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ABSTRACT  : In this paper we give an integral equation satisfied by the gramm series based on the 
use of the Borel transform

In Mathematics the Gramm series is define as the infinite series

   (1)

Let be the following integral equation

(2)     

Then with a simple change of variable  , we have the following integral equation

  (3)

Using our method described in Paper [1] , which uses the Borel generalized transform to solve 
integral equations of this kind

(4)

With a solution given by  the power series     (5)

With                      (6)  

The Kernel, K(t) inside (4) does not need to be a smooth function, this can include step function of 

the form    
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Then,we can find a series solution for this integral equation as follows

  (7)

Which is precisely the Gramm series ( minus a constant 1), so the Integral given in formula ( 3 ) is 
just the integral equation satisfied by the Gramm function

Given a function   , then if the function   is analytic near 0 , then by 

integration by parts we can give an asymptotic expansion for the function g as

      (8)

The functions  are given by the recurrence equation     , and  

 is the Kernel of our Integral equation.

Our method [1] can be also useful to find integral equations satisfied for some functions of series, 
for example for the Riesz Function 

             (9)

It is not hard to prove the integral equation inside (9) just use the expansion of the function  

in powers of   , and then apply the Generalized Borel transform with the Kernel  , 

since the Mellin transform representation of the Riemann zeta function

  is valid for n=1,2,3,4,5,6      (10)

Another example of our methdo to solve integrals like (4) is related to the Stieltjes Moment 
problem and integral equation defined by

  (11)

Where  are the moments of the measure  , making a change of variable 

 our integral equation becomes 

 
1

log
( ) 1 ( )

! ( 1)

n

n

x
G x g x

nn n





  


0

( ) ( ) ( )g s s dtK st f t


  ( )f t

11
1

0

(0)( ) (0)( 1)
n

nn
n n

n

Kg s d f
s s dx







 

( )nK t 1( ) ( )n
n

dK t K t
dt

 

0 ( ) ( )K t K t

1

( )( )
( 1)! (2 )

n

n

xRiesz x
k n






 


0

1 ( )x dt xe Riesz t
t t


  

   
 



1

1 xe



1
x

1( )K t
t

    

1
2

10

1 1(2 ) n
n

k
n n dt t

kt


 




    


1
0 0

( ) ( )( ) ( 1)z
n

n

n xg z dx
z z x
 




  
 

0

( ) ( ) nn dx x x 


  ( )x

x zu



    (12)

The integral equation (12) is of the form of (4) so we can get the soluton in power series as

   (13)

Since       and        

Curiosly there is a distributional solution to integral equation (11) given by

        (14)

Just insert (14) inside (11) and use the properties of the delta function and of the function   
  

            (15)

And you get the Laurent series expansion for     

AN INTEGRAL FOR THE PRIME COUNTING FUNCTION

For the prime counting function we have also the equivalent integral equation

    (16)

The proof of (16) is easy, just apply the logarithm to the Euler product  and then use 

the Abel’s sum theorem with the Prime counting function in the form

    (17)

Then make the change of variable  and take  . To get a solution (approximate) to (16) 

we need to get a rational approximation to the logarithmic derivative of the zeta function based on 
the Laurent series expansion of the Riemann zeta
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            (18)

So using our method to get the solution of integral equation into (16) we find the better solution 
than the Gramm series

            (19)    

Where  is a rational approximation to the logarithmic derivative of the zeta function defined 
in (18) and  we need to do this in order to compute the inverse Z transform to get the 
coefficients .

If we have used the simpler approximation     , then all the constants   are 1 and 

(19) is just the Gramm series for the Prime counting function            
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