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  Abstract 

 

In this paper, it will be shown a generalization of the series of the exponential function 

using non-integer and negative exponents for the correspondent polynomial such as: 
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Being Γ(z) the gamma function. The series with negative exponents seems to diverge. 

But it will be demonstrated that they can be calculated using the following integral. This 

integral converges and therefore, it can be solved, leading for the exact result for the 

exponential function. 
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A generalization with complex exponents for the series will be shown in the paper. 

 

This expansion of the exponential function will lead to an alternative definition of the 

fractional derivative of a constant. 

 

It will be shown that there are infinite solutions for the fractional derivative of a constant. 

But the only one that at the same time keeps the derivative of the exponential function 

being itself again, is the following: 
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Again, a generalization for fractional derivatives of zth grade (being z a general complex 

number) of a constant will be shown. 
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1. Introduction  

The exponential function is normally defined as the following power series [1]. In this 

definition the powers are positive integers: 
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In this paper, we will look for different power series but with non-integer (and also nega-

tive) exponents. 

 

To do so, we will apply two methods.  

 

The first one, more formal, will take use of fractional derivative. Normally the derivative 

is defined using integer ordinals, first derivative, second derivative etc… The fractional 

derivative [2] permits making such things as half derivative, 3/2 derivative etc… We will 

use the non-written rule that whatever derivative we apply to the exponential function, the 

result should be the exponential function again. This way we will calculate the coefficients 

of the different power series. 

 

The second one, much easier, will just make a generalization of the factorials that apply in 

the coefficient of the standard series (using the Euler gamma function [3]). And then using 

certain properties of this gamma function, we will operate them to try to obtain results that 

converge. 

 

As a parallel consequence, these calculations will lead to a specific definition of the frac-

tional derivative of a constant. It will be shown that there are multiple possible definitions 

for fractional derivative of a constant. But there is only one that at the same time fulfills 

the non-written rule that whatever derivative we apply to the exponential function we ob-

tain again the exponential function. 

 

Finally, a proposal for steps to go to a deeper generalization of the Newton generalized 

binomial theorem will be commented. Getting series of the Newton binomial composed by 

powers with non-integer exponents could be used in the Riemann zeta function, to find new 

ways of operating with it. Regretfully, this work has still to be done, as no valid solution 

has been found at this stage.  

2.  Applying the half derivative to the exponential function 

 

The fractional derivative of a power is defined as [2]: 
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Where Γ represents the Euler gamma function [3]. So, to calculate the half derivative we 

substitute the “a” variable by ½: 
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As commented before, the exponential function is defined as [1]: 
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Our idea is to take the half derivative of the exponential function, taking the half derivative 

of each component. But, first, let’s make some cosmetic changes to facilitate this operation.  

 

First, we will express the constant “1” as a function of x (in fact, as x0). And we will apply 

for this element also, the correspondent “hidden” factorial 0!. For the second element, we 

will make explicit the exponent 1. 
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Now, we will substitute the factorials by its correspondent value of the Euler gamma func-

tion knowing that [3]: 

 

𝑘! = Γ(𝑘 + 1)                                     (8.1) 
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So, what we will do is to take the half derivative of each element, using the previous com-

mented equation (7): 
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So, applying (7), element to element to equation (9) we obtain: 
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We can see that some gammas cancel each other (they are in numerators and denomina-

tors). So, operating: 
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The problem with the expression (12) is that it is not correct. If we consider the non-written 

rule that every derivative (fractional or not) of the exponential function should be equal to 

the exponential function, this function (12) above does not fulfill it.  

If you substitute the “x” above by different numbers, you will see that the result is not equal 

to ex. The higher the “x” you will see that they approximate but they are never the same. 

And with low values of “x” the distance can really increase. Check x=0, for example… 

 

So, how do we correct it? We will oblige that expression to fulfil the rule that every deriv-

ative we make, we get the same result (so forcing it to have the same property as the expo-

nential function). So, how do we do it? 

 

We do not need the fractional derivative anymore. We can just make the normal derivative 

once and again and check the results, until we get a result where the original is the same as 

its derivative (a property of the exponential function). 

So, we take the first derivative of (12): 
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Now, we will use the following property of the gamma function [3]: 

Γ(𝑘) = (𝑘 − 1)Γ(𝑘 − 1)                                   (15) 

And I will apply it only to the elements that have exponents equal or higher than (-1/2) 

(later, you will see why): 

𝑑

𝑑𝑥
(𝐸𝑞. 12) = (−

1

2
)

𝑥−
3

2

Γ (
1

2
)

+  (
1

2
)

𝑥−
1

2

(
1

2
) Γ (

1

2
)

+ (
3

2
)

𝑥
1

2

(
3

2
) Γ (

3

2
)

+ (
5

2
)

𝑥
3

2

(
5

2
) Γ (

5

2
)

+ ⋯   (16) 

Cancelling the numbers that are in numerator and denominator, we have: 
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So, you can see that they are the same, except that a new element with exponent (-3/2) has 

appeared in (16). The rest of the elements (taking into account the … on the right) are the 

same. 
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So, we will take the derivative again (now to expression (16)) and see what happens: 
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Making the substitution (15) for exponents equal or higher than (-1/2) we get: 
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Leading to: 
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If we compare with expression (16), we see that they are the same but with a new element 

with exponent (-5/2). If repeat the process again and again (take the derivative again and 

again) we will get the expression: 

 

… − (
9

2
) (

7

2
) (

5

2
) (

3

2
) (

1

2
)

𝑥−
11

2

Γ (
1

2
)

+ (
7

2
) (

5

2
) (

3

2
) (

1

2
)

𝑥−
9

2

Γ (
1

2
)

− (
5

2
) (

3

2
) (

1

2
)

𝑥−
7

2

Γ (
1

2
)

+ (
3

2
) (

1

2
)

𝑥−
5

2

Γ (
1

2
)

− (
1

2
)

𝑥−
3

2

Γ (
1

2
)

+
𝑥−

1

2

Γ (
1

2
)

+
𝑥

1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+ ⋯   (21)      

And if repeat the process infinite times, we get always the same result. We have infinite 

number of elements on the left and on the right, but if we take the derivative of all these 

infinite elements, we get the same expression. This means, the expression (21) fulfills the 

property that it is its own derivative (the property necessary to be a possible expression for 

the exponential function ex). 

But let’s continue cleaning a little bit the expression. For the elements with negative expo-

nents, we will multiply the numerator and the denominator by Γ(1/2), leading to: 
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Now, using recursively the equation (15), we can check easily that for example: 
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The value of Γ(1/2) is known and it is equal to √π [3]. So, the value of (Γ(1/2))2 is π. 
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So, in principle this expression should be a candidate for the exponential function as a 

polynomial with non-integer exponents. It fulfills the property of being its own derivative. 

At least, it should be of the type k·ex (being k a constant, a scale factor). 

The problem is that the left side (the negative exponent side) does not converge. The 

gamma function value is increasing as we go to the left and it is in the numerator. You 

cannot just create a program to calculate one thousand elements and see the result (it will 

not converge). 

But this time, we have an escape. And surprisingly, it is based on the definition itself of the 

Euler gamma function [3]: 
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We will apply this definition to the elements with negative exponents and see what hap-

pens: 
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As x is an independent variable with respect to the integrals, we can introduce it in them. 

The same, of course for the constants as π. We also operate the exponents of t: 
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5

2

Γ (
7

2
)

+ ⋯  (28)     

And as the integrals has the same limits and are a sum of integrals, we can take the integral 

of the sum of the integrands: 

∫ (… −
𝑥−

11

2

𝜋
𝑡

9

2𝑒−𝑡 +
𝑥−

9

2

𝜋
𝑡

7

2𝑒−𝑡 −
𝑥−

7

2

𝜋
𝑡

5

2𝑒−𝑡 +
𝑥−

5

2

𝜋
𝑡

3

2𝑒−𝑡 −
𝑥−

3

2

𝜋
𝑡

1

2𝑒−𝑡 +
𝑥−

1

2

𝜋
𝑡−

1

2𝑒−𝑡) 𝑑𝑡

∞

0

+
𝑥

1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+ ⋯  (29)     

If we check the integrand form right to left, we can see that it is a geometric sum [4] which 

first element is: 

𝑎 =
𝑥−

1

2

𝜋
𝑡−

1

2𝑒−𝑡          (30) 

And the ratio is: 

𝑟 = −𝑥−1𝑡 = −
𝑡

𝑥
    (31)    

This geometric sum has infinite elements, so in theory, we need that the module of the ratio 

to be lower than 1, for the sum to converge. If we check the integral, the value of t goes 

from zero o infinity, so this restriction is not fulfilled. But the elements are multiplied by 

e-t that tends to zero quicker than the increase of t, so finally we will see that the integral 

converges (we will check that later numerically).  

 

The result of a geometric sum when there are infinite elements is the following (32) [4] (if 

you consider that the following equation is only true when the last element tends to zero, 

let’s have a discussion about it in Annex A1): 
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𝑆 =
𝑎

1 − 𝑟
=

𝑥
−

1
2

𝜋
𝑡−

1

2𝑒−𝑡          

1 − (−
𝑡

𝑥
)

=

𝑥
−

1
2

𝜋
𝑡−

1

2𝑒−𝑡          

1 +
𝑡

𝑥

        (32) 

So, applying it to the equation (29) we get: 

 

∫ (

𝑥
−

1
2

𝜋
𝑡−

1

2𝑒−𝑡

1 +
𝑡

𝑥

) 𝑑𝑡

∞

0

+
𝑥

1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+ ⋯  (33)     

As x is an independent variable with respect to the integral, we can take it out: 

 

𝑥−
1

2

𝜋
∫

𝑡−
1

2𝑒−𝑡

1 +
𝑡

𝑥

𝑑𝑡

∞

0

+
𝑥

1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+ ⋯  (34)     

So, we get: 

 

𝑒𝑥 =
𝑥−

1

2

𝜋
∫

𝑡−
1

2𝑒−𝑡

1 +
𝑡

𝑥

𝑑𝑡

∞

0

+
𝑥

1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+ ⋯  (34.1)     

 

This integral can be calculated numerically. You can use online pages as [5] or you can use 

the Matlab-Octave program included in Annex 1A to perform the calculation. 

 

You can check that with the program in Annex A1, for x=2 we get: 

 

Positive half integers sum 

   7.052852096484307 

Negative half integers sum (calculated via integral) 

   0.336204002446341 

Exp(x) 

   7.389056098930650 

Sum of positive and negative half exponent series 

   7.389056098930649 

 

And for x=3 we get: 

 

Positive half integers sum 

  19.798195673654210 

Negative half integers sum (calculated via integral) 

   0.287341249533456 

Exp(x) 

  20.085536923187668 
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Sum of positive and negative half exponent series 

  20.085536923187664 

 

As you can see, I have performed the calculation of ex using the expression (34.1) for dif-

ferent values of x, getting the correct result for ex. So, confirming that expression (34.1) is 

correct. 

3. Getting the same result using the Euler’s reflection formula   

Now, I will use another method to get to the same result. It is much easier and straightfor-

ward. But I wanted to show the previous one, as it is the one that uses the property that 

defines the exponential function (being its own derivative). 

Another reason I want to show this new method is because it will give us hints of how to 

apply it to generalize even more the Newton generalized binomial theorem [6].  

 

This method is pretty straightforward. First we have the definition of ex [1]: 

 

 

𝑒𝑥 = ∑
𝑥𝑘

𝑘!
=

∞

𝑘=0

𝑥0

0!
+

𝑥1

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯                                (8) 

 

We use equation (8.1) to arrive to equation (9): 

 

 

𝑘! = Γ(𝑘 + 1)                                     (8.1) 

 

𝑒𝑥 = ∑
𝑥𝑘

Γ(𝑘 + 1)
=

∞

𝑘=0

𝑥0

Γ(1)
+

𝑥1

Γ(2)
+

𝑥2

Γ(3)
+

𝑥3

Γ(4)
+ ⋯                  (9) 

 

 

Now, we generalize that equation for all the elements on the left (this means, the negative 

exponent elements that are hidden there): 

 

 

𝑒𝑥 = ∑
𝑥𝑘

Γ(𝑘 + 1)
= ⋯ +

𝑥−4

Γ(−3)
+

𝑥−3

Γ(−2)
+

𝑥−2

Γ(−1)
+

𝑥−1

Γ(0)
+

∞

𝑘=−∞

𝑥0

Γ(1)
+

𝑥1

Γ(2)
+

𝑥2

Γ(3)

+
𝑥3

Γ(4)
+ ⋯                  (35) 

But, is this expression correct? Surprisingly again, the answer is yes. The gamma function 

for negative integers (and for zero) has infinite value. So, all the elements with negative 

exponents are zero. So, the expression (35) is equal to expression (9). The typical doubt 

here is what happens when x=0. This means we have zero multiplying infinity in the de-

nominator. The answer is that the gamma function (or the factorial) always increases or 

decreases faster than a polynomial. So, the factorial always wins. In this case the infinity 

in the denominator of the factorial is “stronger” than the zero of the power, giving zero as 

result for each corresponding element. 

So why have we done this? Because of the next step. Now instead of integers, let’s put half 
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integers for example (later we will generalize even more). We just exchange the integers 

by half integers, keeping the distance between them in one. And the corresponding gamma 

for each element, keeps being the exponent+1. 

 

𝑒𝑥 = ∑
𝑥𝑘

Γ(𝑘 + 1)
= ⋯ +

𝑥−
7

2

Γ (−
5

2
)

+
𝑥−

5

2

Γ (−
3

2
)

+
𝑥−

3

2

Γ (−
1

2
)

+
𝑥−

1

2

Γ (
1

2
)

+

∞

𝑘=−∞
𝑘=ℎ𝑎𝑙𝑓 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑥
1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+
𝑥

5

2

Γ (
9

2
)

+ ⋯                  (36) 

 

Now, we will use the Euler reflection formula for the elements that have negative expo-

nents. 

Γ(1 − 𝑧)Γ(𝑧) =
𝜋

sin (𝜋𝑧)
             (37) 

1

Γ(𝑧)
=

sin(𝜋𝑧) · Γ(1 − 𝑧)

𝜋
            (38) 

For example, let’s calculate for z=1/2. 

1

Γ (
1

2
)

=
sin (

1

2
𝜋) · Γ (1 −

1

2
)

𝜋
 =

1 · Γ (
1

2
)

𝜋
=

Γ (
1

2
)

𝜋
          (39) 

Now, for z=-1/2: 

1

Γ (−
1

2
)

=
sin (−

1

2
𝜋) · Γ (1 − (−

1

2
))

𝜋
 =

(−1) · Γ (1 +
1

2
)

𝜋
= −

Γ (
3

2
)

𝜋
          (40) 

The last one, z=-3/2: 

 

1

Γ (−
3

2
)

=
sin (−

3

2
𝜋) · Γ (1 − (−

3

2
))

𝜋
 =

1 · Γ (1 +
3

2
)

𝜋
= −

Γ (
5

2
)

𝜋
          (41) 

So, we can see the pattern. Let’s substitute in (36): 

 

𝑒𝑥 = ⋯ −
Γ (

7

2
)

𝜋
𝑥−

7

2 +
Γ (

5

2
)

𝜋
𝑥−

5

2 −
Γ (

3

2
)

𝜋
𝑥−

3

2 +
Γ (

1

2
)

𝜋
𝑥−

1

2 +
1

Γ (
3

2
)

𝑥
1

2 +
1

Γ (
5

2
)

𝑥
3

2

+
1

Γ (
7

2
)

𝑥
5

2 + ⋯         (41) 

That we see, it is the same expression as (25). So, from this moment on, we can follow the 

same steps as in previous point (from equation (25) on), to arrive to the equation: 
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𝑒𝑥 =
𝑥−

1

2

𝜋
∫

𝑡−
1

2𝑒−𝑡

1 +
𝑡

𝑥

𝑑𝑡

∞

0

+
𝑥

1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+ ⋯  (34.1)     

That we have seen in the previous point, that it is correct (after checking numerically with 

different values for x). 

The reason I wanted to show this method is because of the expression (36): 

 

𝑒𝑥 = ∑
𝑥𝑘

Γ(𝑘 + 1)
= ⋯ +

𝑥−
7

2

Γ (−
5

2
)

+
𝑥−

5

2

Γ (−
3

2
)

+
𝑥−

3

2

Γ (−
1

2
)

+
𝑥−

1

2

Γ (
1

2
)

+

∞

𝑘=−∞
𝑘=ℎ𝑎𝑙𝑓 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑥
1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+
𝑥

5

2

Γ (
9

2
)

+ ⋯                  (36) 

 

This expression is correct, as it has been demonstrated a posteriori, after performing dif-

ferent operations to arrive to a correct result. But the importance of the equation (36) is that 

it has been obtained not applying any rule (like keeping the derivative or similar), just 

generalizing the expression (35) changing the numbers, and it has worked! This gives some 

hope, if something similar can be done with the binomial theorem to get to correct results 

being able to obtain polynomials of non- integer exponents. 

 

Another thing we can see with this expression (and also really with the fractional derivative 

we have seen in previous point) is that it is not necessary that k is half integer. k can be 

whatever number (even complex). And the only rule we have to follow is that the steps 

between one element and the next is 1. The difference between k in one element to the next 

should be one. But apart from that we can choose whatever k. For example: 

𝑒𝑥 = ∑
𝑥𝑘

Γ(𝑘 + 1)
= ⋯ +

𝑥−4.2

Γ(−3.2)
+

𝑥−3.2

Γ(−2.2)
+

𝑥−2.2

Γ(−1.2)
+

𝑥−1.2

Γ(−0.2)
+

∞

𝑘=−∞
𝑘=−0.2:𝑠𝑡𝑒𝑝:±1

𝑥−0.2

Γ(0.8)

+
𝑥0.8

Γ(1.8)
+

𝑥1.8

Γ(2.8)
+

𝑥2.8

Γ(3.8)
+ ⋯                  (42) 

 

Is correct. So, in general, we can say something like (for whatever complex number z, 

being k integers): 
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𝑒𝑥 = ∑
𝑥𝑘+𝑧

Γ(𝑘 + 𝑧 + 1)

∞

𝑘=−∞
𝑘=𝑖𝑛𝑡𝑒𝑔𝑒𝑟

= ⋯ +
𝑥−4+𝑧

Γ(−3 + 𝑧)
+

𝑥−3+𝑧

Γ(−2 + 𝑧)
+

𝑥−2+𝑧

Γ(−1 + 𝑧)
+

𝑥−1+𝑧

Γ(0 + 𝑧)
+

𝑥0+𝑧

Γ(1 + 𝑧)

+
𝑥1+𝑧

Γ(2 + 𝑧)
+

𝑥2+𝑧

Γ(3 + 𝑧)
+

𝑥3+𝑧

Γ(4 + 𝑧)
+ ⋯                  (43) 

The problem with this expression is that it could happen that does not converge (or in the 

left side or in the right side). In that case, the Euler reflection formula (37) [3] could be 

used to try to change the position (numerator, denominator) of the divergent elements. If 

this does not work, try using the definition of gamma [3] looking for a convergent integral, 

as I have done in the first point. Another tool that is available (mainly when half integers 

are involved) is the double factorial division between odd and even double factorials [7], 

when they are generalized as complex numbers. The last tool I can think of is the convolu-

tion theorem [8] in case that you arrive to a situation that you need to multiply two integrals 

corresponding to two gamma functions. I comment them here even if in the end I did not 

use them, but in case they could be useful. The division between double factorials [7] could 

be key regarding the Riemann zeta function, as when the real part is ½ (really is -1/2 in the 

calculations), to get the division between double factorials is very common when you apply 

the binomial theorem to a component of the function. 

We can also convert all the negative exponents in an integral as we made before, the fol-

lowing way: 

 

𝑒𝑥 = ∑
𝑥𝑘+𝑧

Γ(𝑘 + 𝑧 + 1)

∞

𝑘=−∞
𝑘=𝑖𝑛𝑡𝑒𝑔𝑒𝑟

= ⋯ +
𝑥−4+𝑧

Γ(−3 + 𝑧)
+

𝑥−3+𝑧

Γ(−2 + 𝑧)
+

𝑥−2+𝑧

Γ(−1 + 𝑧)
+

𝑥−1+𝑧

Γ(0 + 𝑧)
+

𝑥0+𝑧

Γ(1 + 𝑧)

+
𝑥1+𝑧

Γ(2 + 𝑧)
+

𝑥2+𝑧

Γ(3 + 𝑧)
+

𝑥3+𝑧

Γ(4 + 𝑧)
+ ⋯

= ( ∑
𝑥𝑘+𝑧

Γ(𝑘 + 𝑧 + 1)

∞

𝑘=−1
𝑘=𝑖𝑛𝑡𝑒𝑔𝑒𝑟

) +
𝑥0+𝑧

Γ(1 + 𝑧)
+

𝑥1+𝑧

Γ(2 + 𝑧)
+

𝑥2+𝑧

Γ(3 + 𝑧)

+
𝑥3+𝑧

Γ(4 + 𝑧)
+ ⋯          (44) 

We will calculate only the part between brackets (later we will return here): 

 

∑
𝑥𝑘+𝑧

Γ(𝑘+𝑧+1)

∞
𝑘=−1

𝑘=𝑖𝑛𝑡𝑒𝑔𝑒𝑟

=

∑
𝑥𝑘+𝑧sin (𝜋(𝑧+𝑘))Γ(−𝑧−𝑘)

π
=∞

𝑘=−1
𝑘=𝑖𝑛𝑡𝑒𝑔𝑒𝑟

∑
𝑥𝑘+𝑧

π

𝑒𝜋(𝑧+𝑘)𝑖−𝑒−𝜋(𝑧+𝑘)𝑖

2𝑖
∫ 𝑡−𝑧−𝑘−1𝑒−𝑡𝑑𝑡

∞

0
=∞

𝑘=−1
𝑘=𝑖𝑛𝑡𝑒𝑔𝑒𝑟
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∑
𝑥𝑘+𝑧

π

𝑒𝜋(𝑧+𝑘)𝑖

2𝑖
∫ 𝑡−𝑧−𝑘−1𝑒−𝑡𝑑𝑡

∞

0
∞

𝑘=−1
𝑘=𝑖𝑛𝑡𝑒𝑔𝑒𝑟

−

∑
𝑥𝑘+𝑧

π

𝑒−𝜋(𝑧+𝑘)𝑖

2𝑖
∫ 𝑡−𝑧−𝑘−1𝑒−𝑡𝑑𝑡

∞

0
=∞

𝑘=−1
𝑘=𝑖𝑛𝑡𝑒𝑔𝑒𝑟

∫ ∑
𝑥𝑘+𝑧

π

𝑒𝜋(𝑧+𝑘)𝑖

2𝑖
𝑡−𝑧−𝑘−1𝑒−𝑡𝑑𝑡∞

𝑘=−1
𝑘=𝑖𝑛𝑡𝑒𝑔𝑒𝑟

∞

0
−

∫ ∑
𝑥𝑘+𝑧

π

𝑒−𝜋(𝑧+𝑘)𝑖

2𝑖
𝑡−𝑧−𝑘−1𝑒−𝑡𝑑𝑡 = ∫

𝑥𝑧−1

π

𝑒𝜋(𝑧−1)𝑖

2𝑖
𝑡−𝑧𝑒−𝑡

1−𝑥−1𝑒−𝜋𝑖𝑡
𝑑𝑡 −

∞

0
∞

𝑘=−1
𝑘=𝑖𝑛𝑡𝑒𝑔𝑒𝑟

∞

0

∫
𝑥𝑧−1

π

𝑒−𝜋(𝑧−1)𝑖

2𝑖
𝑡−𝑧𝑒−𝑡

1−𝑥−1𝑒𝜋𝑖𝑡
𝑑𝑡 =

∞

0
∫

𝑥𝑧−1

π
𝑡−𝑧𝑒−𝑡sin (𝜋(𝑧−1))

1+
𝑡

𝑥

𝑑𝑡
∞

0
  (45) 

So, coming back to (44): 

𝑒𝑥 = ∑
𝑥𝑘+𝑧

Γ(𝑘 + 𝑧 + 1)

∞

𝑘=−∞
𝑘=𝑖𝑛𝑡𝑒𝑔𝑒𝑟

= ∫

𝑥𝑧−1

π
𝑡−𝑧𝑒−𝑡sin (𝜋(𝑧 − 1))

1 +
𝑡

𝑥

𝑑𝑡

∞

0

+
𝑥0+𝑧

Γ(1 + 𝑧)
+

𝑥1+𝑧

Γ(2 + 𝑧)
+

𝑥2+𝑧

Γ(3 + 𝑧)

+
𝑥3+𝑧

Γ(4 + 𝑧)
+ ⋯          (46) 

 

The equations (42) to (46) have been analytically obtained and are supposed to be true. 

Anyhow, they have not been checked numerically. This work is still to be done in future 

revisions. 

The equations that have been proved to be true both analytically and numerically are the 

equations from (33) to (42) (including the 34.1). These are the ones that correspond to half 

integer exponents. These equations have been derived analytically and have been calcu-

lated numerically with a Matlab/Octave program -Annex A1- (and can be rechecked with 

online integral calculator resources as [5]). See examples in Chapter 2, after (34.1) equa-

tion. 

4. Fractional derivative of a constant 

Now, that we have seen how to make the fractional derivative of the elements of the expo-

nential function, we can use this information to calculate the fractional derivative of a con-

stant. There is the debate if the fractional derivative [2] of a constant is directly zero or if 

it is the result according following definition when k=0. 

 

𝑑𝑎

𝑑𝑥𝑎
𝑥𝑘 =

Γ(𝑘 + 1)

Γ(𝑘 − 𝑎 + 1)
𝑥𝑘−𝑎                            (5) 

This is: 

 

𝑑𝑎

𝑑𝑥𝑎
𝐶 · 𝑥0 = 𝐶 ·

Γ(0 + 1)

Γ(0 − 𝑎 + 1)
𝑥0−𝑎 = 𝐶 ·

Γ(1)

Γ(1 − 𝑎)
𝑥−𝑎 =

C

Γ(1 − 𝑎)
𝑥−𝑎              (46.1) 
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For example, when a=1/2: 

𝑑
1

2

𝑑𝑥
1

2

𝐶 · 𝑥0 =
C

Γ (
1

2
)

𝑥−
1

2 =
C

√𝜋
𝑥−

1

2                      (46.2) 

And, in fact, if you take the half derivative again of that expression, you will get 0 (as it is 

expected for having made two times the half derivative to a constant). The reason is that 

you will get a Γ(0), that is infinity, in the denominator. And this leads to a final result of 

zero to the expression. 

 

The issue is that it is not the only valid solution. There are infinity of them, see for example: 

𝐶𝑥−
3

2       (46.3) 

If you take the half derivative, you will obtain a Γ(-1) in the denominator, that is also in-

finity. Giving the result as zero. Even a combination of them such as: 

 

𝐶1𝑥−
1

2 + 𝐶2𝑥−
3

2       (47) 

Will lead to zero in the next half derivative (due to Γ(0) and Γ(-1) in the denominators) . 

So, there are infinite solutions for the half derivative of a constant. So which one shall we 

use? We will use again the exponential function to find the most appropriate one. 

Let’s use this expression: 

 

 

𝑒𝑥 − 1 = ∑
𝑥𝑘

𝑘!
=

∞

𝑘=1

𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯                               (48) 

 

And now, let’s take the half derivative: 

 

𝑑
1

2

𝑑𝑥
1

2

(𝑒𝑥 − 1) =
𝑑

1

2

𝑑𝑥
1

2

(
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯ )                               (49) 

 

𝑑
1

2

𝑑𝑥
1

2

𝑒𝑥 −
𝑑

1

2

𝑑𝑥
1

2

1 =
𝑑

1

2

𝑑𝑥
1

2

𝑥

1!
+

𝑑
1

2

𝑑𝑥
1

2

𝑥2

2!
+

𝑑
1

2

𝑑𝑥
1

2

𝑥3

3!
+ ⋯                               (50) 

 

Now, calculating as in equations (10), (11) and (12) we get: 

𝑑
1

2

𝑑𝑥
1

2

𝑒𝑥 −
𝑑

1

2

𝑑𝑥
1

2

1 =
𝑥

1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+ ⋯           (51)     

 

Now, if isolate the fractional derivative of 1 and change the signs of both sides we have: 
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𝑑
1

2

𝑑𝑥
1

2

1 =
𝑑

1

2

𝑑𝑥
1

2

𝑒𝑥 − (
𝑥

1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+ ⋯ )           (52)     

 

On the other side, we have the non-written rule that whatever derivative of the exponential 

function is itself so: 

𝑑
1

2

𝑑𝑥
1

2

1 = 𝑒𝑥 − (
𝑥

1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+ ⋯ )           (53)     

And, remember we had this definition for ex in equation (36): 

 

𝑒𝑥 = ∑
𝑥𝑘

Γ(𝑘 + 1)
= ⋯ +

𝑥−
7

2

Γ (−
5

2
)

+
𝑥−

5

2

Γ (−
3

2
)

+
𝑥−

3

2

Γ (−
1

2
)

+
𝑥−

1

2

Γ (
1

2
)

+

∞

𝑘=−∞
𝑘=ℎ𝑎𝑙𝑓 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑥
1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+
𝑥

5

2

Γ (
9

2
)

+ ⋯                  (36) 

 

If we substitute equation (36) in the ex of equation (52) and perform the subtraction we get: 

 

𝑑
1

2

𝑑𝑥
1

2

1 = ∑
𝑥𝑘

Γ(𝑘 + 1)
= ⋯ +

𝑥−
7

2

Γ (−
5

2
)

+
𝑥−

5

2

Γ (−
3

2
)

+
𝑥−

3

2

Γ (−
1

2
)

+
𝑥−

1

2

Γ (
1

2
)

−
1

2

𝑘=−∞
𝑘=ℎ𝑎𝑙𝑓 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

          (54)     

 

For whatever constant C, it would be: 

 

 

𝑑
1

2

𝑑𝑥
1

2

𝐶 =
𝑑

1

2

𝑑𝑥
1

2

𝐶 · 1 = 𝐶
𝑑

1

2

𝑑𝑥
1

2

1

= 𝐶 ∑
𝑥𝑘

Γ(𝑘 + 1)

−
1

2

𝑘=−∞
𝑘=ℎ𝑎𝑙𝑓 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

= 𝐶 · (… +
𝑥−

7

2

Γ (−
5

2
)

+
𝑥−

5

2

Γ (−
3

2
)

+
𝑥−

3

2

Γ (−
1

2
)

+
𝑥−

1

2

Γ (
1

2
)

)           (55)     

Also, as we have seen in equation (34), we know that: 

… +
𝑥−

7

2

Γ (−
5

2
)

+
𝑥−

5

2

Γ (−
3

2
)

+
𝑥−

3

2

Γ (−
1

2
)

+
𝑥−

1

2

Γ (
1

2
)

=
𝑥−

1

2

𝜋
∫

𝑡−
1

2𝑒−𝑡

1 +
𝑡

𝑥

𝑑𝑡            (56)

∞

0

 

So: 

𝑑
1

2

𝑑𝑥
1

2

𝐶 = 𝐶 · (… +
𝑥−

7

2

Γ (−
5

2
)

+
𝑥−

5

2

Γ (−
3

2
)

+
𝑥−

3

2

Γ (−
1

2
)

+
𝑥−

1

2

Γ (
1

2
)

) = 𝐶 ·
𝑥−

1

2

𝜋
∫

𝑡−
1

2𝑒−𝑡

1 +
𝑡

𝑥

𝑑𝑡       (57)

∞

0
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This expression is the only one that fulfills at the same time, that the next half derivative 

will be zero (as expected for a constant), but also that the fractional derivative of the expo-

nential of x keeps being the exponential of x. 

 

If we generalize for other fractional derivatives we would obtain (see 44 and 46): 

 

𝑑𝑧

𝑑𝑥𝑧
𝐶 = 𝐶 · (… +

𝑥−4+𝑧

Γ(−3 + 𝑧)
+

𝑥−3+𝑧

Γ(−2 + 𝑧)
+

𝑥−2+𝑧

Γ(−1 + 𝑧)
+

𝑥−1+𝑧

Γ(0 + 𝑧)
)

= 𝐶 · ∫

𝑥𝑧−1

π
𝑡−𝑧𝑒−𝑡sin (𝜋(𝑧 − 1))

1 +
𝑡

𝑥

𝑑𝑡

∞

0

     (58) 

As commented in chapter 3 (after equation (46)), the equation (57) has been obtained ana-

lytically and demonstrated numerically. This is not the case for equation (58) that has to be 

rechecked numerically to be completely validated. 

4. Generalization of the Newton Binomial 

A work left for the future is to look for a similar generalization with non-integer exponents 

for the Newton Binomial [6]. This generalization could be even used to try to get solutions 

for the Riemann Zeta function. It would be done using the expression (x+1)^z or (x-1)^z 

(for x=1,2,3… or only even or odd x) and playing with z trying to eliminate repeated ele-

ments with different signs (in fact it seems that the z values of the form ½+bi could look 

promising as expected). This work is still to be done. 

 

5. Conclusions 
 

The main goal of the paper was to obtain a generalization of the series expansion of the 

exponential function with non-integer exponents polynomials. We have shown analytically 

and numerically that the following expansion are correct: 

 

𝑒𝑥 = ⋯ −
Γ (

7

2
)

𝜋
𝑥−

7

2 +
Γ (

5

2
)

𝜋
𝑥−

5

2 −
Γ (

3

2
)

𝜋
𝑥−

3

2 +
Γ (

1

2
)

𝜋
𝑥−

1

2 +
1

Γ (
3

2
)

𝑥
1

2 +
1

Γ (
5

2
)

𝑥
3

2

+
1

Γ (
7

2
)

𝑥
5

2 + ⋯         (41) 

𝑒𝑥 =
𝑥−

1

2

𝜋
∫

𝑡−
1

2𝑒−𝑡

1 +
𝑡

𝑥

𝑑𝑡

∞

0

+
𝑥

1

2

Γ (
3

2
)

+
𝑥

3

2

Γ (
5

2
)

+
𝑥

5

2

Γ (
7

2
)

+ ⋯  (34.1)     

 

Also, we have shown that the only definition of fractional derivative of a constant that at 

the same time keeps the rule that any differentiation of the exponential function has to be 

itself again is the following: 

 

 

𝑑
1

2

𝑑𝑥
1

2

𝐶 = 𝐶 · (… +
𝑥−

7

2

Γ (−
5

2
)

+
𝑥−

5

2

Γ (−
3

2
)

+
𝑥−

3

2

Γ (−
1

2
)

+
𝑥−

1

2

Γ (
1

2
)

) = 𝐶 ·
𝑥−

1

2

𝜋
∫

𝑡−
1

2𝑒−𝑡

1 +
𝑡

𝑥

𝑑𝑡       (57)

∞

0
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𝑑𝑧

𝑑𝑥𝑧
𝐶 = 𝐶 · (… +

𝑥−4+𝑧

Γ(−3 + 𝑧)
+

𝑥−3+𝑧

Γ(−2 + 𝑧)
+

𝑥−2+𝑧

Γ(−1 + 𝑧)
+

𝑥−1+𝑧

Γ(0 + 𝑧)
)

= 𝐶 · ∫

𝑥𝑧−1

π
𝑡−𝑧𝑒−𝑡sin (𝜋(𝑧 − 1))

1 +
𝑡

𝑥

𝑑𝑡

∞

0

     (58) 

The possible generalization of the Newton Binomial Expansion is commented. And it is 

left as a work for the future. 

 

Also, in the annexes some considerations regarding the geometric series and some results 

for some of them are obtained (sin(nx) and cos(nx) series, sums related to Riemann Zeta 

Function etc….). 

 

Gorliz, 18th August 2020 (viXra-v1). 
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A1. Annex A1. Matlab/Octave program for expression (34.1) 
 
You can find here attached a program in Matlab/Octave to calculate the expression (34.1) 

and check that the result is the same as the exponential of (x) 

 
%Program by Jesus Sanchez in the paper "Exponential function as a polynomial  

%of non-integer and negative exponents Fractional derivative of a constant" 

% ©2020 Jesus Sanchez jesus.sanchez.bilbao@gmail.com 

  

  

%In this matlab/octave program it will be shown that the sum of the positive half 

%integer series and the negative half integer series gives exp(x) as 

%result. It will be used the expression (34.1) 

  

format long; 

  

%x to calculate exp(x). Change this value as you wish 

x=2; 

  

%Number of iterations. The higher the more exact result will be, but if it 

%is very high could lead to very long times or even errors due to overflow. 

%Reduce it if you get errors 

numiter=150; 

  

%In this matlab program we will just use the half exponent polynomial 

expon_orig=1/2; 

  

%In this loop we calculate the sum of the postive half integer series 

%(the series of positive half integer exponents in (34.1)). 

suma=0; 

for k=0:numiter; 

suma=suma+(1/gamma(k+1+expon_orig))*x^(k+expon_orig);  

end; 

disp("Positive half integers sum"); 

disp(suma); 

  

%In this integral we calculate the sum of the negative half integer 

%exponents series using the integral in (34.1) 

fun=@(t) (1/pi).*(t.^(-1/2).*exp(-t).*x.^(-1/2))/(1+t./x); 

q=integral(@(t)fun(t),0,inf,'ArrayValued',1); 

disp("Negative half integers sum (calculated via integral)"); 

disp(q); 

  

%Here we calculate exp(x) and the sum of the above values to check that the 

%result is correct 

disp("Exp(x)"); 

disp(exp(x)); 

disp("Sum of positive and negative half exponent series"); 

disp(suma+q); 

 

A2. Annex A2. If a series does not no converge, it does not mean 
that the result of its sum is incorrect 
 
Let’s calculate the sum of a geometric series. We will follow the rules and we will choose 

a series which last element tends to zero.  

 

𝑆 = 1 +
1

2
+

1

22
+

1

23
+ ⋯ = 1 +

1

2
(1 +

1

2
+

1

22
+ ⋯ ) = 1 +

1

2
𝑆      (𝐴1.1) 

𝑆 −
1

2
𝑆 = 1     (𝐴1.2) 

𝑆 (1 −
1

2
) = 1     (𝐴1.3) 

𝑆 =
1

1 −
1

2

=
1
1

2

= 2      (𝐴1.4)  

𝑆 =
1

1 − 𝑟
      (𝐴1.5) 

If we take a calculator and we start summing elements: 



J.Sánchez 
 

 

 19  

 

𝑆 = 1 +
1

2
+

1

22
+

1

23
+

1

24
= 1.9375      (𝐴1.6) 

And we take more and more elements we see that we approach the final result S=2. But 

this is misleading, because the reality is that in the real world we will never get the result 

S=2. We will get there only if we are able to sum “all” the elements. And in that case, we 

will get the result S=2. If not, we will be nearer and nearer but never arriving. 

 

Ok, now let’s not follow the rules. Let’s try to get the sum of the following geometric sum. 

The last element does not tend to zero (the opposite, is increasing continuously): 

 

𝑆 = 1 + 2 + 22 + 23 + ⋯ = 1 + 2(1 + 2 + 22 + ⋯ ) = 1 + 2𝑆      (𝐴1.7) 

𝑆 − 2𝑆 = 1    (𝐴1.8) 

𝑆(1 − 2) = 1     (𝐴1.9) 

𝑆 =
1

1 − 2
= −1     (𝐴1.10) 

𝑆 =
1

1 − 𝑟
    (𝐴1.11) 

We have followed exactly the same steps as in (A1.1 to A1.5). So, this procedure is as 

correct or as wrong as before. There is nothing that tells us that we have to apply an “ad 

hoc” extra rule to this result. Both calculations are ok or both calculations are wrong. 

 

So, what is the difference? In the first case (A1.1), if we are not able to calculate the result, 

we can use the “trick” of summing a lot of elements to check if they approach something. 

In the second case (A1.7) this trick does not work. But, in fact, this is the only difference 

between both cases. 

 

Both cases have something in common. We are not able, as human beings, to perform the 

total sum of the elements. We will never sum all the elements in the first case (A1.1), and 

we will never sum all the elements in the second case (A1.7). 

 

But everything points to, that if we were able to do it (to sum all the elements), we would 

get S=2 in the first case and S=-1 in the second case. But we are not able to do it (neither 

in the first case and neither in the second). Yes, if we were able to sum all the elements in 

the second case, we would get S=-1 (but we are not able to do it). Exactly the same that we 

would get S=2 in the first case (but we are not able to do it). 

 

Both results are ok or both results are wrong. But it is not the case the first one is ok and 

the second not. Normally it is said that the second case (A1.7) is an artifact (an extension 

of a result that does not have any meaning). But it is really the opposite. The artifact is in 

our minds, that as we cannot understand that result, we impose the condition that it is not 

possible or incorrect. But there is nothing incorrect in the steps followed (at least as 
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incorrect as the first case (A1.1) can be). The artifact is in our minds, imposing an “ad hoc” 

rule just because we do not understand the result. But the numbers do not lie, if we were 

able to make the sum of “all” the elements in (A1.7) the result would be S=-1. But we are 

not able to sum all the elements, so we cannot check it. The numbers do not care if we are 

able to understand it or not, they just tell us that that is the result. The result for (A1.7) is 

as correct or as incorrect that (A1.1) is S=2 (that is something that really, we cannot check 

also, we are not able to make the complete sum). 

 

The only difference between first case (A1.1) and second case (A1.7) is that in the first 

case, we can try to approach the result making partial sums. In the second case, we must 

sum all the elements to get the result. The trick of partial sums does not work. And as we 

are not able to make the total sum of all the elements, we consider that the result is incorrect. 

The artifact is not the result, the artifact is the conclusion that there must be something 

wrong here just because we are not able to perform that sum including all the elements. 

 

A3. Annex A3. Offtopic. Sum of sin(nx) and cos(nx) series 
 
Once we have internalized the Annex A2, we can start making sums which last element 

does not tend to zero and see that we get results. 

 

For example, we can start with the sin(nx) series:  

 

𝑆 = sin(𝑥) + sin(2𝑥) + sin(3𝑥) + ⋯ = 

=
𝑒𝑥𝑖 − 𝑒−𝑥𝑖

2𝑖
+

𝑒2𝑥𝑖 − 𝑒−2𝑥𝑖

2𝑖
+

𝑒3𝑥𝑖 − 𝑒−3𝑥𝑖

2𝑖
+ ⋯ 

=
1

2𝑖
((𝑒𝑥𝑖 + 𝑒2𝑥𝑖 + 𝑒3𝑥𝑖 … ) − (𝑒−𝑥𝑖 + 𝑒−2𝑥𝑖 + 𝑒−3𝑥𝑖 … )) = 

 

=
1

2𝑖
((

𝑒𝑥𝑖

1 − 𝑒𝑥𝑖
) − (

𝑒−𝑥𝑖

1 − 𝑒−𝑥𝑖
)) =

1

2𝑖
(

𝑒𝑥𝑖 − 1 − 𝑒−𝑥𝑖 + 1

(1 − 𝑒𝑥𝑖)(1 − 𝑒−𝑥𝑖)
)

=
1

2𝑖
(

2𝑖𝑠𝑖𝑛(𝑥)

1 − 𝑒−𝑥𝑖 − 𝑒𝑥𝑖 + 1
) =

sin (𝑥)

2 − 2𝑐𝑜𝑠𝑥
=

1

2

sin (𝑥)

(1 − cos (𝑥))
 

 

And we can get a result also with the cos(nx) series: 

 

𝑆 = cos (𝑥) + cos (2x) + cos (3x) + ⋯ = 

=
𝑒𝑥𝑖 + 𝑒−𝑥𝑖

2
+

𝑒2𝑥𝑖 + 𝑒−2𝑥𝑖

2
+

𝑒3𝑥𝑖 + 𝑒−3𝑥𝑖

2
+ ⋯ 

=
1

2
((𝑒𝑥𝑖 + 𝑒2𝑥𝑖 + 𝑒3𝑥𝑖 … ) + (𝑒−𝑥𝑖 + 𝑒−2𝑥𝑖 + 𝑒−3𝑥𝑖 … )) = 
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=
1

2
((

𝑒𝑥𝑖

1 − 𝑒𝑥𝑖
) + (

𝑒−𝑥𝑖

1 − 𝑒−𝑥𝑖
)) =

1

2
(

𝑒𝑥𝑖 − 1 + 𝑒−𝑥𝑖 − 1

(1 − 𝑒𝑥𝑖)(1 − 𝑒−𝑥𝑖)
) =

1

2
(

2 cos(𝑥) − 2

1 − 𝑒−𝑥𝑖 − 𝑒𝑥𝑖 + 1
)

=
1

2

2cos(x) − 2

2 − 2𝑐𝑜𝑠𝑥
= −

1

2
 

 

A4. Annex A4. Offtopic. Sum of Riemann zeta function series 
 

Let’s calculate the following sum. This calculation is not original, you can find the result 

for example in [9]. But we will use it as an example of what it will come later (jump to 

A4.1 if you want): 

𝑆 = 𝜁(1) − 1 + 𝜁(2) − 1 + 𝜁(3) − 1 + 𝜁(4) − 1 + ⋯ 

𝑆 =
1

2
+

1

3
+

1

4
+

1

5
+ ⋯ + 

+
1

22
+

1

32
+

1

42
+

1

52
+ ⋯ + 

+
1

23
+

1

33
+

1

43
+

1

53
+ ⋯ + 

+ ⋯ + 

If we check the columns, we see that they are geometric sums, so we can use the geometric 

sum equation [4]: 

𝑆 =
𝑎1

1 − 𝑟
 

 

𝑆 =

1

2

1 −
1

2

+

1

3

1 −
1

3

+

1

4

1 −
1

4

+ ⋯ 

 

𝑆 =

1

2
1

2

+

1

3
2

3

+

1

4
3

4

+ ⋯ = 1 +
1

2
+

1

3
+ ⋯ = 𝜁(1) 

 

 

𝑆 = 𝜁(1) − 1 + 𝜁(2) − 1 + 𝜁(3) − 1 + 𝜁(4) − 1 + ⋯ 

𝑆 = 𝜁(1) 

0 = −1 + 𝜁(2) − 1 + 𝜁(3) − 1 + 𝜁(4) − 1 + ⋯ 

1 = 𝜁(2) − 1 + 𝜁(3) − 1 + 𝜁(4) − 1 + ⋯ 

 

𝜁(2) − 1 + 𝜁(3) − 1 + 𝜁(4) − 1 + ⋯ = 1 

 

We can check that this is correct just operating numerically. You can find the values of the 

Riemann zeta function here [10] [11] [9]. 
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𝜁(2) − 1 + 𝜁(3) − 1 + 𝜁(4) − 1 + 𝜁(5) − 1 + 𝜁(6) − 1 + 𝜁(7) − 1

= 1.644934067 − 1 + 1.202056903 − 1 + 1.082323234 − 1

+ 1.036927755 − 1 + 1.017343062 − 1 + 1.008349277 − 1

= 0.991934298 

And the higher number of elements, we include the nearer we go to 1. 

 

But what has not been ever commented is that we can make the same sum but for all the 

elements (not only the positive ones), getting the result zero.  

 

𝑆 = ⋯ + 𝜁(−3) − 1 + 𝜁(−2) − 1 + 𝜁(−1) − 1 + 𝜁(0) − 1 + 𝜁(1) − 1 + 𝜁(2) − 1

+ 𝜁(3) − 1 + 𝜁(4) − 1 + ⋯ = 0          (𝐴4.1) 

 

This sum can be performed even if the negative elements does not tend to zero. This is only 

possible if we take the Annex A1 into account. 

 

To demonstrate this, let’s make a partial sum starting in ζ(-1): 

 

𝑆 = 𝜁(−1) − 1 + 𝜁(0) − 1 + 𝜁(1) − 1 + 𝜁(2) − 1 + 𝜁(3) − 1 + ⋯ = 

𝑆 =
1

2
+

1

3
+

1

4
+

1

5
+ ⋯ + 

+1 + 1 + 1 + 1 + ⋯ + 

+2 + 3 + 4 + 5 + ⋯ + 

+22 + 32 + 42 + 52 + ⋯ + 

+23 + 33 + 43 + 53 + ⋯ + 

+ ⋯ + 

 

𝑆 =

1

2

1 − 2
+

1

3

1 − 3
+

1

4

1 − 4
+

1

5

1 − 5
… = −

1

1 · 2
−

1

2 · 3
−

1

3 · 4
−

1

4 · 5
− ⋯

= − (
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ ⋯ )         (𝐴4.2) 

 

The sum in brackets is 1, as you can check in [12][13] where a general sum of this type 

with n terms is calculated: 

𝑆𝑛 =
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ ⋯

1

𝑛(𝑛 + 1)
= ∑ (

1

𝑘
−

1

𝑘 + 1
)

𝑛

𝑘=1

=
𝑛

𝑛 + 1
 

When we have an infinite number of elements n is infinite giving as result 1 when n tends 

to infinity, so coming back to (A4.2): 

𝑆 = − (
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ ⋯ ) = − ( lim

𝑛→∞

𝑛

𝑛 + 1
) = −1 
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So, coming back to (A4.1): 

 

𝑆 = ⋯ + 𝜁(−3) − 1 + 𝜁(−2) − 1 + 𝜁(−1) − 1 + 𝜁(0) − 1 + 𝜁(1) − 1 + 𝜁(2) − 1

+ 𝜁(3) − 1 + 𝜁(4) − 1 + ⋯ =

= [… + 𝜁(−3) − 1 + 𝜁(−2) − 1 + 𝜁(−1) − 1 + 𝜁(0) − 1]

+ [𝜁(1) − 1 + 𝜁(2) − 1 + 𝜁(3) − 1 + 𝜁(4) − 1 + ⋯ ] = −1 + 1 = 0 

 

We can get this result cutting the sum wherever we want, so in general we can say that: 

∑ 𝜁(𝑘)

𝑚

𝑘=−∞

= − ∑ 𝜁(𝑙)

∞

𝑙=𝑚+1

 

∑ 𝜁(𝑘)

𝑚

𝑘=−∞

+ ∑ 𝜁(𝑙)

∞

𝑙=𝑚+1

= 0 

∑ 𝜁(𝑘)

∞

𝑘=−∞

= 0 

 

As commented, this would not have any meaning or we could not even think about it, if 

we do not consider that what is commented in Annex A1 is correct. 


