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Abstract

Riemann Hypothesis was posed by Riemann in early 50’s of the 19th century
in his thesis titled “The Number of Primes less than a Given Number”. It is
one of the unsolved “Supper” problems of mathematics. The Riemann Hypo-
thesis is closely related to the well-known Prime Number Theorem. The Rie-
mann Hypothesis states that all the nontrivial zeros of the zeta-function lie on

the “critical line” {s :Res :l}. In this paper, we use Nevanlinna’s Second

2
Main Theorem in the value distribution theory, refute the Riemann Hypothe-
sis. In reference [7], we have already given a proof of refute the Riemann Hy-
pothesis. In this paper, we gave out the second proof, please read the refer-
ence.
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1. Introduction

In the 19th century, the famous mathematician E. Picard obtained the pathbreaking
result: Any non-constant entire function f (z) must take every finite complex
value infinitely many times, with at most one exception. Later, E. Borel, by intro-
ducing the concept of the order of an entire function, gave the above result a more
precise formulation.

This result, generally known as the Picard-Borel theorem, lays the foundation for
the theory of value distribution and since then it has been the source of many re-
search papers on this subject. R. Nevanlinna made the decisive contribution to the
development of the theory of value distribution. The Picard-Borel Theorem is a di-
rect consequence of Nevanlinna theory.

In this paper, we use Nevanlinna’s Second Main Theorem in the value distribu-
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tion theory; we got an important the conclusion by Riemann hypothesis. This con-
clusion contradicts the References [5] theorem 8.12 of the page 204, therefore we

prove that Riemann hypothesis is incorrect.

2. Some Results in the Theory of Value Distribution

We give some notations, definitions and theorems in the theory of value distribu-
tion, its contents are in the references [1] and [6].

We write

It is easy to see that logx <log" x.

Let f(z) be a non-constant meromorphic function in the circle
|z|<R, 0 <R <+w. we denote by n(r,f) the number of poles of f(z) on
|z| < r(O <r< R) , each pole being counted with its proper multiplicity. Denote by
n(0,/) the multiplicity of the pole of f(z) at the origin. For arbitrary

complex number a#®©, we denote by n(r, 1 ) the number of zeros of
a

f —
f(z)=a on |z|<r(0<r<R),eachzero being counted with its proper multiplic-

ity. Denote by n [O,LJ the multiplicity of the zero of f(z)—a at the origin.

f—a

We write

)

1 2n .
m(rsf)ZEjlog do
0

N(r.f)= jwmn(a F)logr.

When a# o,

ol —n(O,l
N(r,f1 ):J [ f—a} f_a)dt+n(0, 1 jlogr

f-a
and T(r,f)=m(r,f)+N(r,f), T(r,f) is called the characteristic function of
/(2).

Lemma 2.1. If f(z) is a analytical function in the circle |z| <R(0<R<w).

we have

T(r.f)<log" M(r f) <2221 (p.f) (0<r<p<R)
p—r

where M (r, f)=max,_, 7(2)|

Lemma 2.1 follows from the References [1], page 7.

Lemma 2.2. Let f (z) be a non-constant meromorphic function in the circle
|z| <R (0<R<w). a,(A=12,-,h) and b, (£=1,2,--,k) are the zeros
and poles of f(z) in the circle |z|<p (0<p<R) respectively, each zero or

pole appears as its multiplicity indicates, and z =0 is neither zero nor pole of the
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function f (Z ) , then, in the circle |z| < p, we have the following formula

+Zlog| |

do— Zlog

tog| £ (0) = - I tog|/ (pe”)
|“/1| =1
This formula is called Jensen formula.
Lemma 2.2 follows from the References [1], page 3.
Lemma 2.3. Let f (z) be the meromorphic function in the circle |Z| <R,
and f(0)#0,:,1, f'(0)#0. when 0<r<R, wehave

T(r,f)< Z{N(R,%j + N(R,ﬁ}r N(R,f)}+4log+

(0)

+5220

+2log” +36log

1 R
R[f"(0)| R-r
This is a form of Nevanlinna’s Second Main Theorem.

Lemma 2.3 follows from the References [1], theorem 2.4 of page 55.
Lemma 2.4. Let f ( x) be decreasing and non-negative for x >a. Then the

limit

exists, and that OSUSf(a). Moreover, if f(x)—)O as x > oo, then for
&> a+1, wehave

—jjf(x)dx—n < f(£-1)

as<n<é
The lemma 2.4 follows from the References [2], the theorem 8.2 of page 87.

Lemma 2.5. When 0 2 %, |t| >2, wehave
|§(O'+it)| <c |t|%

Where ¢ (s) is Riemann zeta function.

Lemma 2.5 follows from the References [3], the lemma 8.4 of page 188.

Lemma 2.6. Let f (z) be the analytic function in the circle |Z|SR, let
M(r) and A(r) denote the maxima of |f(z)| and Ref(z) on |z| =r re-
spectively. Then for 0<r <R, we have

R+r

M(r)< 2VFA( 1 (0)

R—
where Re s is the real part of the complex number s.

Lemma 2.6 follows from the References [4], page 175.

3. Preparatory Work

Let s=0+it is the complex number, when o >1, Riemann zeta function is

£(s)=3-

n=1

When o >1, we have
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& An)

log¢(s)=2—

= n’ logn

where A (n) is Mangoldt function.

Lemma 3.1. If t is any real number, we have

1) 0.0426 <[log¢ (4+it)| < 0.0824
2) [¢(4+it)—1]20.0426
3) 0917 <|¢(4+it)| <1.0824

4) |¢"(4+it)|20.012

Proof.
© © 4
fogg (4+inf< 3L <3 LT <0080
1 —hn logn ,5n° 90
1 &1 2 &1 9 «
|10g§(4+lt)|22—4 Z;n—4=1 ?_Z‘;n_“zg_%>00426
. 21 1 > 1
carin-t=[E s -3k
2) n= n=.
2 1 9 =t
=l+—— Z-=_>0.0426
+24 ; 48 90
® ) 4
|§(4+n)|= > 41”, sz%zg—og.osm
3) n=1 N n=1 N
2 ] 2 1 nt
S(4+it —|21-> —=2-> —=2—-——2>0.917.
| ( ﬂ)' Z;n“ Zn4 90
, . Z logn| _log2 &logn
4) |§ (4+ZZ)|: Z n4+it|2 74 _Z; o

by Lemma 2.4, we have

n=3 N X
where 0<77<k;g3
Jlogx I0gxdx’3:10%3+ljx4dx:10%3—i2_[dx’3 10%3 LS
3 X 33 3 33 3 33 3 3

Therefore

0

Zlogn log3 1+10g3

= n4 - 34 35 34
, y log2 2log3 1
|§ (4+l | g4 3¢ 35 2

This completes the proof of Lemma 3.1.
Now, we assume that Riemann hypothesis is correct, and abbreviation as RH. In

other words, when o > 1 , the function ¢ (0+it) has no zeros. The function

2
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log{ (o +it) is a multi-valued analytic function in the region o > %, t=1.

we choose the principal branch of the function log¢ (O'+it), therefore, if
{(o+it)=1, then log{ (o +it)=0.
1

Let 0= 100° C,Cy, ", is the positive constant.
Lemma 3.2. If RH is correct, when O = ﬁ, o2 %+ 20, t 216, we have

|log§(a+it)| <c,logt+c,
Proof. In Lemma 2.6, we choose f(z) = 10g§(z+4+it),
7 7
R==-- ==-2 >16.
5 o, r 5 0, t>16

Because log¢ (Z +4+ it) is the analytic function in the circle |Z| <R, by
Lemma 2.6, in the circle |Z| <r,wehave

log (z+4+it)| < %(A(R)+|logg“(4+it)|)
by Lemma 2.5, we have

A(R)= max log|§(z+4+it)|S%logtﬂogc1

‘z—zo‘:R
by Lemma 3.1, we have

|log§’(z+4+it)| <c,logt+c,

therefore, when o 2 %-F 20, we have
|log S(o+ it)| <, logt+c,
This completes the proof of Lemma 3.2.

Lemma 3.3. If RH is correct, when 0O :ﬁ, t>16, p= %—25, in the circle

|z| < p, wehave

1

N| p,———— |<loglogt+c
[p §(z+4+it)—l] glosiTe

Proof. In the Lemma 2.2, we choose
f(z) = logé’(z+4+it), R 2%—5, P Z%—Zé‘. a, (/1 :l,2,---,h) are the zeros
of the function log¢ (z+4+it) in the circle |z| < p, each zero appears as its

multiplicity indicates. Because the function log¢ (z+4+it) has no poles in the
circle |z| < p, and log 4”(4 + it) is not equal to zero, we have

log|log4’(4+it)| :;—nTlog‘logg(4+it+peiw) dgg—zh:IOgL
0 A=1

|ai|

by Lemma 3.1 and Lemma 3.2, we have

S P
> log——<loglogt +c,.
A=1 |a/1|
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Because z =0 is neither zero nor pole of the function logg’(z +4+it), we

have

S el )[ee e L e

1 !
:N£p’ 10g§(z+4+it)]ZN[p’g(z+4+it)—lJ'

This completes the proof of Lemma 3.3.

4.. Proof of Conclusion
Theorem. If RH is correct, when 0 2 %-I- 40, 0 = ﬁ, t>16, we have

|§(G+ it)| < ¢ (logt)*
Proof. In Lemma 2.3, we choose f(z)=¢ (z+4+it),
t216, R =1—25, r=1-3s. by Lemma3.1, we have
f(0)=¢ (4+it)#0,0,1, and |£(0)=|¢"(4+it)|=0.012,
|f(0)| = |§(4+it)| <1.0824. Because é’(z +4+ it) is the analytic function, and

it have neither zeros nor poles in the circle |Z| <R, we have
1
N(R,szo, N(R,f)zO

therefore, by Lemma 3.3, we have
T(r,¢ (z+4+it))<2loglogt +c;

In Lemma 2.1, we choose R=%—25, ,D=%—35, F=%—45. by the max-

imal principle, in the circle |Z| <r,we have

log* |4’(z+4+it)| <c¢gloglogt+c,

Therefore, when O 2> %-F 49, we have

log* |;’(0'+it)| <c¢,loglogt+c,
log|§(o-+it)| <¢gloglogt+c,
|§(o-+it)| < ¢ (logt)”

This completes the proof of Theorem.
The conclusion of Theorem contradicts the References [5] theorem 8.12 of the

page 204, therefore we prove that Riemann hypothesis is incorrect.
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