ON THE MINIMUM OVERLAP PROBLEM

T. AGAMA

ABSTRACT. In this note we study the minimum overlap problem. We obtain
the following crude inequality for the problem

M(n) < D(k)(1 — o(1) ]
where D(k) > 1.

1. Introduction and problem statement

The minimum overlap problem was first posed by then then Hungarian mathe-
matician Paul Erd6s. The problem is often stated in the following way:
Let A = {a;} and B = {b;} be any two complementary subsets, a splitting of
the set {1,2...,n} such that [A| = |B| = §. Let My denotes the number of
solutions to the equation a; — b; = k, where —n < k < n. Let us denote by
M (n) := ming pmaxy M. Then the problem asks for an estimate for M (n) for suf-
ficiently large values of n. There has been significant progress in estimating from
below and above the quantity M(n). Erdés [1] managed to obtain the following
upper and lower bounds

M(n) < (1+ 0(1))g and M(n) >

3

The lower bound was improved to (see [2])
M(n)>(1-2"%)n
and latter to (see [2])

M(n) > /(4 —V15)(n —1)

the most recent of which is [2]

M(n) > /(4 — V15)n.
The upper bound, to the contrary, developed quite steadily overtime in the after-
math of Erdés’s result (see [1])
2n
ER
a result due to Motzkin, Ralston and Selfridge. The best known upper bound
concerning this problem is due to Haugland [3], given by

M(n) < (1+ 0(1))0.38093n.

M(n) < (1+0(1))
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In this note we obtain the following crude upper bound to the problem

Theorem 1.1. Let A = {a;} and B = {b;} be any two complementary subsets,
a splitting of the set {1,2...,n} such that |A| = |B| = %. Let My denotes the
number of solutions to the equation a; — b; = k, where —n < k < n. Let us denote
by M(n) := miny pmaxy My, then for a fized k we have the inequality

M(n) < D(k)(1 - o(1)) 7

where D(k) > 1.

2. Preliminary result
Theorem 2.1. Let {r;}7_, and {h;}7_, be any sequence of real numbers, and let

r and h be any real numbers satisfying Y r; =r and Y, h; =h, and
j=1 j=1
(r + )2 =3 "(rF + b2,
j=1

then

n n J J—1 n—1 n—j
Z’f’jhj :Zhj(ZT’Z-FZTZ) —2ZTthj+k.

j=2 j=2 i=1 i=1

Proof. Consider a right angled triangle, say AABC' in a plane, with height h and
base r. Next, let us partition the height of the triangle into n parts, not necessarily
equal. Now, we link those partitions along the height to the hypotenuse, with the
aid of a parallel line. At the point of contact of each line to the hypotenuse, we
drop down a vertical line to the next line connecting the last point of the previous
partition, thereby forming another right-angled triangle, say AA;B;C; with base
and height r; and h; respectively. We remark that this triangle is covered by the
triangle AABC, with hypotenuse constituting a proportion of the hypotenuse of
triangle AABC. We continue this process until we obtain n right-angled triangles
AA;B;Cj, each with base and height r; and h; for j = 1,2,...n. This construction
satisfies

h:zn:hj andr:zn:rj
j=1 j=1

and
(P + 122 = + )2,
j=1
Now, let us deform the original triangle AABC by removing the smaller triangles

AA;B;C; for j = 1,2,...n. Essentially we are left with rectangles and squares
piled on each other with each end poking out a bit further than the one just above,
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and we observe that the total area of this portrait is given by the relation

A =rihe + (ri+r2)hs+ - (ri 12+t rp2)hp + (1 2+ 1) hn
:Tl(h2+h3+hn)+r2(h3+h4++hn)++rn72(hn71 +hn)+rnflhn

1 n—j

n
= Tj hj+k'
j=1 k=

—

On the other hand, we observe that the area of this portrait is the same as the
difference of the area of triangle AABC and the sum of the areas of triangles
AA;B;C; for j =1,2,...,n. That is

1 1 —
A]_ = 57‘h - §;Tjhj

This completes the first part of the argument. For the second part, along the
hypotenuse, let us construct small pieces of triangle, each of base and height (r;, h;)
(i =1,2...,n) so that the trapezoid and the one triangle formed by partitioning
becomes rectangles and squares. We observe also that this construction satisfies
the relation

(2 + BA)Y2 = 3 (2 )1,

=1

Now, we compute the area of the triangle in two different ways. By direct strategy,
we have that the area of the triangle, denoted A, is given by

A:1/2<Z)(Zh>

On the other hand, we compute the area of the triangle by computing the area of
each trapezium and the one remaining triangle and sum them together. That is,

n n—1 n—1 n—2
A= hn/Q(ZH—l—Zﬁ) —l—hnl/Q(ZTi—l— ZTZ‘) + -4 1/2T1h1.
=1 =1 =1 =1

By comparing the area of the second argument, and linking this to the first argu-
ment, the result follows immediately. O

Corollary 2.2. Let f: N — C, then we have the decomposition

o> fmftn+q) =Y f) > fim).

n<z—1j<zx—n 2<n<z m<n—1

Proof. Let us take f(j) =r; = h; in Theorem 2.1, then we denote by G the partial
sums

Q:Zf(j)



4 T. AGAMA

and we notice that

= V2Y_£0)

Since /(G2 + G2) = G2 = V2 > f(j) our choice of sequence is valid and, there-
=1

fore the decomposition is valid for any arithmetic function.

Lemma 2.3. (Area method) Let f : N — C. If

Zf +l0 >0

n<zx

then there exist some constant 1 > C(l ) > 0 such that

Do f)f(n+lo) < o= Do fn) D f(m)

n<x 2<n<w m<n—1

Proof. By Corollary 2.2, we obtain the identity by taking f(j) =r; = h;

o X =Y fm) > fm)

nlz—1j<z—n 2<n<zx m<n—1

Next we observe that

Z Z f(n)f(n+j) >>ZZf fln+j)

nlz—1j<zx—n n<lz j<z

=Y f)fn+1)+ Y fn)f(n+2)

n<z n<z

o> f)f(ntlo) 4> f(n)f(n+x)

n<x n<x

> [M(lo)] > f(n)f(n+1o)

n<lx

+ [N (lo)| Z f(n)f(n+1l)

n<z

ok Y fm) o) + o+ [R(0) D F(n) £(

n<z n<x

- <|M(zo>| F W)+ 1

-+ R(lo) )Zf n -+ lo)

n<lz

C(lp)x Zf f(n+1o).

n<x

+

O

TL-I-l())
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where min{ M (lp)|, N (lo)|...,|R(lp)|} = C(lp). By inverting this inequality, the
result follows immediately. ([

3. Main result

We begin this section by introducing an arithmetic function on particular sets
of integers.

Definition 3.1. Let A = {a;} and B = {b;} be any two complementary subsets,
a splitting of the set {1,2...,n} such that |A| = |B| = §. Then we consider the
following arithmetic function

v(es) 1 if ce AUB
C;) =
0 otherwise.

Lemma 3.2. Let A = {a;} and B = {b;} be any two complementary subsets, a
splitting of the set {1,2...,n} such that |A| = |B| = %, then we have

n
2 Vi) =g
1<i<n

and

> i) =3

1<j<n

Proof. This is an easy consequence of the size of |A U B| = n and the size of each
complementary subset. [

Theorem 3.3. Let A = {a;} and B = {b;} be any two complementary subsets,
a splitting of the set {1,2...,n} such that |A| = |B| = §. Let My denotes the
number of solutions to the equation a; — b; = k, where —n < k < n. Let us denote

by M(n) := miny pmaxy My, then for a fized k we have the inequality

M(n) < D(k)(1 - o(1))

where D(k) > 1.

Proof. Let k be fixed with —n < k < n, then the underlying problem is to estimate
the correlation

> Vl(ai) V(ai + k).

1<i<n

Applying the area method, there exist some constant 1 > R(k) > 0 such that

> V@) V(a4 b) < g 30 vie) 2 Via).

1<i<n 2<i<n s<i—1
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Applying partial summations on the right-hand side of the inequality, we have the

following
Z V(a;) Z V(as) < Z (i—1)V (a;)
2<i<n s<i—1 1<i<n
= Z Z'\/(ai) — Z \/(ai)
1<i<n 1<i<n
n
=n Z V(ag) — / Z V(a)dk — 5
1<i<n i=1 1<i<k
n? n
< — - —.
-2 2
It follows that
1 n? n
V(a) V(a; +k) < =——— | — — =
2 V(@) V(i) < R(k)2n<2 2)
1<i<n
and the claim upper bound follows, where 0 < R(k) < 1. O
1.
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