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1. Fundamentals 
 
 
This article is based on a model I published in [1], the idea stems from Prof. Cornelius 

LANCZOS, outlined in a lecture on the occasion of the Einstein-symposium 1965 in Berlin. 
The lecture is put in front the work in [1]. It defines the expansion of the universe as a 
consequence of the existence of a metric wave-field. The temporal function of that field is 
based on the hypergeometric function 0F1 = ����κ���ε�, used in form of the Hankel-function. 
The particular qualities of the function lead to an increase of the wavelength. In this 
connection the phase angle 2ω0t = Q0 plays an important role, being identical with the frame 
of reference, affecting all proportions within the system. The value ω0 corresponds to the 
PLANCK frequency. This version considers the correction of a calculating error in [1], 
effecting the frequency- and phase-response as well as the phase- and group delay. 
Furthermore, an updated value of H0 is used, based on the electron mass specified in [6]. In 
the annex the new Concerted International System of Units from [6] is used, but it doesn’t 
have any effect to the result. 

 
A special solution of the MAXWELL equations was found for the Hankel function with 

overlaid interference function, which describes the wave-propagation in the vacuum and co-
includes the expansion. This special solution owns an inherent propagation-velocity in 
reference to the empty space (subspace) which is almost zero to the current point of time.  

 
One conclusion from the model is the existence of an upper cut-off frequency of the 

vacuum, which could not be detected until now, because its value is about magnitudes greater 
than the technically feasible one. Another conclusion of the model is the supposition that each 
photon is connected really or/and virtually with an origin at Q0 = 1/2 That is the frequency, at 
which the excessive energy after the shape of the metric wave-function has been coupled into 
the very same one, as an overlaid wave, where it can be observed until now as cosmic 
background-radiation. Furthermore could be determined, that the bandwidth in the lower 
frequency range exactly matches the one of an oscillatory circuit with the Q-factor 1/2, which 
equals the conditions to the point of time of the input coupling. Hence the intention of this 
article is, to determine, whether the PLANCK's graph can be approximated by application of 
the frequency response given  by the model, upon  the spectrum of an oscillatory circuit with 
the Q-factor 1/2, furthermore to compare the calculated radiation temperature with the 
measured one. 

 
Since the cosmic background-radiation exactly follows the PLANCK's radiation-rule more or 

less, it should, because of the indistinguishability of individual photons, apply to a whatever 
black emitter. Therefrom arises the guess, that the existence of an upper cut-off frequency of 
the vacuum could be the cause for the decrease in the upper frequency range. In [1] already a 
simple attempt of an approximation has been taken up, at which point several values of the 
time-dependent frequency response A(ω)·cosφ have been multiplied with the source-
function, which led to a quite good match, as measured by the simple procedure.  

 
Another aim of this article is, to improve the proceeding any farther in order to make more 

precise statements. With the model attention should be paid to the fact, that with some many 
exceptions (c, µ0, ε0, κ0, k), most of the fundamental physical constants are time- and refe-
rence-frame-dependent (~). And there is a conductivity of subspace κ0 different from zero. 
The model is based on the PLANCK units, which can be determined by the locally measurable 
values (e.g. ω0). On the one hand, it suggests the values of the universe as a whole (e.g. H0), 
on the other hand, the values of the so called subspace (e.g. r1 = const). That’s the medium the 
metric wave field is propagating in. The proportionality factor is the phase angle of the 
temporal function Q0 = 2ω0t. 
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2. The WIEN displacement law and the source-function 
 
During the examination of the WIEN displacement law meets the eye, that the displacement 

happens exactly at the lower wing pass of the PLANCK's radiation-function, which coincides 
with the wing pass of an oscillatory circuit with the Q-factor 1/2 in this section. Quite often in 
publications the curve is shown in another manner. I prefer the duplicate logarithmic 
presentation, then the curve turns into a straight line. 

 
Considering the WIEN displacement law (902)1 more exactly, the factor x̃ = 2.821439372 

attracts attention particularly. With an oscillatory circuit of the Q-factor 1/2 rather the factor 
2�� would be applicable for this, at which point the 2 stems from the source-frequency 2ω1. 
The expression �� arises from the rotation of the coordinate-system about π/4.  

 
Now the validity of the WIEN displacement law in the time short after BB does not have 

been examined yet and neither PLANCK's radiation-rule nor the WIEN displacement law 
contain any information about the way, temperature varies, when it varies. In [1] I found the 
following relations for the calculation of temperature:  
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Expression εν is the vacuum coefficient of absorption. The calculation of Tk according to [1] 
turns out a value of 2.79146K, which is 0.06598K higher than the measured temperature of  
the CMBR (2.7250K). See also section 4. 
 

During an investigation in the Internet, I found a detailed deduction of the WIEN displace-
ment law [2]. The value of the proportionality-factor can be obtained by the identification of 
the maximum of PLANCK's radiation-rule as follows. We start from (382): 
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−
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3x2(ex −1) − x3ex  =  0           x3ex

 =  3x2(ex −1)   (4) 
 

ex (x − 3)  =  − 3      y = x − 3 x = 3+ y   (5) 

                                                
1
 Three-digit numerations always refer to [1] 
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yey+3 =  yeye3 =  − 3      yey =  − 3e−3     (6) 
 

x  =  3+ lx(−3e−3)  =  2.821439372    x)xe(lx x =     (7) 
 
lx is LAMBERT's W-function (ProductLog [#]). Finally, after insertion into the middle expres-
sion of (1) WIEN’s displacement law turns out: 
 

ћωmax  =  2.821439372 kT       WIEN’s displacement law    (8) 
 
On success in doing the same even for the source-function with Q = ½, obtaining the same 
result, we would be a step forward in answer to the question: Is the course of the Planck's 
radiation-function the result of the existence of an upper cut-off frequency of the vacuum? 
First of all however, we have to bring the output-function into a form, suitable for further 
processing. We start with (380) with the substitution: 
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ω  
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The expression stems from electrotechnics describing the power dissipation Pv of an 
oscillatory circuit with the Q-factor Q and the frequency ω (see [3]), v is the detuning. The Q-
factor is known and amounts to Q = 1/2 at ωs = 2ω1. The right-hand expression results directly 
from the sampling-theorem. The cut-off frequency of the subspace ω1 is the value ω0 at Q =1. 
After substitution, we get the following expressions: 
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You can find that expression more often in [1], among other things even with the group delay 
TGr however for a frequency ω1. For a frequency 2ω1 applies for TGr and the energy Wv: 
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The factor �⁄� comes from the splitting of energy onto 4 line-elements, as well as from the 
multiplication with the factor �⁄� because of refraction during the in-coupling into the metric 
transport lattice. It oftenly occurs in thermodynamic relations, which doesn't astonish. Thus, 
total-energy of the CMBR during input coupling is equal to the product of power dissipation 
and group delay, that is the average time, the wave stays within the MLE, but only for what 
it’s worth. With the help of (11) we obtain: 
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b is a factor, we want to determine later on. Let's equate it to one at first. We determined the 
value Ps with the help of (394) using the values of the point of time Q = 1/2. Interestingly 
enough, the HUBBLE-parameter H0 at the time t0.5 is greater than ω1 and ω0. For an individual 
line-element applies: 
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ω1

Q0.5
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Expression (13) is very well-suited for the description of the conditions at the signal-source. 
Here, the power makes more sense than the POYNTING-vector Sk. But for a comparison with 
(382) we just need an expression for Sk, quasi a sort of PLANCK's radiation-rule for technical 
signals with the bandwidth 2ω1/Q0.5 = 4ω1. Then, this would look like this approximately: 
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We determine the factor A by a comparison of coefficients (3). We assume, the WIEN 
displacement law (8) would apply and substitute as follows: 
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We put in 2�� ω1 as initial-frequency into the expression k4

T
4 That’s advantageous, as we 

will already see. This frequency is not a metric indeed (ωx~Q–1), but an overlaid frequency 
(ω~Q–3/2). During red-shift of the source-signal, likewise not the factor 2.821439372 but the 
factor 2�� becomes effective. Thus applies: 
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Indeed, that submits only the expression without consideration of red-shift. We determine the 
actual values to the point of time of input coupling, in that we apply the values for Q = 1/2 in 
turn. It applies: 
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b will be determined later on. It shows, the POYNTING-vector is equal to the quotient of a 
power Pk resp. Ps and the surface of a sphere with the radius R (world-radius), exactly as per 
definition. Omitting the surface, we would get the transmitting-power Pv directly. In the 

1



7 

above-mentioned expressions the parametric attenuation of 1Np/R, which occurs during 
propagation in space, is unaccounted for. This must be considered separately if necessary. 
 

Now we have framed the essential requirements and can dare the next step, the proof of the 
validity of the WIEN displacement law in strong gravitational-fields. The basic-idea was just, 
that the Planck's radiation-rule (382) should emerge as the result of the application of the 
metrics' cut-off frequency (302) to the function of power dissipation Pv of an oscillatory 
circuit with the Q-factor Q = 1/2 (13) We proceed on the lines of (2), in that we equate the first 
derivative of the bracketed expression (23) to zero. A substitution like in (1) is not necessary, 
because the expression is already correct. It applies: 
 

 

d
dΩ

Ω
1+Ω2

 

 
 

 

 
 

2

=
Ω

(1+Ω2)2 −
4Ω3
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Ω  (1−Ω2)
(1+ Ω2)3  =  0    (24) 

 
2Ω  (1−Ω2)  =  0      Ω1 = 0     Minimum

 

Ω2,3 = ±1   Maximum  (25) 
 
The first solution is trivial, the second and third is identical, if we tolerate negative 
frequencies (incoming and outgoing vector). Now, we must only find a substitution for Ω, 
with which (382) and (23) come to congruence in the lower range. This would be the 
displacement law for the source-signal then (22). Since the ascend of both functions has the 
same size in the lower range, there is theoretically an infinite number of superpositions, 
whereat only one of them is useful. Therefore, as another criterion, we introduce, that both 
maxima should be settled at the same frequency. The displacement law for the source-signal 
would be then as follows: 
 

ћωmax  =  a kT         Displacement law source-signal   (26) 
 
at which point we still need to determine the factor a. As turns out, we still have to multiply 
even the output-function itself, with a certain factor b, in order to achieve a congruence. The 
4 we had already pulled out. We apply the value 2��and 2.821439372 for a one after the 
other and determine b numerically with the help of the relation and the function FindRoot[#] 
using the substitution 2x = ay: 
 

 

a y
2( )3

ea y
2 −1

− 4b  

y
2

1+ ( y
2)2

 

 
 

 

 
 

2

 =  0   y =10–5 b → 2                      for  a = 2 2              

b → 2.009918917   for  a = 2.821439372
 (27) 

 
The maxima overlap accurately in both cases. The lower value a is equal to the factor in 
(903). Thus it seems, that with references, except for those to the origin of each wave with 
2ω1, multiplied with ��, which is caused by the rotation of the coordinate-system about π/4, 
rather the approximative solutions with the factor 2�� apply. With lower frequencies, the 
factor 2.821439372 of the WIEN displacement law applies then again.     
 
But to the exact proof of the validity of the WIEN displacement law in the presence of strong 
gravitational-fields this ansatz is not enough. We must also show that the maximum of the 
PLANCK's radiation-function behaves exactly according to the WIEN displacement law, that 
means the approximation and the target-function must come accurately to the congruence. 
Since the difference between a factor 2�� and 2.821439372 amounts to 0.5% after all, we 
will execute the examination with both values. Only the relations for b = 2�� are depicted. 
Now, we can set about to write down the individual relations: 
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Thus, we have found our source-function. In y it reads as follows: 

Ω

2 2
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But we aren't interested in the absolute value but in the relative level only: 
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We want to mark the approximation with dS2. For the target-function dS3 we obtain: 
 

dS3  
=  

(2.821439
y
2)3

e2.821439 y
2 −1

 dy        (32) 

 
In figure 1 are presented the course of the source-function and the PLANCK's graph. 
 

 
 
 

Figure 1 
Planck's radiation-rule and source-function 

in the superposition (logarithmic, relative level) 

 

3. Solution and analysis 
 

Of course, there is no shift-information y(Q) contained in these relations. Since the 
considered system is a minimum phase system, we now have to multiply the source-function 
dS1 with the amplitude response A(ω). The result is our approximation dS2. It is merely 
applied to a single line-element, which is traversed by the signal in the time r0/c. Thereat r0 is 
equal to the PLANCK's length and identical to the wavelength of the above-mentioned metric 
wave-function. That means, we have to execute the multiplication with A(ω) as often as we 
like, unless the result (almost) no longer changes.  
 
But thereat as well the frequency of the source-function as the cut-off frequency (frequency 
response) decrease continuously. Therefore it's opportune, to take up the displacement 
(frequency and amplitude) later on with the result dS2 (approximation), instead of shifting on 
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2y
2

2 y 2
2

dS 8
1 ( )

 
=  

+ �
Q0

½ 

A(y) cos φ(y) đy dy           (33) 

and on the location of the source-function. For the proof of our hypothesis indeed this last 
shift is not of interest, so that we won't take up it in this place. 
 
There is another problem with the amplitude response A(ω) and with the phase-angle φ. Since 
the cut-off frequency ω0 = ƒ(Q, ω1) and the frequency ω are varying according to different 
functions, it causes difficulties to formulate a practicable algorithm. Thus we use the fact that 
there is no difference, whether we reduce the frequency of the input-function with constant 
cut-off frequency or if we shift upward the cut-off frequency with constant input-frequency. 
But this corresponds to a transposition of integration limits. We choose this second way incl. 
the displacement of the approximation at the end of calculation. This all the more, since we 
would be concerned with two time-dependent quantities (input-frequency and cut-off 
frequency) otherwise. To the approximation applies: 

Expression (33) looks a little bit strange maybe. It’s about a so called product integral, i.e. 
you have to multiply instead of summate. Then, the letter đ isn’t the differential-, but the… 
let’s call it divisional-operator. I don’t want to amplify that, because we anyway have to 
convert expression (33) to continue. We use Q0 = 8.34047113224285·1060 from [6] as the 
updated value of the Q-factor and the phase-angle of the metric wave-function1. It determines 
the upper limit of the multiplication resp. summation. Fortunately the frequency response can 
be depicted as e-function, so that the product changes into a sum. We simply have to integrate 
the exponent quite normally then. We obtain the frequency response inclusive phase-
correction with the help of the complex transfer-function (150) to: 
 

 
( )A( )   ecos ( ) B( )Ψ ωω ⋅ = ϕ =ϕ ωω          Frequency response of a line element (34) 

 
The fact, that only the real component is transferred, is taken into account by the 
multiplication of A(ω) with the expression cos φ. We use (302) from [1] for Ψ(ω). Unfor-
tunately, the expression stated there is wrong, because I miscalculated in section 4.3.2. and I 
could reveal the error only now. After all the function determined there was not referenced in 
any correspondence table and I was unable to perform the inverse Laplace-transform to the 
verification until now.  
 
The error is located in (139) and (140). The corrigendum will be published soon in a cor-
rectional article [7]. A corrected version of [1] is impossible alas, since my 5 allowed replace-
ments are already exhausted. Fortunately I used a different approach for the rest of the work, 
without an error. Only concerned is section 4.3.2. With ω1= 1/(2t1) = κ0/ε0 expression ([1] 140) 
reads correctly:  
 

2

1

a p 1a adp CCp p p 2pt1

1

C a 1
y(p) e e e e

p p 2pt

−
++ −− −

= = = =
∫

 ([7] 140) 

 
Because of cos(φ) = cos(–φ) we obtain the following corrected expression (302):  
 

2
2

2 2

1
( ) ln 1 lncos arctan

1 12
( )  Ω ΩΨ ω = − +Ω + + Ω− + Ω +Ω 

    ([7] 302) 

 
As next, we substitute Ω by y with the help of (29): 
 

   

2 y y2
2 2

y y2 2
2 2

1 y y
( ) ln 1 ln cos arctan

2 2 1 2 1

( )
( ) ( )

    Ψ ω = − + + + −      + +    
     (35) 

                                                
1
 The equality of the Q-factor Q0 and the phase angle 2ω0t is a special property of this function 
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The value ω in the numerator of y figures the respective frequency of the cosmic background-
radiation, for which we just want to determine the amplitude. It is identical to the ω in 
PLANCK's  radiation-rule. Thereat, it's  about an overlaid frequency, which is proportional to  
Q–3/2 in the approximation. The frequency ω0 is exactly proportional to Q–1.  
 
Instead of the value ω1 in the denominator actually the PLANCK's frequency ω0 should be 
written with the frequency response. That is also the cut-off frequency for the transfer from 
one line-element to another. But with Q = 1 the value ω0  is right equal to ω1, at which point 
ω0 varies with the time; ω1  on the other hand is strictly defined by quantities of subspace 
having an invariable value therefore. It applies ω0 = ω1/Q. That means, that even y depends 
on time, being proportional to Q–1/2. 
 
Now however, we want to freeze the value ω, at least up to the end of the calculation, with 
the consequence, that we must divide y by a supplementary function ξ, which is proportional 
to Q1/2. It applies ξ = cQ1/2 and 
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   (36) 

 
The factor c arises from the initial conditions at Q = 1/2 (resonance-frequency 2ω1, cut-off fre-
quency ω1) to c = 4 (In the program cc = y/2): 
 

y  =  
ω  

ω0

 ~ 
2– 3

2

2
1
2

 =  
1
4

         ξ = 4 Q     Approximation  (37) 

 
Thus, together with the 2 of y/2, we acquire exactly the same factor 8 as in the source-
function (31). Then, the approximation dS2 calculates as follows: 
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∫
  (38)

 

 
The negative sign before the integral results from the re-exchange of the integration limits. 
For the determination of the integral, a value of 103 as upper limit suffices indeed. Over and 
above this, it changes very little. Therefore, I worked with an upper limit of 3·103 in the 
following representations. The integral only can be determined numerically, namely with the 
help of the function NIntegrate[ƒ(Q), Q, 1/2, 3×103]. The quotient of y/2 and ξ expression 
(37) however describes the dependency y(Q) in the approximation only. There is an exact 
solution as well. According to [1] (209), (299) and (509) applies: 
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     (41) 

 
The factor b arises from the demand, that the exact function ξ and its approximation should 

be of the same size with larger values of Q. The factor a we will determine later on in turn. 
The functions in (41) are Bessel functions. 

 
Problematic in (40) and (45) is the integral, which can be determined even only by numerical 
methods. In order to avoid the numerical calculation of an integral within the numerical 
calculation of another integral, it's opportune, to re-place the integrand by an interpolation-
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function (BRQ1), and that inclusive the factor B. The value r1 cancels itself because of (39). 
We choose sampling points with logarithmic spacing: 
 

brq = {{0, 0}};   

For[x = −8; i = 0, x < 25, (++i), x += .1;  

 AppendTo[brq, {10^x, N[BRQP[10^x]/BGN/(2.5070314770581117*10^x) ]}]] 

BRQ0 = Interpolation[brq]; 

BRQ1 = Function[If[# < 10^15, BRQ0[#], Sqrt[#]]]; 
 
The function BRQP is equal to the product of Q, root-expression and integral in the 
denominator of (45). The value BGN is equal to the initial value of the same product at 
Q = 1/2. You'll find the complete program in the appendix. The factor b arises to 2.5(0703). 
According to (211), (482) and (623) applies further: 
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    (45) 

 
c is the complex propagation-velocity of the metric wave-field. As next, we want to take up a 
comparison of the two functions Q1/2 and BRQ1 (figure 2): 
 

 
 
Figure 2 
Function BRQ1 exactly and approximation 

 
On the basis of the demand, that the result of both functions must be identical with Q»1 we 
choose the factor a to ��. In this connection is to be remarked that the exact value is ��� �	 in 
fact. But since we finally will not find, in any case, an exact fit in the course of both 
functions, this small „cheating“ in the initial conditions should be allowed. The value �� 
namely leads to the result with the smallest difference, so that we obtain the following final 
relation for ξ:  
 















ρ
−βπ=ξ ∫γ

Q

0 0

4– dQ
1Q2

2

3
    

2
1

  c =
3
2

2π = 3.756       (46) 

 
For ��� �	 a value of c = 4 would arise. The bracketed expression corresponds to the factor Q1/2 
in the approximation. The course of the integral function in (38) as well as of the dynamic 
cumulative frequency response Ages(ω) = e–∫Ψ(ω)dQ you can see in figure 3 and 4. For your 
information the amount of the complex frequency response |Xn(jω)| of subspace is plotted, 
that’s the medium, in which the metric wave field propagates (ΩU = Ω).  
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n

1 1 1
X ( j ) 1

2 1 j 1 j

 
ω = + + Ω + Ω 

     Complex spectral function      ([1] 459) 

 
That applies to EM−waves propagating simultaneously with the metric wave field but not to 
the metric wave field itself. They achieve the aperiodic borderline case at Q = ½. 
 

 
 

Figure 3 
Course of the Integrals Ψ(ω) in (38) 
for the approximation and exact function ξ 

 
Figure 4 
Cumulative frequency response Ages(ω)  
and |Xn(jω)| of the metric wave field 
and subspace 

  
Thus, all requirements are filled and we are able to demonstrate the course of the 
approximation (38) in comparison with the target-function (32) and that as well for the 
approximation as for the exact function ξ. We use a logarithmic scale with the unit decibel 
[dB] and, because it’s about power per surface, with the factor 10. 
 

 
 
Figure 5 
PLANCK’s radiation-rule and approximation 
with approximation for the function ξ (relative level) 
 

Figure 5 shows the shape of the approximation using the approximation (37) for the 
function ξ (c = 4). The figure shows a phantom branch at the right side due to the down-
limited decimal resolution by sign-change according to e1/±�0. It will be removed in the 
following presentations. Furthermore we can see, both curves doesn’t match exactly. The 
maximum frequency Ω��is downshifted by 18.28% (0.81721). The maximum deviation of the 
amplitude Δ A⌆ is with –1.78 dB, the difference between both maxima Δ A⊼ +0.42886 dB 
(+10.38% resp. 1.1038). Altogether the function resembles the shape, shown in [1] section 
4.6.4.2.3., obtained by multiplication of the source-function with only 4 choosed values of 



13 

the frequency response. But there are disparities in the declining branch with higher 
frequencies. 

 

 
 
Figure 6 
PLANCK’s radiation-rule and approximation under 
application of the exact function ξ (relative level) 

 
 
Figure 6 presents the course of the approximation under application of the exact function ξ 

(46) for c = 3.756. With it, the best fit (without group delay correction) turns out (With  c = 4, 
there is only a minor difference to figure 5). But both functions don't overlap exactly neither 
in this place. Once again, the maximum frequency Ω�� is downshifted by 13.61 % (0.86386) 
The maximum deviation of amplitude Δ A ⌆ is about +1.33 dB, between both maxima Δ A⊼ at 
+0.75834 dB (+19.07%).  
 

The course of deviation (logarithm of the quotient of approximation and PLANCK’s 
radiation-rule) as a function of y is shown in figure 7. One sees, from ca. 10 ω1 on the relative 
deviation between both functions is strongly growing. But since the absolute level in this 
range is already microscopic (−54dB at the third zero), nobody will take notice of it. Even 
there it seems rather to be about a small frequency shift, than about a deformation of the 
envelope.  
 
Maybe, the downshift of the approximation’s maximum could be a reason for the discre-
pancy between the CMBR-temperature calculated in 7.5.3. [1] to the measured COBE-value 
with the amount of +2.42086% (−2.36363% in the reciprocal case). 

 
Although, the form of the approximation-graph doesn't correspond to that of a black emitter 
and the value is too high. But during the COBE-experiment, they just have been ascertained, 
that the spectrum of the CMBR is exactly? black. Therefore, more forces are required in order 
to change the form in such a manner, that it equals that of a black emitter. In the next section 
we will see, which influences may come into consideration for that purpose.  
 
As further considerations [6] show, the above mentioned deviation is less because of the 
curve shape, but because of the value of the HUBBLE-parameter, determined in [1]. With the 
value from [6] the calculation exactly fits the limits of the measuring tolerance of the 
COBE/WMAP-satellite. Read section 4 for details. 
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In figure 7 we can see that we yield an improvement if we use the exact function ξ. Never-
theless a certain left-over difference remains. If we take a look at the course in the 2nd 
quadrant, we can see a „gap“ where an already known function, multiplied with the factor ½,  
could slot right in there. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 7 
Relative offset between   
approximation and 
radiation-rule in 
dependency of the 
function ξ used 

 

That’s the group delay TGr of the metric wave field of [1] section 4.3.2. Whereas the phase 
response affects the form of the carrier frequency (ω1 resp. ω0), the group response affects the 
shape of the envelope curve. Due to the miscalculation, expression ([1] 152) is also wrong. It 
reads correctly: 

22

Gr 2
1 1

2 θd
T B( ) 2

1d

Ω = ω = − = − ω ω+ Ωω  
 ([7] 152) 

 
With Ω=ω/ω1. The factor 2 cancels out, since it’s about a spin2-system, with which all 
temporal constants are 2T instead of T (double phase-/group-velocity). Whereas the group 
response is constantly equal to zero across nearly all decades, it is not the case close to ω1 
resp. ω0 nowadays. A frequency dependent group response always leads to a distortion of the 
envelope curve.  
 
As we can see, the group response is negative. That happens in technology too and is not a 
violation of causality. See [8] for details. So far we have taken into account the frequency 
response A(ω) and the phase response B(ω), only the group delay correction Θ(ω) = ½ ω1Tgr, 
is missing, implemented by the function gdc[ω]: 
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The decimal power is important, if we want to calculate with dB. The group delay correction 
Θ(ω) on dS2 is applied only once:   
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The resulting functions with group delay correction for both ξ are shown in figure 8 and 9. 
There is already a better fit of both graphs in figure 8, as we can see. Now the maximum Ω� 
of the frequency is downshifted about 12.52% (0.87476). The maximum deviation of ampli-
tude Δ A ⌆ amounts to +0.42061 dB. The deviation between both peaks Δ A⊼ is –0.40484 dB or 
–1.45%. 

Θ
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Figure 8 
PLANCK’s radiation-rule and approximation 
with group delay correction with approxi- 
mation of the function ξ (relative level) 

 
A nearly perfect result we have got for the case exact ξ with group delay correction (figure 9). 
Now the maximum frequency Ω��is downshifted about –7.00% (0.93003) only. That value is 
far in excess of the –2.36% deviation between measured and calculated CMBR-temperature. 
The maximum amplitude deviation Δ A ⌆ is at about –0.58954 dB, between both maxima Δ A⊼ 
is at –0.02762 dB (–0.64%). Of particular interest is the extremely high correlation coefficient 
of 0.999835 between both curves. 

 
 
Figure 9 
PLANCK’s radiation-rule and approximation 
with group delay correction under application 
of the exact function ξ (relative level) 
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Figure 10 
PLANCK’s radiation-rule and approximation 
with group delay correction under application of 
the exact function ξ (relative level) high resolution 

 

Figure 11  
Relative deviation between approximation and  
radiation-rule according to the function ξ used 
without and with group delay correction 

 
 

Value 
 

Ω� ∆ Ω� A⊼ ∆ A⊼ Ω⌆ ∆ A ⌆ Ω⌆ ∆�A ⌆ 

 [1] [%] [dB] [dB] [1] [dB] [1] [dB] 

Planck   1.00000 ± 0.00 +1.52727 ±0.00000 −− −− −− −− 

Figure 5 0.81721 −18.28 +1.95613 +0.42886 0.41944 +1.20008 2.88334 –1.78499 

Figure 6 0.86386 −13.61 +2.28561 +0.75834 0.46495 +1.29392 5.55922 +1.32996 

Figure 8 0.87476 −12.52 +1.12244 –0.40484 0.14776 +0.42061 –– –– 

Figure 9 0.93003 − 7.00 +1.49965 –0.02762 0.15421 +0.43171 1.95909 –0.58954 

 
Table 1 

Extreme values of PLANCK’s radiation-function and 
approximation according to the function ξ used 

without and with group delay correction 
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To the better clarity, the last case is depicted in figure 10 with higher resolution. You can find 
the exact results in table 1. Figure 11 shows a summary of the relative deviations of all 
solutions in comparison with the course of the absolute value of the complex frequency 
response |Xn(jω)| of subspace. 

 
 
 
 

4. The WIEN displacement 
 
The solution according to figure 9 seems to fit to the best the observations. As we can see 

in figure 11, the curve oscillates around the nominal value near the upper cut-off-frequency, a 
behaviour, as we even know from technical minimum-phase low-pass filters (overshoot). 
Usually it is being suppressed by an attenuator and there is the parametric damping. Aside 
from that the level at the third null is already with –50dB, the rest disappears in noise. 

 
Let’s suppose, that the +1.3

–0.5 dB are „healed up“ during the many billion years or have been 
„ironed out“ by other influences not considered here – at the end, we must carry out, as 
promised, a WIEN-displacement. Starting with the in-coupling frequency 2ω1, with the help  
of the expressions given in [1] section 2, we are able to calculate the temperature of the 
CMBR to compare it with the COBE-measuring:   

 
Indeed, it is hard to believe, that we can actually calculate back until a point of time before 

the phase jump at Q = 1. But the contemplations conducted in [6] turned out, that both, 
photons – these behaved like neutrinos in the beginning – and electrons and protons, had had 
different properties shortly after BB, banish the usual notions of this period to the realm of 
imagination.  

 
Albeit with a different value for H0 (71.9845 km s–1Mpc–1), I succeeded in [1], to calculate a 

CMBR-temperature of 2.79146K with the model. This was close to the 2.72548K ±0.00057K 
(±2.09137·10

−4
), determined by the COBE-satellite. What works in one direction, naturally 

also works in the other direction. So the 2.72548K of COBE using the values from [1] match 
an H0 in the amount of 68.6072 km s–1Mpc–1. Indeed, that’s less than I calculated. Now, based 
on the electron, I determined, a new H0 with an amount of  68.6241km s–1Mpc–1 in this work. 
And I was not a little surprised, that it was extremely close to the COBE-value. So I assume, 
that the new value must be more accurate, than the one calculated in [1]. Now to the 
calculation. 

 
Whereas the temperature of the metric wave field is equal to zero, it’s not the case with the 

CMBR. Since it’s about almost black radiation (εν = 0.9428 � ⅔��), we are able to calculate 
the black temperature indeed, but we want to work-on with the grey temperature. By 
transposing the WIEN displacement rule with the energetic redshift z22 = 12 εν Q0

5/2 of ([6] 174) 
we obtain for ωU = 2ω1: 
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ɶ
  ([6] 176) 

 
That’s the temperature of the cosmologic background radiation in consideration of the 
frequency response (see figure 12). I already offered expression ([6] 176) as an approximation 
in [1], since the value �� = 3 + lx (−3e

−3
) is only 0.25% below ���, see also section 2. With it, 

we get an extremely simple expression, which corresponds to a value εν = ��/3. That would be 
4� the 3 in one expression and the subspace slightly greyer, as thought. Since we want to 
know exactly, we will verify even this approach.  
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The last, constructed case exactly brings us to the 2.72548K. Table 2 shows all possible 
solutions once again. 
 

 
Figure 12 
Temporal dependence of the radiation-  
temperature of the CMBR (linearly) 
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 [1] [s
–1

] [kms
–1

Mpc
–1

] [K] [K] [%] 

(890) [1] 7.9518·1060 2.3328·10–18 71.9843 2.791460 +0.06598 +2.42086 

(177) [6] 8.3405·1060 2.2239·10–18 68.6241 2.732186 +0.00671 +0.24605 

(COBE)+ 8.3397·1060 2.2243·10–18 68.6365 2.726050 +0.00057 +0.02091 

(COBE)0 8.3404·1060 2.2239·10–18 68.6250 2.725480 ±0.00000 ±0.00000 

(179) [6] 8.3405·1060 2.2239·10–18 68.6241 2.725480 ±0.00000 ±0.00000 

(176) [6] 8.3405·1060 2.2239·10–18 68.6241 2.725436 −4.4×10�� −0.00161 

(COBE)– 8.3411·1060 2.2236·10–18 68.6135 2.724910 −0.00057 −0.02091 

(178) [6] 8.3405·1060 2.2239·10–18 68.6241 2.717830 -0.00765 -0.28069 

 
Table 2 

Calculated and measured CMBR-temperature in 
comparison with the values of the HUBBLE-parameter 

 
The Q0- and H0-values for the COBE-satellite have been determined with the help of 
([6] 176). The upper and the lower limits of the COBE-values are yellow highlighted. As we 
can see, the approximation ([6] 176) is very good. The value from [1] is much too high and 
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([6] 177) is outside the measuring precision of COBE. Expression ([6] 178) is out of question, 
since its value is below the measured one. Moreover it’s not related to the model. That also 
applies to ([6] 179). The approximation ([6] 176) in contrast, seems to hit the nail on the had. 
Whether that’s true, further, more precise measurements will prove. Thus, we define: 
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([6] 180) 

 
 
The calculated value is within the accuracy limits of the value 2.72548K ±0.00057K mea-
sured by the COBE-satellite and is reference frame dependent (~ Q0

–5/2). For the choose of the 
correct relation to the calculation of TK I leave the reader room for his own interpretations. In 
addition, we want to calculate the corresponding frequencies for the technicians too. With the 
help of WIEN’s displacement rule and ([6] 180) we get the following relations: 
 

– –
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3 3
2 21.0067316 10 s

1 1
 Q  Q 160.2263GHz
18 36
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π
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5. Possible reasons of a deviation 
 
Next, I wanted to discuss possible causes that could have led to the original discrepancy. 

However, due to the updated value of H0 and Q0, this has been done. However, I don't want to 
simply delete this section, as it can serve as an example for other cases.  

 
The simplest and most troublesome cause is always that the model is wrong. However, the 

original result agreed reasonably well with the prediction, so there could have been another 
cause. Therefore, the most probable shall be discussed as next.   

 
Since the line-element is a minimum phase system, we computed the (inaccurate) 

approximation function, by an iterative multiplication of the source-function with the just 
significant amplitude characteristic A(ω), as long as the result changes essentially. At the 
point the frequency of the signal-function has dropped far below the cut-off frequency, there 
is no more change to be observed. The factor cos φ emerged from the fact, that only the real-
part is being transferred (φ = B(ω)). 

 
That’s the procedure with minimum phase systems in general. But according to [3] p. 340 it 

applies for stable minimum phase systems only! Because only with these, an explicit 
correlation exists between amplitude- and phase response curve, so that we can calculate with 
the amplitude response exclusively. With the line-element just after input coupling (Q≈1), 
that’s shortly after big bang, it’s about a minimum phase system indeed, but also about a 
marginally stable system (pole and null at the point {0,0}), as I have found after correction of 
the calculating error.  
 

If we want to get an exact result, we must also introduce a reference between amplitude 
and phase, quasi a phase-correction, because a phase-lag appears with unstable systems. At 
the observer the phase-lag manifests itself in the form, that the spectral shares with lower 
frequency are more redshifted, than the higher frequent ones. Indeed, the lower-frequent 
shares aren’t older than the higher-frequent ones (we observe always the same point of time 
at the in-coupling with Q0 = 1/2), but they have covered a longer distance. And that 
automatically leads to a higher redshift.  

 
But how this longer way can be explained? The lower-frequent shares simply took a different 
route, than the higher-frequent ones (different angle of emission). That leads to a kind of 
achromatism at the observer, which is hard to be detected, since the radiation arrives from all 
directions at once. Even with the propagation-function (306) such a phase-lag occurred, 
characterized by the term Φ(ω). We considered that term and we also took a group delay 
correction. Hence, it cannot be that. 
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Let’s go to talk about the high dynamics during the in-coupling process. Figure 13 shows the 
course of the energy flux-density vector div S0 of the metric wave field at that point of time. 
One sees, it’s positive in the range 0.52549 < Q < 1.5975. Thus, energy is radiated. The range 
is depicted even in figure 7. In the range below 0.52549 the field is been established, above 
1.5975 the effect of parametric attenuation for overlaid waves can be seen. 
 
 

 
 
Figure 13 
Course of the energy flux-density vector of 
the metric wave field as a function of Q 

 
Hence, with the in-coupling process it’s not about a sudden act with before → after, but it’s 

a dynamic process. Energy is absorbed and partially re-emitted, deferred by the group delay 
time. At the same time the CMBR is coupled in, according to the frequency at different 
moments. Concerning the partial re-emission the share of absorbed energy depends on the 
area ratio of both left-hand sections. The numerical integration yields a value of 2.24784 for 
the absorbed, as well as of 0.345719 for the re-emitted energy share. The calculation 
2.24784/(0.345719+2.24784) a value of 0.866700931 turns out in reference to Q. But we 
need the value in reference to the time t. Because t2

 ~ Q, we must resolve the substitution t2 on 
the x-axis in that we extract the root of the result. We obtain a value of 0.930967739. It 
corresponds, except for a deviation of 0.0118413026, to our vacuum coefficient of absorption 
εν = 0,9428090416.  

 
Thus, the deviation has something to do with the gray body [4]. Now, once we already 

considered εν indeed, but only as a constant and with the value at the time of in-coupling. But 
with the gray body εν depends on the frequency ω. If we want to consider that, we have to 
calculate an εT(ω) respectively a correction term εK(ω) to multiply ([1] 902) with, since εν is 
already included there. In [4] the following is denoted for εT: » Thereby εT correlates with the 
weighted averages of εν resp. ελ, which are equal:  

      from [4] « (50) 
 
 

But we don’t want to make it as quite as complicated. Therefore we assume, that the root of 
the area ratio should equal the average of εν, i.e. be equal to εT. It applies: εT = ενεK, with 
εν = ⅔ �� = 0.942809 and εK = 0.987440402. Multiplying the calculated Tk = 2.79837K with εK, 
we obtain a value of 2.76322K, which is about +0.0377K above the measured one. But is it 
correct, to apply εK resp. εT simply as a factor to WIEN’s displacement law? The answer is no. 
It’s about a factor from PLANCK‘s radiation-rule. Applying εT to (1)…(7), it cancels out at the 
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end. Herewith the inclination 2 at WIEN‘s displacement rule ( x̃ is the ratio slope/peak-line) 
also applies to the gray body. But even a constant of integration would be possible here. 
There are influences on the displacement indeed. But these depend on the shape of the 
envelope-curve and, with it, on the function εν(ω), which we do not know. Therefore we must 
improvise, contriving a function, which well-complies the requirements. Then, at least, we 
can see, which influence a frequency-dependent εν has onto the shape of the curve and with it 
even onto the displacement itself.  
 

As a start the function before the in-coupling must have the value ενmax = ⅔ �� = 0.942809. 
Furthermore it must vary somehow. We choose a simple change from one to another value. 
As inflection point we choose the moment of in-coupling with Q =1/2 resp. 2ω1. Then y = Ω 
applies. The 0.930967739 from the area ratio of div S0 are our ε̄T. We use the function as per 
(51). Therefrom a lower limit of ενmin = 0.920464 arises. With it ε̄T is a little bit smaller than 
the average, due to the function used. All that appears plausible on the whole, because the 
metric wave field mostly picks up energy before the in-coupling. Thus, it has a higher 
absorption coefficient as thereafter, when a share of energy is re-emitted. Even the offset of 
the zero-transition of divS0 of Q = 0.52549 is mapped very well. If you don’t like it, it’s only a 
model and an optimized example function. Whether it really happens in that manner, is 
another matter. 
 

 
Figure 14 
Vacuum coefficient of absorb- 
tion εν as a function of ω 
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Now we want to analyze the effect of εK on the envelope-curve. We believe in the „self-

healing powers“ of the solution of figure 9 using a clean PLANCK-curve. Since the effect on 
(51) is hardly to be seen in the graphics, we use an additional, exaggerated function εT5 to the 
better presentation. 
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 (53) 

εK max = 1.00000 
εK min  = 0.97630 
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That corresponds to an ε̄T5 = 0.69281. We obtain the following course with it: 
 

 
Figure 15 
Effect of the absorption coefficient εν 
onto the envelope-curve, high resolution 

 
One sees, the function (52) mostly affects the lower-frequent part of the envelope-curve. The 
maximum is up-shifted in frequency. But the inclination in the left part remains constant. 
That applies as I said to the example function only. Natural materials may distort the 
envelope-curve significantly even in this region. Then the regression line applies as a function 
of  ε̄T according to (50). Then it has the same inclination and even only, it’s more or less 
amplitude-shifted (constant of integration!). B.t.w. the regression line σT resp. the lower-
frequent slope is also the line, the WIEN displacement happens at. Here we can see the benefit 
of the duplicate logarithmic presentation, the curve becomes a line then. 
 
The regression line σT can be determined by trying out most suitably. It applies y = Ω too. In 
the duplicate logarithmic presentation the following functions arise: 
 

KT min( ) 10 (2  + lg (2 ))σ Ω = Ω ε  [dB] Slope (54) 
 

KT minˆ ( ) 10 (2  – lg lg )σ Ω = Ω + εɶx  
[dB] Maximum (55) 

 
 

K K K

2 2ln10 4.60517
T min min min( ) 2 10 2 e 2 eΩ Ω Ωσ Ω = ε = ε = ε  Slope linearly (56) 

 
That only applies to the example function used here. The 2 on the right side stems from the 
definition of Ω according to (9). To the black body and with it, even to the PLANCK-curve 
applies εKmin = εT = εKmax = 1. With natural materials we must replace εKmin by ε̄T from (50). The 
course is shown in figure 15. Of course even a regression line for the maximum can be 
defined. With it (x̃), the circle closes to WIEN‘s displacement law. However expression (55) 
isn’t very accurate and the line may miss the maximum with smaller ενmin. But it applies 
exactly to the black body and to our example function. With natural materials even more than 
one maximum may occur. The more the envelope-curve differs from the ideal, the less 
reasonable is it, to speak of a radiation temperature.  
 
From (55) arises, that we, nevertheless can define a WIEN’s displacement law for the gray 
body, at least for the example function and when the curve-shape do not differ too far from 
that of a black body: 
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With natural materials εKmin must be replaced by ε̄T again. 
 
 

 
 
Figure 16 
Displacement lines σT and σT5 
as well as envelope-curves, low resolution 

 

As next we want to determine the frequency-shift ωK2/ωK1. We choose the exaggerated 
function (53), since we cannot see anything otherwise. We want to navigate in the lower-
frequent range, namely at ωK1 = 0.5·10−3

 ωmax. Therefore we can employ WIEN‘s radiation-
rule: 
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To the amplitude of dS2 applies (T1=T2=T ) : 
 

   

K 1
K

3
min K1

2  2 2
kd    e d

4 c

ωε ω
≈ ω

π s
S e

ℏℏ
T            =    

K 2
3
K 2

 2 2
k1

e d
4 c

ωω
ω

π s
e

ℏℏ
T  (59) 

 
By equating we obtain the following expression: 
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K 2 min K1 K1 K1 0.97630 0.992037ω = ε ω = ω = ω  (63) 

 

WIEN‘s displacement law 
for the gray body 
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With it the frequency of our example function shifts downward by +0.8027% at the base. The 
offset of the maximum is +0.4860% (Function FindMaximum[#]). Just for information, with 
the exaggerated function εT5 the base-shift is at +25.99%, at the maximum at +12.64%. Thus, 
in both cases a narrowing of the envelope-curve occurs, at which point the frequency shift at 
the base is nearly twice as large, as at the maximum. Because with the real values only 
fractions of a percent come into effect, it looks like the curve is black. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17 
Possible error sources by misinter- 
pretation of the curve-characteristic 

 
 

Subsequently it’s about errors in the interpretation of actual measured data only. The model 
itself is no issue and it’s irrelevant, whether any universal natural constants change over time 
or not and how. Figure 16 shows what may happen, if we misinterprete the curve-characte-
ristic, by a mistaken application of the black body mathematics to a gray curve. Curve #1 is 
the curve of a black body at the moment of in-coupling, curve #2 is the gray curve. The 
redshift z (displacement) takes place in the direction of arrow along the displacement line σT 
and σT5. You can perform it in a graphics program even manually in the following manner: At 
first duplicate the graph. Then scale it equably by shifting the corner point right above to the 
bottom left with pressed shift key, maintaining the contact with the displacement line left. 

The result are the curves 3 and 4. Now, however the gray curve 3 can be „inflated“ in such 
a manner, that it almost fits the black curve 4, that’s curve 5 (green). This happens, when a 
too small redshift z is being assumed, a value, which we actually wanted to determine. One 
sees, it’s possible to wangle a nearly perfect covering of the maxima. The difference is, in 
practice, nearly undetectable with εT-values near 1. The result is, that a too small z and a too 
small radiation temperature Tk is calculated, and that by half the offset at the base. 

 
Presuming the calculated Tk-value in the amount of 2.79837K to be the gray temperature, 

under consideration of the interpretation error at the measured value of 2.72548K, the 
application of (57) a measured gray temperature of 2,79164K turns out. Then the calculated 
temperature is only +0.0067K above (+0.25%). Thus, in contrast to the hitherto +7.29%, the 
improvement wouldn’t be insignificant. Of course, I could have configured the example 
function even such, that I hit the measured value exactly. But that would not have been very 
meaningful. 

 
In any case, the effects of a possible gray radiation-characteristic should be considered, 

especially then, when we want to measure extremely accurate. But then we can forget the 
declared accuracy of ± 0.00057K for the measured value resp. it applies only relatively and 
not absolutely. 
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6. Summary 
 
 
In the course of this article, according to the model in [1], we succeeded in approximating 

the envelope-curve of PLANCK‘s radiation-rule as a function of a dynamic frequency response 
under application of a phase- and group-delay-correction with a residual deviation of  +1,3–0,5 dB. 
Furthermore it was shown, that the temperature calculated in [1] is in the proximity of the 
value measured by the COBE-satellite. With the help of the updated values of H0 and Q0, 
determined in [6] a more recent CMBR-temperature could be calculated, which well fits the 
accuracy limits of the radiation temperature, measured by the COBE/WMAP-satellite. 

 
The results of the work on hand don't exclude the possibility, that the course of the 
PLANCK's radiation-rule could be the result of the existence of an upper cut-off frequency of 
the vacuum. Both, the classic definition formula, and the approximation are compatible and 
complement each other. 
 

7. Explanatory notes to the annex 
 
 
The expressions and definitions used in this work are described in the annex and can be 

calculated. It’s about the source code for Mathematica/Alpha. The data can be transferred 
using copy&paste via the clipboard. You can also save it into a text file (UTF8), which can be 
opened and evaluated directly. Advantageously, you should not copy the whole source code 
into one single cell but section per section. Calculation may take about one hour. 
 
 
 

 
THE END 
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(*Copy Friendly Version*) 
(*Choose »Evaluate Notebook« from Menu*)�
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Off[General::spell] 
Off[General::spell1] 
Off[InterpolatingFunction::dmval] 
Off[FindMaximum::lstol] 
Off[FindRoot::nlnum] 
Off[NIntegrate::inumr] 
Off[NIntegrate::precw] 
Off[NIntegrate::ncvb] 
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km=1000; 
Mpc=3.08572*10^19 km; 
minute=60; 
hour=60 minute; 
day=24*hour; 
year=365.24219879*day; 
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c=2.99792458*10^8;  
my0=4 Pi 10^-7;  
ka0=1.3697776631902217*10^93;  
hb1=8.795625796565464*10^26;  
k=1.3806485279*10^-23;  
me=9.109383701528*10^-31;            (*Electron rest mass with Q0 Magic value 1*); 
mp=1.6726219236951*10^-27;                     (*Proton rest mass Magic value 2*); 
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mep=SetPrecision[me/mp,20];  
ϵ=ArcSin[0.3028221208819742993334500624769134447]-3Pi/4;   
γ=Pi/4-ϵ;   
ζ=1/(36Pi^3)(3Sqrt[2])^(-1/3)/mep;  
xtilde=3+ProductLog[-3E^-3];   
alpha=Sin[Pi/4-ϵ]^2/(4Pi);   
delta=4Pi/alpha*mep;   
Q0=(9Pi^2 Sqrt[2]delta me/my0/ka0/hb1)^(-3/7);  
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Z0=my0 c;   
ep0=1/(my0 c^2);  
R∞=1/(72 Pi^3)/r1 Sqrt[2] alpha^2 /delta Q0^(-4/3);  
Om1=ka0/ep0;  
Om0=Om1/Q0;  
OmR∞=2Pi c R∞;   
cR∞=c R∞;  
H0=Om1/Q0^2;  
H1=3/2*H0;  
r1=1/(ka0 Z0);   
a0=9Pi^2 r1 Sqrt[2] delta/alpha Q0^(4/3);  
λbarC=a0 alpha;   
λC=2 Pi λbarC;  
re= r1 (2/3)^(1/3)/ζ Q0^(4/3);   
r0= r1 Q0;  
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R= r1 Q0^2;  
RR=R/Mpc/1000;   
t1=1/(2 Om1);   
t0=1/(2 Om0);  
T=1/(2 H0);  
TT=2T/year;   
hb0=hb1/Q0;   
h0=2Pi*hb0;   
q1=Sqrt[hb1/Z0];  
q0=Sqrt[hb1/Q0/Z0];  
qe=q0 Sin[Pi/4-ϵ];  
M2=my0 ka0 hb1;   
M1=M2/Q0;   
m0=M2/Q0^2;  
mp=4Pi me/alpha/delta;  
MH=M2/Q0^3;   
G0 =c^2*r0/m0;   
G1=G0/Q0^2;  
G2=G0/Q0^3;  
U0=Sqrt[c^4/4/Pi/ep0/G0];  
U1=U0*Q0;  
W1=Sqrt[hb1 c^5/G2];   
W0=W1/Q0^2;  
S1=hb1 Om1^2/r1^2;   
S0=S1/Q0^5;  
µB=-9/2Pi^2 Sqrt[2 hb1/Z0]delta Sin[γ]/my0/ka0 Q0^(5/6);  
µN=-µB*mep;  
µe=1.0011596521812818 µB; 
Tk1=hb1 Om1/18/k;  
Tk0=Tk1/Q0^(5/2);   
Tp0=0.;  
Tp1=0.;   
Φ0=Pi Sqrt[hb1 Z0/Q0 ]/Sin[Pi/4-ϵ];   
GQ0=1/Pi/Z0*Sin[Pi/4-ϵ]^2;  
KJ=2q0 Sin[Pi/4-ϵ]/h0;   
RK=.5my0 c/alpha;   
σe=8Pi/3 re^2;   
ae=SetPrecision[µe/µB,20]-1;   
ge=-2(1+ae);   
γe=2 Q0 Abs[µe]/hb1;   
σ=Pi^2/60k^4/c^2/hb1^3*Q0^3;   
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A=Function[(BesselJ[0,#]*BesselJ[2,#]+BesselY[0,#]*BesselY[2,#])/ 
   (BesselJ[0,#]^2+BesselY[0,#]^2)]; 
B=Function[(BesselY[0,#]*BesselJ[2,#]-BesselJ[0,#]*BesselY[2,#])/ 
   (BesselJ[0,#]^2+BesselY[0,#]^2)]; 
ThetaQ=Function[2*A[#]*B[#]/(1-A[#]^2+B[#]^2)]; ArgThetaQ=Function[Arg[1-
A[#]^2+B[#]^2+I*2*A[#]*B[#]]]; PhiQ=Function[If[#>10^4,-Pi/4-3/4/#, 
 Arg[-2*I/#/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]]]; 
Rho=Function[Abs[-2*I/Sqrt[#]/Sqrt[1-
(HankelH1[2,Sqrt[#]]/HankelH1[0,Sqrt[#]])^2]]]; 
RhoQ=Function[If[#<10^4,N[Abs[-2*I/#/Sqrt[1-
(HankelH1[2,#]/HankelH1[0,#])^2]]],1/Sqrt[#]]];  
RhoQQ=Function[If[#<10^4,Sqrt[Sqrt[(1-
A[#]^2+B[#]^2)^2+(2*A[#]*B[#])^2]],2/Sqrt[#]]];  
AlphaQ=Function[N[Pi/4-PhiQ[#]]]; 
GammaPQ=Function[N[PhiQ[#]+ArcCos[RhoQ[#]*Sin[AlphaQ[#]]]+Pi/4]]; 
rq={{0,0}}; 
For[x=-8;i=0,x<4,++i,x+=.01;AppendTo[rq,{10^x,N[1/RhoQQ[10^x]]}]]; 
RhoQ1=Interpolation[rq]; 
RhoQQ1=Function[If[#<10^4,RhoQ1[#],1/2Sqrt[#]]];  
Rk=Function[If[#<10^4,3*Sqrt[#]*NIntegrate[RhoQQ1[x],{x,0,#}],#^2]]; 
Rn=Function[Abs[3*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[-
I/2*(ArgThetaQ[x]+Pi)],{x,0,#}]]]; 
RnB=Function[Arg[3*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[-
I/2*(ArgThetaQ[x]+Pi)],{x,0,#}]]]; 
BRQP=Function[Rk[#] Sqrt[(Sin[AlphaQ[#]]/Sin[GammaPQ[#]])^4-1]]; 
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BGN=Sqrt[2]*BRQP[.5]/3; 
brq={{0,0}}; 
For[x=(-8); i=0,x<25,(++i),x+=.1; 
AppendTo[brq,{10^x,N[BRQP[10^x]/BGN/(2.5070314770581117*10^x) ]}]] 
BRQ0=Interpolation[brq]; 
BRQ1=Function[If[#<10^15,BRQ0[#],Sqrt[#]]]; 
 M1=Function[Abs[HankelH1[0,#]]]; 
SGenau=Function[Pi/2*Rho[#]^2*Abs[HankelH1[0,Sqrt[#]]^2]]; 
(*kk=Function[Expp[Sqrt[2]*Log10[E]*#/(1+#^2)]] was wrong*) 
gdc=Function[10^(Log10[E]*(-1) (1*#)^2/(1 + 1*#^2)^2)] ;  
(*Group Delay Correction*) 
AnU=Function[.5*1/Sqrt[1+#^2]*(1+1/Sqrt[1+#^2])]; 
FG=Function[.5/(1+I*#)*(1+1/(1+I*#))]; 
Xline=Function[10^33*(#1-#2(*Wert_x*))]; 
Xlline=Function[33+(10^#1-Log10[#2](*Wert_x*))]; 
Pom=Function[Print[StringJoin["x = ",ToString[10^Chop[First[xx/.Rest[%]],10^-7]], 
" Om1", "  (",ToString[.5*10^Chop[First[xx/.Rest[#]],10^-7]]," OmU)"]]]; 
Pol=Function[Print["y = "<>ToString[First[#]]<>" dB ("<> 
  If[First[#]-zzz>0,"+",""]<>ToString[First[#]-zzz]<>" dB)"]]; 
Expp=Function[If[#<0,1/Exp[-#],Exp[#]]];  
(* Strictly needed to avoid calculation errors *) 
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cc = xtilde^2;  
b  = xtilde; 
S1 = 8*(#1/(2*((#1/2)^2 + 1)))^2 & ;  
S2 = (b*(#1/2))^3/(Expp[b*(#1/2)] - 1) & ;  
         
Psi1 = NIntegrate[(1/2)*Log[1 + (#1/(cc*Sqrt[Q]))^2] -  
      ((#1/(cc*Sqrt[Q]))^2)/(1 + (#1/(cc*Sqrt[Q]))^2) -  
      Log[Cos[-ArcTan[#1/(cc*Sqrt[Q])] +  
         #1/(cc*Sqrt[Q])/(1 + (#1/(cc*Sqrt[Q]))^2)]],  
     {Q, 0.5, 3000}] & ;  
      
Psi2 = NIntegrate[(1/2)*Log[1 + (#1/(cc*BRQ1[Q]))^2] -  
      ((#1/(cc*BRQ1[Q]))^2)/(1 + (#1/(cc*BRQ1[Q]))^2) -  
      Log[Cos[-ArcTan[#1/(cc*BRQ1[Q])] +  
         #1/(cc*BRQ1[Q])/(1 + (#1/(cc*BRQ1[Q]))^2)]],  
     {Q, 0.5, 3000}] & ; 
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(*b = xtilde; Figure1 *) 
Plot[{Log10[(b*.5*10^y)^3/(Expp[b*.5*10^y]-1)], 
Log10[ 8*(.5*10^y/((.5*10^y)^2+1))^2], 
Xline[y,Log10[2]]},{y, -5, 3},PlotRange->{-10.1,.45}] 
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Plot[{(*Log10[BRQP[10^qqq]/BGN/(2.5070314770581117×10^qqq)], Figure2a *) 
Log10[BRQ1[10^qqq]], Log10[Sqrt[10^qqq]]}, {qqq, -1, 10}] 
Plot[{(*BRQP[qqq]/BGN/(2.5070314770581117×qqq), Figure2b *) 
BRQ1[qqq], Sqrt[qqq]}, {qqq, 0, 10}, PlotRange -> {-0.3, 9.6}] 
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cc=8; (*Factor 8 approx ξ Figure3 *) 
Plot[{Psi1[y],Psi2[y]},{y,0,10}, 
PlotStyle->RGBColor[0.91,0.15,0.25],PlotLabel->None, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}] 
 
cc=8; (*Factor 8 approx ξ Skipped *) 
Plot[{Expp[Psi1[y]],Expp[Psi2[y]]},{y,-4,4},PlotLabel->None, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}] 

�
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cc=8; (*Factor 8 approx ξ Figure4 *) 
Plot[{10Log10[Expp[Psi1[10^y]]],10 Log10[Expp[Psi2[10^y]]]},{y,-3,2}, 
PlotRange->{-88,2},LabelStyle->{FontFamily->"Chicago",12,GrayLevel[0]}]; 
 
b4=Plot[{10 Log10[Abs[FG[10^y]]]},{y,-3,2},PlotRange->{-88,2},PlotLabel->None, 
PlotStyle->RGBColor[0,0,0],LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}]; 
Show[%%,b4] 
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cc=8; (* Factor 8 approximated BGN exact Figure5 *) 
Plot[{10 Log10[S2[10^y]],10 (Log10[S1[10^y]*Expp[Psi1[10^y]]]),Xline[y,Log10[2]]}, 
{y,-3,3},PlotRange->{-51,10.5},ImageSize->Full, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}] (*All exact error max +1.3dB*) 
 
cc=7.519884824; (* Sqrt[π] exact ξ Figure6 *) 
Plot[{10 Log10[S2[10^y]],10 
(Log10[S1[10^y]]+Log10[E]*Psi2[10^y]),Xline[y,Log10[2]]},{y,-3,3}, 
PlotRange->{-51,4.5},ImageSize->Full, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}] (*All exact error max +1.3dB*) 
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u=FindMaximum[10 Log10[S2[10^xx]],{xx, 0}]; 
(* Planck's curve *) 
Print[StringJoin["x = ",ToString[(10^First[xx/.Rest[u]])], 
" Om1        (1.000000 OmU)"]] 
Print[StringJoin["y = ",ToString[zzz = First[u]], 
" dB    (±0.000000 dB)"]] 
 
FindMaximum[ 
  10 (Log10[S1[10^xx]*Expp[Psi1[10^xx]]]) - 10 Log10[S2[10^xx]],  
{xx, 0}] ; 
(* Maximum deviation 1 Psi1 *) 
Pom[%] 
Pol[%%]  
 
FindMinimum[ 
  10 (Log10[S1[10^xx]*Expp[Psi1[10^xx]]/S2[10^xx]]), {xx, 2}]; 
(* Maximum deviation 2 Psi1 *) 
Pom[%] 
Pol[%%]  
 
FindMaximum[ 
  10 (Log10[S1[10^xx]*Expp[Psi2[10^xx]]]) - 10 Log10[S2[10^xx]],  
{xx, 0}]; 
(* Maximum deviation 1 Psi2 *) 
Pom[%] 
Pol[%%] 
 
FindMaximum[ 
  10 (Log10[S1[10^xx]*Expp[Psi2[10^xx]]]) - 10 Log10[S2[10^xx]],  
{xx, 1}]; 
(* Maximum deviation 2 Psi2 *) 
Pom[%] 
Pol[%%]  
 
FindMaximum[10 (Log10[S1[10^xx]] + Log10[E]*Psi1[10^xx]), {xx, 0}]; 
(* Deviation between maxima Psi1 *) 
Pom[%] 
Pol[%%] 
 
FindMaximum[10 (Log10[S1[10^xx]] + Log10[E]*Psi2[10^xx]), {xx, 0}]; 
(* Deviation between maxima Psi2 *) 
Pom[%] 
Pol[%%] 
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cc=8; (*Factor 8 approx ξ Figure7 *) 
b71=Plot[{10 Log10[S1[10^y]*Expp[Psi1[10^y]]/S2[10^y]],Xline[y,Log10[2]]}, 
{y,-3,2},PlotRange->{-3.1,1.35},ImageSize->Full, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}]; 
 
cc=7.519884824; (* Sqrt[π] exact ξ *) 
b72=Plot[{10 Log10[S1[10^y]*Expp[Psi2[10^y]]/S2[10^y]]},{y,-3,2}, 
ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}]; 
 
b73=Plot[{-10 Log10[gdc[10^x]]}, {x, -3, 2.2}, PlotRange -> {-3.02, 1.42}, 
   PlotStyle -> RGBColor[0.06, 0.52, 0.]]; 
Show[b71, b72, b73, ImageSize -> Full,  
LabelStyle -> {FontFamily -> "Chicago", 12, GrayLevel[0]}] 
 

������
�	���	
�� �
 
  

cc = 8; (* Factor 8 approximated BGN exact Figure8 *) 
Plot[{ 
  10 Log10[S2[10^y]],  
  10 (Log10[S1[10^y]*Expp[Psi1[10^y]]]) + 10 Log10[gdc[10^y]],  
  Xline[y, Log10[2]] 
}, {y, -3, 3}, PlotRange -> {-51, 4.5}, ImageSize -> Full,  
LabelStyle -> {FontFamily -> "Chicago", 10, GrayLevel[0]}]  
(* Exakt exakt exakt Fehler max +1.3dB *) 
 
cc = 7.519884824; (* Sqrt[π] exact ξ Figure9 *) 
Plot[{ 
  10 Log10[S2[10^y]],  
  10 (Log10[S1[10^y]] + Log10[E]*Psi2[10^y]) + 10 Log10[gdc[10^y]],  
  Xline[y, Log10[2]] 
}, {y, -3, 3}, PlotRange -> {-51, 4.5}, ImageSize -> Full,  
LabelStyle -> {FontFamily -> "Chicago", 10, GrayLevel[0]}]  
(* Exact exact exact deviation max +1dB *) 
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v=FindMaximum[10 Log10[S2[10^xx]],{xx, 0}]; 
(* Planck's curve *) 
Print[StringJoin["x = ",ToString[(10^First[xx/.Rest[v]])], 
" Om1        (1.000000 OmU)"]] 
Print[StringJoin["y = ",ToString[zzz = First[v]], 
" dB    (±0.000000 dB)"]] 
 
FindMaximum[ 
  10 Log10[(S1[10^xx]*Expp[Psi1[10^xx]]*gdc[10^xx])/S2[10^xx]],  
{xx, 0}]; 
(* Maximum deviation 1 Psi1 *) 
Pom[%] 
Pol[%%]  
 
FindMaximum[ 
  10 Log10[(S1[10^xx]*Expp[Psi2[10^xx]]*gdc[10^xx])/S2[10^xx]],  
{xx, 0}]; 
(* Maximum deviation 1 Psi2 *) 
Pom[%] 
Pol[%%]  
 
FindMinimum[ 
  10 Log10[(S1[10^xx]*Expp[Psi2[10^xx]]*gdc[10^xx])/ 
     S2[10^xx]], {xx, .5}]; 
(* Maximum deviation 2 Psi2 *) 
Pom[%] 
Pol[%%] 
 
FindMaximum[ 
  10 Log10[(S1[10^xx]*Expp[Psi2[10^xx]]*gdc[10^xx])/S2[10^xx]],  
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{xx, 1}]; 
(* Maximum deviation 3 Psi2 *) 
Pom[%] 
Pol[%%]  
 
FindMaximum[10 Log10[S1[10^xx]*Expp[Psi1[10^xx]]*gdc[10^xx]], {xx, 0}]; 
(* Deviation between maxima Psi1 *) 
Pom[%] 
Pol[%%] 
 
FindMaximum[10 Log10[S1[10^xx]*Expp[Psi2[10^xx]]*gdc[10^xx]], {xx, 0}]; 
(* Deviation between maxima Psi2 *) 
Pom[%] 
Pol[%%] 

 

Plot[{(* Figure10 *) 
  10 Log10[S1[10^y]], 
  10 Log10[S2[10^y]], 
  10 (Log10[S1[10^y]] + Log10[E]*Psi2[10^y]), 
  10 (Log10[S1[10^y]] + Log10[E]*Psi2[10^y] + Log10[gdc[10^y]]), 
  Xline[y, Log10[2]] 
  }, {y, -0.8, 1.4}, PlotRange -> {-11, 4.5},  
PlotLabel -> None, ImageSize -> Full,  
LabelStyle -> {FontFamily -> "Chicago", 10, GrayLevel[0]}] 
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cc = 7.519884824; (* Sqrt[π] exact ξ Figure11 *) 
b11=Plot[{10 Log10[S1[10^y]*Expp[Psi1[10^y]]/S2[10^y]] +  
   10 Log10[gdc[10^y]], 
   10 Log10[S1[10^y]*Expp[Psi2[10^y]]/S2[10^y]] +  
   10 Log10[gdc[10^y]]}, {y, -3, 2}, ImageSize -> Full,  
LabelStyle -> {FontFamily -> "Chicago", 10, GrayLevel[0]}]; 
Show[b11, b71, b72, b4, PlotRange -> {-3.02, 1.42}] 
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n1 = y/. FindRoot[10 (Log10[S1[10^y]] + Log10[E]*Psi2[10^y]) +  
     10 Log10[gdc[10^y]] - 10 Log10[S2[10^y]] == 0, {y, 0}] 
n2 = y/. FindRoot[10 (Log10[S1[10^y]] + Log10[E]*Psi2[10^y]) +  
     10 Log10[gdc[10^y]] - 10 Log10[S2[10^y]] == 0, {y, .75}] 
n3 = y/. FindRoot[10 (Log10[S1[10^y]] + Log10[E]*Psi2[10^y]) +  
     10 Log10[gdc[10^y]] - 10 Log10[S2[10^y]] == 0, {y, 1.1}] 
N[10^n1]    (* Level at 1st null *) 
ToString[10 Log10[S2[%]]] <> " dB" 
N[10^n2]    (* Level at 2nd null *) 
ToString[10 Log10[S2[%]]] <> " dB" 
N[10^n3]    (* Level at 3rd null *) 
ToString[10 Log10[S2[%]]] <> " dB" 
N[10^1.4142](* Level after 3rd null *) 
ToString[10 Log10[S2[%]]] <> " dB" 
 
Plot[{(* Skipped *) 
  10 Log10[S1[10^y]], 
  10 Log10[S2[10^y]], 
  10 (Log10[S1[10^y]] + Log10[E]*Psi2[10^y]), 
  10 (Log10[S1[10^y]] + Log10[E]*Psi2[10^y]) + 10 Log10[gdc[10^y]], 
  Xline[y, Log10[2]] 
  }, {y, -3, 3}, PlotRange -> {-51, 4.5},  
PlotLabel -> None, ImageSize -> Full,  
LabelStyle -> {FontFamily -> "Chicago", 10, GrayLevel[0]}] 
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FindRoot[10 Log10[S2[10^yy]] + 50 == 0, {yy, 1.15, 1.18}] 
cc = 8; (* Factor 8 approximated BGN exact Figure5 *) 
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cc = 7.519884824; (* Sqrt[π] exact ξ Figure6 *) 
F2 = {}; 
For[y = -3; i = 0, y < 1.16415, ++i, y += .001;  
  AppendTo[F2, N[10 Log10[S2[10^y]]]]]; 
cc = 8; (* Factor 8 approximated BGN exact Figure5 *) 
F5 = {}; 
For[y = -3; i = 0, y < 1.16415, ++i, y += .001;  
  AppendTo[F5, N[10 (Log10[S1[10^y]*Expp[Psi1[10^y]]])]]]; 
cc = 7.519884824; (* Sqrt[π] exact ξ Figure6 *) 
F6 = {}; 
For[y = -3; i = 0, y < 1.16415, ++i, y += .001;  
  AppendTo[F6, N[10 (Log10[S1[10^y]] + Log10[E]*Psi2[10^y])]]]; 
cc = 8; (* Factor 8 approximated BGN exact Figure8 *) 
F8 = {}; 
For[y = -3; i = 0, y < 1.16415, ++i, y += .001;  
  AppendTo[F8,  
   N[10 (Log10[S1[10^y]*Expp[Psi1[10^y]]]) + 10 Log10[gdc[10^y]]]]]; 
cc = 7.519884824; (* Sqrt[π] exact ξ Figure9 *) 
F9 = {}; 
For[y = -3; i = 0, y < 1.16415, ++i, y += .001;  
  AppendTo[F9,  
   N[10 (Log10[S1[10^y]] + Log10[E]*Psi2[10^y]) +  
     10 Log10[gdc[10^y]]]]]; 
 
{Correlation[F5, F2], Correlation[F6, F2],  
 Correlation[F8, F2], Correlation[F9, F2]} 
(* Out[157]= {0.99928, 0.999748, 0.999485, 0.999835} *) 
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w0g=Function[Sqrt[Pi^3/8]*M1[Sqrt[#]]^3*Rho[#]^3]; 
w0n=Function[#^-(3/2)]; 
w0nPunkt2Int=Function[-(w0n[#])^2+.897659]; 
w0gPunkt=Function[(w0g[#+.00001]-w0g[#])/.00001]; 
w0gPunkt2=Function[(w0g[#+.00001]^2-w0g[#]^2)/.00001]; 
w0gPunkt2Int=Function[-(w0g[#])^2+.897659]; 
ka0g=Function[Pi/4*M1[Sqrt[#]]^2*Rho[#]^2]; 
ka0g2=Function[Pi^2/12*M1[Sqrt[#]]^4*Rho[#]^4]; 
ka0g2n=Function[1/3*#^(-2)]; 
ka0g2Int=Function[NIntegrate[ka0g2[tt],{tt,0,#}]]; 
ka0g2nInt=Function[-1/(6*#1^(3/2))+1/(6*10^(3/2))+0.345818]; 
 
Plot[{-w0gPunkt2[t^2]-ka0g2[t^2]},{t,0,3},PlotRange->{-0.22,0.88}, (* Figure12 *) 
PlotLabel->None,ImageSize->Full,LabelStyle->{FontFamily-
>"Chicago",10,GrayLevel[0]}] 
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b = xtilde;  
Plot[{(* Skipped *) 
Log10[S2[10^y]], Log10[S1[10^y]],Xline[y,Log10[2]],  
 2*y + Log10[2], 2*y - Log10[xtilde]}, {y, -3.05, 3.05},  
  PlotRange -> {0.55, -5.05}, ImageSize -> Full,  
  LabelStyle -> {FontFamily -> "Chicago", 10,  
  GrayLevel[0]}] 

 

b = 2.821439;  
Plot[{(* Skipped *) 
N[(b*y)^3/(E^(b*y) - 1)], 10^N[2*Log10[y] + Sin[2]]},  
{y, 0, 0.15}, PlotRange -> {0, 0.2}] 
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x=2.972456 10^-63; 
y=8.6556 10^-64; 
z=y 2^(1/6)/3^(2/3) Q0^-.5;fff=Function[1/(1+(#1/#2)^2)]; 
fff=Function[1/(1+(#1/#2)^2)]; 
ggg=Function[1/(1+((#1/#2)-(#2/#1))^2)]; 
hhh=Function[2*(#1/#2)/(1+(#1/#2)^2)]; 
Ek3=Function[1-0.0236820832fff[#1,#2]]; 
Ek5=Function[1-0.5fff[#1,#2]];  (* Ek5 over-scaled *) 
 
Plot[{ 
  2/3Sqrt[2]Ek3[10^xxx,2Om0],0.942807,.920464,.930967739, 
  Xline[xxx,Log10[2Om0]]},  (* Epsilon T *) 
 {xxx,-2+ Log10[Om0],2+ Log10[Om0]},PlotRange->{0.91,0.95}] 
 
Plot[{(* Figure13 *) 
  2/3Sqrt[2]Ek3[10^xxx,2],0.942807,.920464, 0.930967739,(0.942807+.920464)/2, 
  Xline[xxx,Log10[2]],Xline[xxx,Log10[1.903]]},  
 {xxx,-2,2},PlotRange->{0.914,0.946},ImageSize->Full,PlotLabel->None, 
LabelStyle->{FontFamily->"Chicago",11,GrayLevel[0]}] 
(* Epsilon T *) 
 
aaa = Log10[2];  
bbb = xtilde (*2*Sqrt[2]*);  
ccc = 1;  
Plot[{(* Figure14 *) 
  10*Log10[(bbb*10^(zzz - aaa))^3/(E^(bbb*10^(zzz - aaa)) - 1)],  
  10*Log10[Ek3[10^(zzz - aaa), ccc]*((bbb*10^(zzz - aaa))^3/ 
 (E^(bbb*10^(zzz - aaa)) - 1))],  
  10*Log10[Ek5[10^(zzz - aaa), ccc]*((bbb*10^(zzz - aaa))^3/ 
 (E^(bbb*10^(zzz - aaa)) - 1))], 10*Log10[Ek3[10^(zzz - aaa), ccc]],  
  10*Log10[Ek5[10^(zzz - aaa), ccc]],  
  Xline[zzz, Log10[2]],Xline[zzz,0.35271201428301324], 
  10*(2*zzz + Log10[2]), 10*(2*zzz - Log10[xtilde]), 
  10*(2*zzz + Log10[2*0.69281]), 10*(2*zzz - Log10[xtilde] + Log10[(0.69281+.5)/2]) 
  }, {zzz, -1.02, 1.02}, PlotRange -> {-10.25, 3.25}, ImageSize -> Full,  
  PlotLabel -> None, LabelStyle -> {FontFamily -> "Chicago", 12, GrayLevel[0]}] 
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FindMaximum[10*Log10[S2[10^zzz]],{zzz,-1.02,1.02}] 
 
FindMaximum[10*Log10[(bbb*10^(zzz-aaa))^3/(Exp[(bbb*10^(zzz-aaa))]-1)], 
{zzz,-1.02,1.02}] 
 
FindMaximum[10*Log10[Ek3[10^(zzz-aaa),ccc]*((bbb*10^(zzz-aaa))^3/(E^(bbb*10^(zzz-
aaa))-1))],{zzz,-1.02,1.02}] 
 
FindMaximum[10*Log10[Ek5[10^(zzz - aaa), ccc]*((bbb*10^(zzz - aaa))^3/ 
 (E^(bbb*10^(zzz - aaa)) - 1))],{zzz,-1.02,1.02}] 
 
aaa = 0*Log10[2];  
bbb = xtilde (*2*Sqrt[2]*);  
ccc = 0.5 (* Q(max) *);  
Plot[{(* Figure15 *) 
  10*Log10[S2[10^zzz]],  
  10*Log10[Ek5[10^zzz, ccc]*S2[10^zzz]], 
  Xline[zzz, Log10[2]], Xline[zzz,-3], 10*Log10[S2[10^-3]], 
  10*(2*zzz + Log10[2(1-0.0268)]),  
  10*(2*zzz + Log10[2(1-0.5)]) 
  (* 2 εKmin *)},  
  {zzz, -3.8, 1.3}, PlotRange -> {-67.25, 10.25}, ImageSize -> Full,  
  PlotLabel -> None, LabelStyle -> {FontFamily -> "Chicago", 12, GrayLevel[0]}] 
 
aaa = 1*Log10[2];  
bbb = xtilde;  
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ccc = 0.5;  
Plot[{(* Figure16 *) 
 10*Log10[(bbb*10^(zzz - aaa))^3/(Expp[bbb*10^(zzz - aaa)] - 1)],  
 10*Log10[Ek5[10^(zzz - aaa), ccc]*((bbb*10^(zzz - aaa))^3/ 
  (E^(bbb*10^(zzz - aaa)) - 1))], 10*Log10[Ek5[10^(zzz - aaa), ccc]],  
 Xline[zzz, Log10[2]],Xline[zzz,0.35271201428301324]},  
 {zzz, -3.8, 3.4}, PlotRange -> {-67.25, 5.25}, ImageSize -> Full,  
 LabelStyle -> {FontFamily -> "Chicago", 10, GrayLevel[0]}] 
Beep[] 
Beep[] 
Beep[] 

 


