and so
the matrix formed by these vectors is M = AM, with A = diag(\;). It follows that

—

Pol(M) = APol(M), and so &, = A\;x;, and finally Proj(z}) = Proj(z}), as desired.



QUANTUM PERMUTATIONS 275

It remains to prove that [ is given by the formula in the statement. For this purpose,
observe first that, given xy,...,zy € Sév_l, with p; = Proj(z;) we have:

sz' = Z[(jl)k(xz)l]kl

= Z(Mszzl)kl

= ((M*M))r
= M'M
We can now compute the projections p; = Proj(z;). Indeed, the coefficients of these
projections are given by (p})x = UinUy with U = M P~/2, and we obtain, as desired:

(P = Z Mo Py My Py
ab

= N PN My Py

ab
—1/2 —1/2
= Z P / (Pi)ab Py /
ab
(P~12p, P71,

An alternative proof uses the fact that the elements p} = P~/2p; P=1/2 are self-adjoint,
and sum up to 1. The fact that these elements are indeed idempotents can be checked
directly, via p; P~1p; = p;, because this equality holds on ker p;, and also on ;. O

As an illustration, here is how the orthogonalization works at N = 2:

Proposition 15.23. At N = 2 the orthogonalization procedure for (Proj(z), Proj(y))
amounts in considering the vectors (x £ 1y)/v/2, and then rotating by 45°.

Proof. By performing a rotation, we can restrict attention to the case x = (cost,sint)
and y = (cost, —sint), with ¢ € (0,7/2). Here the computations are as follows:

_ [cost sint 2cos’t 0
~ \cost —sint 0 2sin?t

— pl2_ |M|—1:i (ﬁ (1) )
\/§ 0 sint

_ 1 /1 1
— U:M|M|1:E(1 _1)

Thus the orthogonalization procedure replaces (Proj(z), Proj(y)) by the orthogonal
projections on the vectors (%(1, 1), \%(—1, 1)), and this gives the result. O

) = e
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With these preliminaries in hand, let us discuss now the version that we need of the
Sinkhorn algorithm. The orthogonalization procedure is as follows:

Theorem 15.24. The orthogonalization maps «, 3 induce maps as follows,

Uy ——U¥
Yy — 2 oYy

which are the transposition maps on Ky, Xy, and which are projections at N = 2.

Proof. 1t follows from definitions that ®(x) is obtained by putting the components of
x = (z;) in a row, then picking the j-th column vectors of each x;, calling M; this matrix,
then taking the polar part x; = Pol(M;), and finally setting ®(x) = 2'. Thus:

(x) = Pol((xy)i);  W(u) = (P Puub )
Thus, the first assertion is clear, and the second assertion is clear too. Il
Our claim is that the algorithm converges, as follows:

Conjecture 15.25. The above maps ®, ¥ increase the volume,

vol : Uy — Yy —[0,1], wol(u) = H | det((uij)s)]

and respectively land, after an infinite number of steps, in Ky/Xn.

As a main application of the above conjecture, the infinite iteration (®2)* : UY — Ky
would provide us with an integration on Ky, and hence on the quotient space Ky — Xy
as well, by taking the push-forward measures, coming from the Haar measure on U} . In
relation now with the matrix model problematics, we have:

Conjecture 15.26. The universal N x N flat matrixz representation
mn  C(SY) = My (C(Xw)),  mv(wy) = (u — ugy)
18 faithful at N =4, and is inner faithful at any N > 5.

We refer to [39] and related papers for further details regarding this conjecture, and
also for other applications of the Sinkhorn algorithm philosophy to modelling questions
for the quantum permutation groups.
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16. WEYL AND FOURIER

Following [28], [39], let us discuss now some more subtle examples of stationary models,
related to the Pauli matrices, and Weyl matrices, and physics. We first have:

Definition 16.1. Given a finite abelian group H, the associated Weyl matrices are
Wia ey =< 1,0 > eqryp
where i € H, a,b € PAI, and where (1,b) —< i,b > is the Fourier coupling H X H—T.

As a basic example, consider the cyclic group H = Zs = {0,1}. Here the Fourier
coupling is given by < i,b >= (—1)%®, and so the Weyl matrices act via:
WOO tep — €y W10 ey — (—1)b€b

. b .
Wit iew = (=11, Woriep = €pa

Thus, we have the following formulae:

10 1 0
WOO = (O 1) ) WlO = (0 _1)

0 -1 01
() (0 )

We recognize here, up to some multiplicative factors, the four Pauli matrices. Now
back to the general case, we have the following well-known result:

Proposition 16.2. The Weyl matrices are unitaries, and satisfy:

(1) Wt =<i,a>W_; .

(2) WV =< 4,0 > Wiy
()VVw _<j_lb>W1jab
(4) W, ]b—<za—b>szba

Proof. The unitarity follows from (3,4), and the rest of the proof goes as follows:

(1) We have indeed the following computation:
Wi = (Z <i,b> Ea+b,b>
b
= Z < —i,b > Epaqp
b

= Z< —i,b—a>Eb_a7b

= <i,a> W,i’,a
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(2) Here the verification goes as follows:

WiaWy = (Z <u,b+d> Ea+b+d,b+d) (Z < J,d> Eb+d,d>
d d

— Z<z’,b><z‘+j,d>Ea+b+d,d
d

= <1,b> Wigjatb
(3,4) By combining the above two formulae, we obtain:
Wil = <j.b>WiW_;
= <J,b><i,=b>W; .
We obtain as well the following formula:
WeWi = <i,a>W_, _W;
= <i,a><—i,b>W;_ ;4
But this gives the formulae in the statement, and we are done. U

With n = |H|, we can use an isomorphism [2(H) ~ C" as to view each W, as a usual
matrix, W, € M, (C), and hence as a usual unitary, W;, € U,,. Also, given a vector £, we
denote by Proj(§) the orthogonal projection onto C¢. Following [39], we have:

Proposition 16.3. Given a closed subgroup E C U, we have a representation
m : O(S%) = My(C(E))
Wig jb — [U — Proj(Wi,UW},)]
where n = |H|, N = n?, and where W;, are the Weyl matrices associated to H.
Proof. The Weyl matrices being given by W;, : e, =< i,b > e,1p, we have:
-, 1122

Together with the formulae in Proposition 16.2, this shows that the Weyl matrices are
pairwise orthogonal with respect to the following scalar product on M, (C):

<z, y >=tr(z'y)

Thus, these matrices form an orthogonal basis of M,,(C), consisting of unitaries:

W:{sz’eH,aefI}

Thus, each row and each column of the matrix &, j, = Wi U Wfb is an orthogonal basis
of M, (C), and so the corresponding projections form a magic unitary, as claimed. O

We will need the following well-known result:
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Proposition 16.4. With T = Proj(z1) ... Proj(xz,) and ||z;|| = 1 we have
<ETn>=<& a1 >< 21,02 > ... < Tpo1, Tp >< Tp, 1) >
for any &, n, with the scalar product being linear at right. In particular, we have:
Tr(T) =< x1,29 >< Tg,23 > ... < Tp, 1 >
Proof. We have indeed the following computation:
Tn = Proj(z1)...Proj(x,)n
= Proj(zy)...Proj(zy_1)z, < xp,n >
= Proj(z1)... Proj(zp_o)r,—o < Tp_1,x, >< Tp,1 >

= 1 <ZT1,T2> ... <Tp_1,Tp >< Tp,N >

Now by taking the scalar product with £, this gives the first assertion. As for the second
assertion, this follows from the first assertion, by summing over £ =n = e;. U

Now back to the Weyl matrix models, let us first compute 7;,. We have:
Proposition 16.5. We have the formula

(Tp)ia,jb

r : . .
= N<21,a1—a2>...<zp,ap—a1 ><]2,b2—b1>...<]1,b1—bp>

/Etr(vviz—il,az—m Um/j1—j2,b1—b2 U*) . 'tT<Wi1_ip7al_ap UVVjp—jhbp—bl U*)dU
with all the indices varying in a cyclic way.

Proof. By using the trace formula in Proposition 16.4 above, we obtain:
(Tp)iau’b

= (tr ® /) (P?“oj(VVila1 UW:y) - Proj(WZ-papUW/]sz»
E
1
pr— N/E < m1a1U .;;b17 WZ‘QCLQU ]*2b2 > e < mpapUW;;bp7 mlalU ]*lbl > dU
In order to compute now the scalar products, observe that we have:
< Wil UW5, Wi UWg >
tr(WaU Wi W, UW})
tr(WigWe UWigWU™)
<t,a—c>< l, d—>b> tT(Wk_i,c_aUM/j_hb_dU*)
By plugging these quantities into the formula of 7},, we obtain the result. U
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Consider now the Weyl group W = {W;,} C U, that we already met in the proof of
Proposition 16.3 above. We have the following result, from [39]:

Theorem 16.6. For any compact group W C E C U, the model
n: C(Sy) = Mn(C(E))

Wig jb — [U — Proj(Wi,UW},)]
constructed above is stationary on its image.

Proof. We must prove that we have Tp2 =T,. We have:
(T, iajo
= Z(Tp)m,kc(Tp)kc,jb

ke

= m2<i1,a1—a2>...<ip,ap—a1 ><k’2,62—01>...<k51701—6p>

<k1,01—02>...<kp,cp—cl ><j2,bg—b1>...<j1,bl—bp>

/ tT(VVigfil,agfal UWk1 —ka,c1—c2 U*) s tr(Wilfip,m fapUWkpfkl,cpfcl U*)dU
E

/ tr(Wis—rkica—er VWii—jo =62 V") - 8 (Wi =ty e, VWi g1 -0 V')AV
E

By rearranging the terms, this formula becomes:

2
1 .
= <21,a1—a2> <2p,ap a1><]2,b2—bl> <]1,b1—bp>

// <l€1 k2,61—02> <]€p—]€1,Cp—Cl>
E

( 12—11,a2— alUWkl ka,c1— CzU )tT(Wk2 k1,c2— CIVWJI —Jj2,b1— bQV*)

tT(VVil—ip,al —apUWkp—kl,cp—cl U*)tT(Wkl—k;p,cl—chij—jl,bp—bl V*)dUdV

Let us denote by I the above double integral. By using Wy, =< k,c > W_; _. for each
of the couplings, and by moving as well all the U* variables to the left, we obtain:

I
/E/EZtT<U*Wi2—il,a2—a1UWkl—k%Cl—CQ)tT(Wl:lkg,clczvvvjl—jmh—bz‘/*)

tr ( U* Wil —ip,a1—ap UWkp_kl ;Cp—C1 )tr (W]:pfkl ,Cp—C1 VW];D —J1,bp—b1 V* ) dUdV
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In order to perform now the sums, we use the following formula:

1
tr( AWy )tr(Wy.B) = NZAqr(ch)rq(W]:c)stBts

qgrst

1
- N ZAqr <k,g>0,qc<k,—5>01sBis

qrst
1
= N Z < k’, q—Ss> Aq,q+ch+c,s
qs

If we denote by A,, B, the variables which appear in the formula of I, we have:

I
= Np//Ekcqs<k:1 ko,qn —s1> ... <kp,—Fki,qp — 5p >
(A )q17q1+C1 —c2 (31)51+c1 —C2,51 * * * (Ap)qp qp"l‘cp_cl(Bp)sp""CP—Cl?SP
= Np//E%;<k1,q1 51— qp+5p > ... <kp,qp— 8, — Qp—1+ Sp_1 >

(Al)q1,q1+61—02 (Bl>81+01—02,51 s (Ap)qp,qp-l-cp—q (Bp)sp+cp—01,sp

Now observe that we can perform the sums over ki, ..., k,. We obtain in this way a
multiplicative factor n?, along with the condition ¢; — s = ... = ¢, — s,. Thus we must
have ¢, = s, + a for a certain a, and the above formula becomes:

/ / Z Al 51+a site1— 02+a(B1>S1+C1 —C2,81 * (Ap)sp+a,sp+cp—61+a(Bp>sp+cp—01,sp

csa

Consider now the variables r, = ¢, — ¢;41, which altogether range over the set Z of
multi-indices having sum 0. By replacing the sum over ¢, with the sum over r,, which
creates a multiplicative n factor, we obtain the following formula:

= np— 1 / / Z Z Al sl+a 51+r1+a<Bl>sl+r1 S1 * - (Ap>sp+a,sp+rp+a(Bp)serrp,sp

reZ sa

Since for an arbitrary multi-index r we have oy ,, 0 = LS~ <idyr > .. <1, >, we
PRl n 1
can replace the sum over r € Z by a full sum, as follows:

/ / Z <1 , 1 > )31+a,51+r1+a<B1)31+r1,81

rsia

< i, rp > (Ap)sp+a,sp+rp+a(Bp)serrp,sp
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In order to “absorb” now the indices 7, a, we can use the following formula:

M/iZAWia

= (Z < 7;7 —b> Eb,aer) (Z Ea+b,a+cAa+b,a+c> (Z < 7;7 c> EaJrc,c)
b be c

= Z <i,¢— b > EbcAa+b,a+c

be

Thus we have (W AW;o)pe =< i,¢ — b > Agibate, and our formula becomes:

= / / Z W* Al ia 81 81+r1(Bl)81+m s1c (MZAPWia>Sp,sp+rp (Bp>sp+rp,sp

rsia

Now by replacing A,, B, with their respective values, we obtain:

//Zt?‘ W*U* 12 i1,a0— alUVVzaVWJl —j2,b1— bzv)

tr(WoU Wi —ipar—a, UWid VW, i =6, V) dU AV
By moving the W} U* variables at right, we obtain, with S;, = UW;,V:

Z//tT(WiQ—ilﬂz—mSiaI/‘G1—j2,b1—b2$;a)
ia EJE

*
tr(Wii—ipa1—apSiaWip—i1 bp—b1 Sia

)dUdV

Now since S, is Haar distributed when U,V are Haar distributed, we obtain:
I= N/ / tT(WiQ_i17a2—a1 UWj1—j2,b1—b2 U*) s tr(w/il_ipyal_apU‘/I/jp_jhbp_bl U*)dU
EJE

But this is exactly N times the integral in the formula of (7},);q s, from Proposition
16.5 above.

Since the N factor cancels with one of the two N factors that we found in the beginning
of the proof, when first computing (T )ia,jb, We are done. O

As an illustration for the above result, going back to [28], we have:
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Theorem 16.7. We have a stationary matrix model

m: C(S]) C My(C(SUy))
given on the standard coordinates by the formula

7(u;j) = [ = Proj(c;xzc;)]
where x € SUs,, and cy, ¢, c3,cq4 are the Pauli matrices.

Proof. As already explained in the comments following Definition 16.1, the Pauli matrices
appear as particular cases of the Weyl matrices. By working out the details, we conclude
that Theorem 16.6 produces in this case the model in the statement. Il

Observe that, since Proj(c;zc;) depends only on the image of x in the quotient SU; —
S03, we can replace the model space SU; by the smaller space SO3. This is something
that can be used in conjunction with the isomorphism S} ~ SO;"', and as explained in
[15], our model becomes in this way something more conceptual, as follows:

71 C(SO31) C My(C(SO5))

As a somewhat philosophical conclusion, to this and to some previous findings as well,
no matter what we do, we always end up getting back to SU,, SO3. Thus, we are probably
doing some physics here. This is indeed the case, the above computations being closely
related to the standard computations for the Ising and Potts models. The general relation,
however, between quantum permutations and lattice models, is not axiomatixed yet.

Let us discuss now some generalizations of the Weyl matrix models. We will need:
Definition 16.8. A 2-cocycle on a group G is a function o : G X G — T satisfying:

o(gh,k)o(g,h) =o(g,hk)o(h. k) . o(g,1) =0(l,9) =1

The algebra C*(G), with multiplication given by g-h = o(g, h)gh, and with the involution
making the standard generators g € C(G) unitaries, is denoted C%(Q).

As explained in [39], we have the following general construction:

Proposition 16.9. Given a finite group G = {¢1,...,gn} and a 2-cocycle o : Gx G — T
we have a matriz model as follows,

m:C(SY) = Mn(C(E)) : wyj— [z — Proj(gixg;)]
for any closed subgroup E C Uga, where A = C%(G).

Proof. This is indeed clear from definitions, because the standard generators {gi,...,gn}
are pairwise orthogonal with respect to the canonical trace of A. See [39]. 4

In order to investigate the stationarity of 7, we use:
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Proposition 16.10. We have the formula

(Tp)il-uipJLnjp = @17@1 @2> U(Zpa@ Y ) <J27]2 Jl) (j17j1_1jp)
N / tr(g;-15,09715,) - tr(g;-1,,09,-1; «")dx
with all the indices varying in a cyclic way.

Proof. According to the definition of 7},, we have the following formula:
(Tp)i1...ip7j1...jp - (t?“ ® /) <P7"0](gul'g;1) ce Proj(glpxg;p)> dx
E
1 * * * *
= N [ <90%950 9005, > - < 91,80, 9 LG5, > dz
E

Since we have g;g;-1;, = o(i,i 1 k)gy, and so g gy = o(i,i 1k)g;—15, we obtain:
< gixg;, gy, > = tr(g;x"g; grry;)
= tr(g; grrg; 9;2")
= o(i,i7%k) - o(l,171g) - tr(gi-1gzgi-1j27)

By plugging these quantities into the formula of 7},, we obtain the result. U

We have the following result, which generalizes some previous computations:

Theorem 16.11. For any intermediate closed subgroup G C E C Uy, the matriz model
7: C(SY) = My(C(E)) constructed above is stationary on its image.

Proof. We use the formula in Proposition 16.10. Let us write (7},);; = p(i, j)(T;))ij, where
p(i,7) is the product of o terms appearing there. We have:

(T2)i = Z(Tp)ik(Tp)k‘j = Zﬂ(i7 k)p(k, i)(T, )ie (T3 )rj

k

Let us first compute the p term. We have:
p(i,k)p(k,j) = olir,iytiz)...o(ip, iy %) - o(ke, ky k) .. o (ki ki k)

o(ky, ki ka) . o (ky, kythy) - 0 (G2, 3 M) - - o (G, gy )
= O'(Z,]) 'U(kg,k?lkl) ‘U(kl,kflkz) ...... U(kl,kflkp) O'(l{? k- k'l)

P> "p

Now observe that by multiplying o(i,i 'k)g gr = gi~1 and o(k,k™'1)g}g;i = gr-1; we
obtain o(i,i'k)o(k, k1) = o(i"'k, k~'4). Thus, our expression further simplifies:

pli, k)p(k,j) = o(i,j) - o(ky ki, ki k) ... .. o (ki kp, Ky Vky)
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On the other hand, the T° term can be written as follows:

[} (o] 1 * *
(Tp)ik(Tp>kj = m/ / tr(gil—ligxgk;lklx )tr(gkl_lkgygjg_ljly)
EJE

tr(giglilxgkilklpx*)tr(gk;1k1ygjfljpy*)dxdy

We therefore conclude that we have the following formula:

(T7)i;

s ks tky, k:_lkg)tr(gi;1i2xgk;1klx*)tr(gk;%ygjgljly*)

Ek:

okt Ky, ki kl)tr(giqilxgkflk x*)tr(gqulygjflj y*)dxdy

By using now ¢ = a(z i) gl 1, and moving as well the z* variables at left, we obtain:

(T7):5

p

r(z* 97ty %9k 1k1>tr(9k 11, Y955 le*)
Ek

tr(x*gi;%l-Tgkl‘lkp)tr(g;:;lkpygjl—ljpy*)dajdy
We can compute the products of traces by using the following formula:

tr(Agi)tr(gpB) = Z < Gg» Agr >< gs, g1 B >
qs
= > tr(g;Ag)tr(gigiB)
qs

Thus are left with an integral involving the variable z = zy, which gives T7. U

Let us discuss now the relationship with the Weyl matrices. We have:

Proposition 16.12. Given a finite abelian group H, consider the product G = H X [;T,
and endow it with its standard Fourier cocycle.
(1) With E = U,, where n = |H|, the model = : C(S%) — Myn(C(U,)) constructed
above, where N = n?, is the Weyl matriz model associated to H.
(2) When assuming in addition that H is cyclic, H = Z,, we obtain in this way the
matriz model for C(S%) coming from the usual Weyl matrices.
(3) In the particular case H = Z,, the model w : C(S]) — My (C(Uy)) constructed
above is the matriz model for C(S}) coming from the Pauli matrices.

Proof. All this is well-known. The general construction in Proposition 16.9 above came
in fact by successively generalizing (3) — (2) — (1), and then by performing one more
generalization, with G = H X H with its standard Fourier cocycle being replaced by an
arbitrary finite group G, with a 2-cocycle on it. For full details here, see [39]. O
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Regarding now the associated quantum permutation groups, in the general context of
Proposition 16.9, we have the following result:

Theorem 16.13. For a generalized Weyl matriz model, as in Proposition 16.9 above, the
moments of the main character of the associated quantum group are

1 : * * * *
=N Z /Etr(gjlxgjlx )...tr(gjpxgjpx )dx

Ji---Jp

where o means that the indices are subject to the condition j, ...j, = 1.

Proof. According to Proposition 16.9 and to Proposition 16.10 above, the moments of the
main character are the following numbers:

1 1N P—— —
= N Z o(ir,iy i) . .. 0 (ip, i3 V1) - 0(in, iy tiy) .. o (in, 4y i)

i1 ip
* *
/Etr(gil_lizxgiz_lilx ) tr(g;-15, 29,1, %7 )da
We can compact the cocycle part by using the following formulae:
.1 . 1 . o . 1 1 s
0 (i, iy p1)0 (ipt1s iy yaip) = O(ip1,tpraip - by tp41)0 (i yip, by ipt1)
o . s
- U(Zp-l-lv 1)0-<Zp+llp7 tp ZP-H)
o S
- O—(Zp—‘,-l?’p?Zp ZP+1)
1

Thus, in terms of the indices j; = i} iy,... Jp = 1,
condition j; ...7, = 1, we have the following formula:

11, which are subject to the

l &~ —F————— * x
=% Z (i 1) o(jy L, Jp) /Etr(gjlxgjllx ). tr(g;,xg;ra")dx
J1---Jp

Here the o symbol above the sum is there for reminding us that the indices are subject
to the condition j; ... j, = 1. By using now g; = o(j !, j)g;-1, we obtain:

1 > * * * *
cp = ¥ Z /Etr(gjlxgjlx )...tr(gjpxgjpx )dx

Ji---Jp
Thus, we have obtained the formula in the statement. Il
It is quite unclear whether the above formula further simplifies, in general. In the

context of the Fourier cocycles, as in Proposition 16.12, it is possible to pass to a plain
sum, by inserting a certain product of multiplicative factors ¢(jy) ... c(j,), which equals 1
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when j; ...j, = 1, and the computation can be finished as follows:

¢ = %L(ZC(j)tT(gjxgjm*)) dx

1
= N/Etr(xx*)da:

Thus, the law of the main character of the corresponding quantum group coincides with
the law of the main character of PE. All this suggests that the quantum group associated
to a Weyl matrix model, as above, should appear as a suitable twist of PE. In addition,
we believe that in the case where F is easy these examples should be covered by a suitable
projective extension of the Schur-Weyl twisting procedure.

Following [8], [17], [22], [52], [40] and related papers, let us discuss now the Hadamard
matrix models, which are of particular importance as well. Let us start with:

Definition 16.14. A complex Hadamard matrix is a square matriz
H e MN((C)
whose entries are on the unit circle, and whose rows are pairwise orthogonal.

Observe that the orthogonality condition tells us that the rescaled matrix U = H/v N
must be unitary. Thus, these matrices form a real algebraic manifold, given by:

Xy = My(T) NV NUy

The basic example is the Fourier matrix, Fy = (w%) with w = e . More generally,
we have as example the Fourier coupling of any finite abelian group G, regarded via the
isomorphism G ~ G as a square matrix, Fg € Mg(C):

2mi/N

Fo=<1i,j > ieG,jed

Observe that for the cyclic group G = Zy we obtain in this way the above standard
Fourier matrix Fly. In general, we obtain a tensor product of Fourier matrices Fy. There
are many other examples of Hadamard matrices, some being elementary, some other fairly
exotic, appearing in various branches of mathematics and physics. The idea is that the
complex Hadamard matrices can be though of as being “generalized Fourier matrices”,
and this is where the interest in these matrices comes from. We refer here to [131].

In relation with the quantum groups, the starting observation is as follows:

Proposition 16.15. If H € My(C) is Hadamard, the rank one projections

H;
Py; = Proy (F)
J

where Hy, ..., Hy € TV are the rows of H, form a magic unitary.
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Proof. This is clear, the verification for the rows being as follows:

H;y Hy Hy
. = =N§
<H Hk> Z HJZ "

zl

The verification for the columns is similar, as follows:

H; H Hy
FraRETE = : - Néz
<Hj Hj> Zl: ]l Hkl ZHkl F

Thus, we have indeed a magic unitary, as claimed. U

We can proceed now in the same way as we did with the Weyl matrices, namely by
constructing a model of C'(S5;), and performing the Hopf image construction:

Definition 16.16. To any Hadamard matric H € My(C) we associate the quantum
permutation group G C Sy given by the fact that C(G) is the Hopf image of

7: C(SY) = My(C)
H;
i)

Summarizing, we have a construction H — G, and our claim is that this construction
is something really useful, with G encoding the combinatorics of H. To be more precise,
our claim is that “H can be thought of as being a kind of Fourier matrix for G”.

u;; — Proj (

where Hy,...,Hy € TV are the rows of H.

This is of course quite interesting, philosophically speaking. There are several results
supporting this, with the main evidence coming from the following result, coming from
[22], [40], which collects the basic known results regarding the construction:

Theorem 16.17. The construction H — G has the following properties:

(1) For a Fourier matrizx H = Fg we obtain the group G itself, acting on itself.
(2) For H € {Fg}, the quantum group G is not classical, nor a group dual.
(3) For a tensor product H = H' ® H" we obtain a product, G = G' x G".

Proof. All this material is standard, and elementary, as follows:

(1) Let us first discuss the cyclic group case, where our Hadamard matrix is a usual
Fourier matrix, H = F. Here the rows of H are given by H; = p’, where:

p=(Lww? . . . ¥

Thus, we have the following formula, for the associated magic basis:



QUANTUM PERMUTATIONS 289

It follows that the corresponding rank 1 projections P;; = Proj(H;/H;) form a circu-
lant matrix, all whose entries commute. Since the entries commute, the corresponding
quantum group must satisfy G C Sy. Now by taking into account the circulant property
of P = (P,;) as well, we are led to the conclusion that we have:

G =17Zn

In the general case now, where H = Fg, with G being an arbitrary finite abelian
group, the result can be proved either by extending the above proof, of by decomposing
G =Zn, X ... X Zy, and using (3) below, whose proof is independent from the rest.

(2) This is something more tricky, needing some general study of the representations
whose Hopf images are commutative, or cocommutative. For details here, along with a
number of supplementary facts on the construction H — G, we refer to [40].

(3) Assume that we have a tensor product H = H' ® H”, and let G,G’,G" be the
associated quantum permutation groups. We have then a diagram as follows:

C(Sn) @ C(Syn) — C(G") @ C(G") —— Mn:(C) @ My»(C)

C(Sy) c(@) My(C)

Here all the maps are the canonical ones, with those on the left and on the right coming
from N = N'N”. At the level of standard generators, the diagram is as follows:

! 1 ! 1 / /!
U;j & Ugy Wi & Wey, P, ® Py,

Uiq,jb Wia, jb Pig jb
Now observe that this diagram commutes. We conclude that the representation asso-

ciated to H factorizes indeed through C(G’) ® C(G”), and this gives the result. O

Generally speaking, going beyond the above result, with explicit computations of quan-
tum permutation groups associated to explicit complex Hadamard matrices, is a quite
difficult task. The main results which are known so far concern the deformations of the
Fourier matrices, and we refer here to [8], [17], [52] and related papers.

At the general level now, we have the following result, from [22]:
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Theorem 16.18. The Tannakian category of the quantum group G C S} associated to a
complex Hadamard matric H € My(C) is given by

T € Hom(u®", u®) <= T°GF"? = G'*1°
where the objects on the right are constructed as follows:
(1) T°=id@T ®:d.
(2) Gl = 3y HiHj HopHys.

Proof. We use the Tannakian result for the Hopf image of a representation, discussed in
section 15 above. With the notations here, we have the following formula:

Hom/(u®*, u®) = Hom(U®*, U®")

The vector space on the right consists by definition of the complex N' x N* matrices
T, satisfying the following relation:

TU®F — ol
If we denote this equality by L = R, the left term L is given by:
Ly = (TU®M),
- Yy

= Z TiaUayj, - - - Uayjy

As for the right term R, this is given by:
Ry = (U®'T);
= ) UG

b
— E Uilbl ce. UilblTbj
b

Consider now the vectors §;; = H;/H;. Since these vectors span the ambient Hilbert
space, the equality L = R is equivalent to the following equality:

< Lz‘jquvgrs >=< Rijquagrs >

We use now the following well-known formula, expressing a product of rank one pro-
jections P, ..., Py in terms of the corresponding image vectors &, ..., &:

<P ... Pry>=<z,& >< &y g1 > o <&, & >< &,y >
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This gives the following formula for L:
< Lz‘jgpqy grs > = Z T;a < Pa1j1 cee Pakjkgpw frs >
= ZTm <€pqa£akjk > <€a1j17§rs >

= Z Tianj’“ GUkIe—1 (201 (s

pag — apQk—1 azai — air
a
_ k+2
o ZTiaGmpﬁjq
a
= (Ton+2)rip,5jq
As for the right term R, this is given by:

< Rij&pq &rs > = Y < Paby - Py &os > Ty
b
= Z < &pgs Gty > -+ < &irys Ers > Ty
b

= ) GUG L GENGIT,

pip -1 41 AT
b

- Z Gf";rp%squbj
b
= (Gl+2TO)TiP»5jq
Thus, we obtain the formula in the statement. See [22]. 0

Let us discuss now the relation with subfactor theory, and with planar algebras. As a
starting point, we have the following basic observation of Popa [124]:

Proposition 16.19. Up to a conjugation by a unitary, the pairs of orthogonal MASA in
the simplest factor, namely the matriz algebra My (C), are as follows,

A=A ., B=HAH
with A C My (C) being the diagonal matrices, and with H € My (C) being Hadamard.

Proof. Any maximal abelian subalgebra (MASA) in My(C) being conjugated to A, we
can assume, up to conjugation by a unitary, that we have, with U € Uy:

A=A , B=UAU*
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Now observe that given two diagonal matrices D, E € A, we have:
1
tr(D-UEU") = — Z:(DUEU*)ii
= % Z DiiUs 53U
1 . 9
= W Z Dy E;5| Ui
ij
Thus, the orthogonality condition A 1 B reformulates as follows:

1 1
N > DiEj|Uy* = e > Dby
ij tj

But this tells us H = v/NU must be Hadamard, as claimed. O

Along the same lines, but at a more advanced level, we have:

Theorem 16.20. Given a complex Hadamard matric H € My(C), the diagram formed
by the associated pair of orthogonal MASA, namely

A My(C)
C HAH~*

is a commuting square in the sense of subfactor theory, in the sense that the expectations
onto A, HAH* commute, and their product is the expectation onto C.

Proof. The expectation Ea : My(C) — A is the operation M — M which consists in
keeping the diagonal, and erasing the rest. Consider now the other expectation:

Euyapg: My(C) - HAH”
It is better to identify this with the following expectation, with U = H/v/N:
Eyau-: My(C) — UAU
This latter expectation must be of the form M — UXAU*, with X satisfying:
<M, UDU* >=< UXAU*,UDU* > |, VDeA
The scalar products being given by < a,b >= tr(ab*), this condition reads:
tr(MUD*U*) =tr(XaD*) , VDeA
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Thus X = U*MU, and the formulae of our two expectations are as follows:

Ex(M) = Ma
Epap-(M) = UU*MU)AU*

With these formulae in hand, an elementary computation gives the result. Il

The point now is that any commuting square C' produces a subfactor of the Murray-von
Neumann hyperfinite II; factor R. Indeed, under suitable assumptions on the inclusions
Coo C Cyg, Cpy C Ch1, we can perform the basic construction for them, in finite dimensions,
and we obtain a whole array of commuting squares, as follows:

Ag Ay A,

C—— Coo——Coa -,
Con Cn Clyp e > By
Coo Cho Clg e > By

Here the various A, B letters stand for the von Neumann algebras obtained in the limit,
which are all isomorphic to the hyperfinite II; factor R, and we have:

Theorem 16.21. In the context of the above diagram, the following happen:

(1) Ag C Ay is a subfactor, and {A;} is the Jones tower for it.
(2) The corresponding planar algebra is given by Ay N A = C; N Co.
(3) A similar result holds for the “horizontal” subfactor By C By.

Proof. This is something very standard, the idea being as follows:
(1) This is something quite routine.
(2) This is a subtle result, called Ocneanu compactness theorem.
(3) This follows from (1,2), by flipping the diagram. O

Getting back now to the Hadamard matrices, we can extend our lineup of results,
namely Proposition 16.19 and Theorem 16.20, with an advanced result, as follows:
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Theorem 16.22. Given a complex Hadamard matric H € My(C), the diagram formed
by the associated pair of orthogonal MASA, namely

A My(C)
C HAH~*

1s a commuting square in the sense of subfactor theory, and the planar algebra of the
corresponding subfactor can be explicitly computed in terms of H.

Proof. The fact that we have indeed a commuting square follows from the above, the
computation of the standard invariant is possible due to a result of Ocneanu, and the
planar algebra formulation is due to Jones. For the precise formula, we refer to [105]. O

In relation now with our quantum group construction, we have:

Theorem 16.23. The subfactor associated to H € My(C) is of the form
R¢ c (ReCM)“

where G C S3 is the associated quantum permutation group, and its planar algebra is
Py, = End(u®)

having as Poincaré series the moment generating function of x =Y. ;.

Proof. There is a long story here, the idea being that the planar algebra formula from
[105], mentioned in the proof of Theorem 16.22, coincides in fact with the quantum
group formula from Theorem 16.18. Thus, we obtain the second assertion, and the first
assertion can be proved as well, by using standard quantum group techniques. In fact, the
correspondence G <+ P is part of the general correspondence between closed subgroups
G C S, and subalgebras of the spin planar algebra, discussed in section 3 above. Il

Summarizing, we have some interesting mathematics here. In practice now, a first
problem is that of getting beyond Theorem 16.17, with explicit computations, and we
refer here to [8], [17], [52] and related papers. Another problem is that of unifying all this
with the Weyl matrix models, and we refer here to [28], [39] and related papers. Finally,
in relation with the work of Jones [101], [102], [103], [104], [105], and of Connes as well
[73], [74], [75], we have the question of understanding the physical meaning of all this.
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