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ABSTRACT:   

We are assuming a Winterberg model for space where the vacuum consists of a very stiff two 

component superfluid made up of positive and negative mass planckions.  This vast assembly 

(sea), of positive and negative mass particles, creates an ether-like medium, the vacuum, which 

is macroscopically massless, has zero net gravitational pressure, and zero net entropy, in the 

undisturbed state.  𝑄 theory is the hypothesis, presented here for the first time, that Planck 

charge, 𝑞𝑃𝑙 , was created at the same time as Planck mass.  Moreover, the repulsive force that 

like-mass planckions experience is, in reality, due to the electrostatic force of repulsion between 

like charges.  These forces also give rise to what appears to be a gravitational force of attraction 

between two like planckions, but this is an illusion.  In reality, gravity is electrostatic in origin if 

our model is correct.  We determine the spring constant associated with planckion masses, and 

find that, 𝜅 = 4 𝜁(3)ħ𝑐 𝑛+(0) , where 𝜁(3) equals Apery's constant, 1.202 …, and, 𝑛+(0) =

𝑛−(0) , is the relaxed, i.e., 𝑔⃗ = 0 , number density of the positive and negative mass planckions.  

In the present epoch, we estimate that,  𝑛+(0) equals, 7.848 𝐸54  𝑚−3, and the relaxed 

distance of separation between nearest neighbor positive, or negative, planckion pairs is, 

𝑙+(0) = 𝑙−(0) = 5.032 𝐸 − 19 𝑚𝑒𝑡𝑒𝑟𝑠.  These values were determined using box quantization 

for the positive and negative mass planckions, and considering transitions between energy 

states, much like as in the hydrogen atom.  For the cosmos as a whole, given a net smeared 

macroscopic gravitational field of,  𝑔0̅̅ ̅ = 2.387 𝐸 − 9, due to all the ordinary, and bound, 

matter contained within the observable universe (the Hubble radius), an average displacement 

from equilibrium for the planckion masses is a mere 7.566 𝐸 − 48 𝑚𝑒𝑡𝑒𝑟𝑠, within the vacuum 

made up of these particles.  On the surface of the earth, where, 𝑔 = 9.81 𝑚/𝑠2, the 

displacement amounts to, 7.824 𝐸 − 38 𝑚𝑒𝑡𝑒𝑟𝑠.  All of these displacements are due to 

increased gravitational pressure within the vacuum, which in turn are caused by applied 

gravitational fields.  The gravitational potential is also derived and directly related to 

gravitational pressure. 
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I Introduction 

Students of physics I and II, as well as professional physicists, have long been intrigued by a 

possible connection between Newton’s law and Coulomb’s law.  Some similarities are that they 

are both inverse square laws, they both depend on the product, (𝑀1𝑀2) or (𝑄1𝑄2), and they 

both involve coupling constants, 𝐺 for Newton’s law, and 𝑘 = 1/(4𝜋𝜀0) , for Coulomb’s law.  

Some notable differences are that the gravitational force is only attractive, whereas the 

electrostatic force is both attractive and repulsive.  Second, only positive mass exists whereas 

two species of charge exist, positive and negative.  Third, positive masses attract, but like 

charges repel, and unlike charges attract.  Fourth, and perhaps most mysterious, is the strength 

of these forces.  The 𝑘 value in electrostatics is so much larger than 𝐺 in gravistatics, in reduced 

units where factors such as, ħ and 𝑐 are set equal to one. 

The fact that Newton’s constant, 𝐺, is so weak has impressed many notable physicists, including 

Dirac and Jordan.  Dirac [1-3], already n 1936, in his large number hypothesis (𝐿𝑁𝐻), 

forwarded the notion that 𝐺 is not really a true constant of nature, but actually varies with 

cosmological time.  Jordan [4-7], in short order, related 𝐺́/𝐺 to Hubble’s constant, 𝐻 = 𝑎́/𝑎, 

where the dot refers to a variation with respect to cosmological time.  The, 𝑎 = 𝑅/𝑅0 =

𝑇0/𝑇 = (1 + 𝑧)−1, refers to the cosmic scale parameter.  The, 𝑅, is the Hubble radius, the, 𝑇, 

the 𝐶𝐵𝑅 temperature, and the, 𝑧 , stands for the redshift.  All the variables with a subscript, 

“0”, refer to the present epoch, and we are using the convention where, 𝑎0 = 1.  All the 

variables, without a subscript, refer to a different cosmological era.  Coming back to Jordan, he 

claimed that, 𝐺́/𝐺 = −𝐻.  He further recognized that 𝐺 must now be related to a scalar field, 

𝜑, within a year of Dirac’s 𝐿𝑁𝐻 .  We claim that if 𝐺 does vary cosmologically, then, 𝑀𝑃𝑙
2 =

ħ𝑐 𝐺−1 = < 0|𝜑2|0 >, where, < 0|𝜑2|0 >, is the vacuum expectation value of, 𝜑2.   In this 

formulation, 𝐺 is an intrinsic property of the vacuum.  We call, 𝑀𝑃𝑙  , the Planck mass because 

for a constant, 𝐺 = 𝐺0, we obtain the familiar Planck mass, 𝑀𝑃𝑙 = (ħ𝑐/𝐺0)1/2 = 2.178 𝐸 −

8 𝑘𝑔.  We identify Jordan’s scalar field with the, 𝜑 , in the above equation [8,9].   The, 𝑀𝑃𝑙
2  , 

above is no longer a constant if 𝐺 does vary with cosmological time.  The 𝑀𝑃𝑙  equals the mass 

of the positive mass planckion, and the negative mass planckion has negative this value.  We 

leave open the possibility that Newton’s constant, 𝐺, does indeed vary, and thus the planckion 

masses would evolve cosmologically with time. 

Recently this author [10], considered the Friedmann equation in light of a time varying 

gravitational constant.  Two models for, 𝐺 = 𝐺(𝑎), were presented where, 𝑎,  is the cosmic 

scale parameter, defined above.  In the present epoch, the 𝐶𝐵𝑅 temperature equals, 

𝑇0 = 2.725 𝐾𝑒𝑙𝑣𝑖𝑛.  The idea was to help explain the discrepancy between the cosmological 
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constant, 𝛬 =  8𝜋𝐺 𝜌𝛬/𝑐2 , in past epochs, versus today.  There was also the issue of 

renormalizing gravity.  If gravity effectively disappears at extremely high temperatures, then 

there is no theory to renormalize at high momentum exchanges.  We believe that gravity is an 

order parameter, which vanishes at very high temperatures, much like magnetization. 

In order to fix the parameters for the two models for, 𝐺−1(𝑎) , we demanded that, 𝑤, the 

quintessence parameter, equal exactly, 𝑤 = −.98.  In the 𝛬𝐶𝐷𝑀 model this parameter is 

assumed to equal exactly negative one.  But this is not what is observed after over a decade of 

observations and measurements [10].  Although the negative one can easily be accommodated 

within observational error, perhaps this is not its true value.  By setting, 𝑤 = −.98, we were 

able to fix the parameters in our two models.  Moreover, we were able to prove that, 

𝐺́/𝐺 = − .06 𝐻 , in the current epoch.  This is a variation within observational bounds.  Jordan’s 

original thesis, that, 𝐺́/𝐺 = −𝐻, seems to be unsupportable given current observations and 

measurements. 

The challenge was, of course, to show that in virtually all other aspects, the deviation from 

the 𝛬𝐶𝐷𝑀 model were not great.  The 𝛬𝐶𝐷𝑀 model has proven to be very successful and 

robust.  It is only in the very early universe that marked deviations occurred between our 

models, which were called models,  , and 𝐵,  and the 𝛬𝐶𝐷𝑀 model.  In fact both functions for, 

𝐺−1(𝑎), which were presented, reduce to exactly the 𝛬𝐶𝐷𝑀 model, in the limit where 𝑤 =

−1.  In both our models, 𝐺−1(𝑎) is an order parameter, which rises dramatically at inception, 

and as the universe cools, tapers off and flattens to a saturation value, much like magnetization 

in condensed matter physics.  Even though both models were quite distinct from one another, 

qualitatively, quantitatively they gave similar results.  For example, their inception 

temperatures were very close to one another.  For model,  , the, 𝐺−1(𝑎), started to form 

around, 6.20 𝐸 21 𝐾𝑒𝑙𝑣𝑖𝑛, whereas for model, 𝐵 , we obtained, 7.01 𝐸21 Kelvin as the Curie 

temperature.  At high temperatures, both models for, 𝐺−1(𝑎), were inversely proportional to 

temperature.  In both models we are close to saturation as, 𝐺−1(𝑎), barely varies in the present 

epoch.  Both functions are one-parameter, non-linear functions, which mimic order parameter 

behavior.  Before approximately,  𝐸22 𝐾𝑒𝑙𝑣𝑖𝑛, it is conjectured that Newton’s constant, as we 

know it, did not exist.  

In another series of papers [11,12], we developed a gravitational polarization model for the 

vacuum.  Based on previous work of Hajdukovic [13-16], and Winterberg [17-23], it was realized 

that polarization might offer the key towards a fuller understanding of dark matter, and dark 

energy.  If the ambient temperature is low enough, ordinary matter, made up of quarks and 

leptons, can polarize the surrounding space forming a polarization cloud or halo.  In gravistatics, 

this leads to anti-screening versus screening in electrostatics.  The gravitational dipoles formed 

in gravistatics, add to the source field, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , making the macroscopic field, 𝑔⃗ = 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑔(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , larger 
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than the original applied field, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .  The, 𝑔(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , is the induced field set up within the vacuum, 

due to net macroscopic massive dipole ordering or alignment.  We treat the vacuum as a 

medium which can be polarized, much like a dielectric can be polarized.  Instead of charge 

dipoles, we now have mass dipoles, made up of the positive and negative mass planckions, 

introduced by Winterberg.  In electrostatics, we do not have anti-screening, but screening.  

There, electric charge dipoles set up within the dielectric are such as to diminish the original, or 

applied field, 𝐸(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , creating a macroscopic, 𝐸⃗⃗ = 𝐸(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝐸(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , which is less than, 𝐸(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .   The, 𝐸(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 

is an induced field set up within the dielectric due to net charge dipole ordering.  For dark 

matter, we need extra mass, in order to explain the halo effect surrounding galaxies, rotation 

curves, virial motion of galaxies within superclusters, gravitational lensing, etc.  There will be 

bound mass due to the massive dipoles produced within the vacuum, or gravitic, which is our 

gravitational version of a dielectric.  This bound mass trapped within mass dipole formation in 

the vacuum, and macroscopic ordering, seems to us a perfect candidate for dark matter [11]. 

Dark energy, on the other hand, was identified [11] as the gravitational field mass density, 

produced by both source matter, and bound, polarized matter.  According to Gauss’s law, if the 

universe contains net source matter, which it does, and bound, polarized mass, which is an 

assumption, then there must be gravitational fields associated with each.  We identify the dark 

energy density with, 𝜌𝛬 = 𝜌𝑔𝑔̅̅ ̅̅ ̅ = 1/(2𝑐2)  𝐾𝜀 𝑔̅2.  In this equation, 𝐾 is the relative 

gravitational permittivity, and, 𝜀 ≡ 1/(4𝜋𝐺) is the gravitational permittivity.  If, 𝐺 = 𝐺(𝑎), 

then, the gravitational permittivity, 𝜀 = 𝜀(𝑎), is also an intrinsic property of the vacuum.  We 

will work with this assumption in this paper.  The,  𝑔̅ =  𝑔(0)̅̅ ̅̅ ̅ + 𝑔(1)̅̅ ̅̅ ̅ , is the smeared, cosmic 

gravitational field obtained from Gauss’s law.  This gravitational field is associated with the 

universe as a whole, once all source, and bound, matter is taken into account.  Although 

technically, a surface gravitational field, it holds point for point within the observable universe, 

because any observer, no matter the location, would deduce this same value.  Also, every 

surface is another observer’s reference point.  It permeates all of space because ordinary 

matter, and bound matter, both permeate all of space.  This gravitational field holds for 

distance scales in excess of about, 100 𝑀𝑝𝑐.  Only then, is the universe fairly homogeneous and 

isotropic.  A smeared quantity, such as, 𝑔̅ , or, 𝜌𝑔𝑔̅̅ ̅̅ ̅ , is not a local quantity.  All density values in 

Friedmann’s equation are smeared quantities. 

Winterberg [17-23], in particular, developed a model of space made up of positive and negative 

mass particles called planckions.  These particles are assumed to be real particles, versus 

virtual, and have positive and negative the Planck mass.  We believe that the magnitude of 

these masses change cosmologically, whereas he claims they are constant.  According to 

Winterberg, the planckions form a very rigid two component superfluid (we prefer supersolid), 

where disturbances move at the speed of light.  The positive and negative mass species interact 
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amongst themselves, and maintain a fixed distance of separation from other neighboring 

particles of the same species.  Unlike mass planckion particles do not interact directly [23], but 

indirectly.  Because positive and negative planckion particles occupy the same space, and are 

spread evenly, the positive and the negative masses are invariably drawn next to one another.  

They are forced to rub shoulders with one another, so to speak, and also maintain a fixed 

distance of separation from each other. 

Winterberg developed an extensive and elaborate theory along this idea, and we will use it 

here, to establish an intimate connection between electrostatics, and gravistatics.  We believe 

that the two component superfluid is the key towards understanding the connection between 

gravity and electrostatics. 

In the Winterberg model, fluid forces are responsible for keeping the planckions a fixed 

distance apart.  When planckions are displaced from their equilibrium positions, increased 

planckion pressure forces them back into position.  We can think of them as restoring forces, 

and we have modeled them as such [11].  Winterberg assumed that two like planckions, 

whether they have positive or negative mass, repel each other much like charges in 

electrostatics.  The question naturally arises… is the planckion force ultimately an electrostatic 

force? 

The 𝑄 theory, we believe, provides the answer to this question.  If like mass planckions are 

anchored in position, and keep a finite distance apart, then there must be two forces acting on 

the individual planckion, one attractive and one repulsive, along any given direction in space.  

The repulsive force is electrostatic, and the attractive force is also electrostatic.  An 

electrostatic attractive force might simulate gravity, however.  What if Planck charge and Planck 

mass were created at the same time, as two components of the same particle?  Wouldn’t they 

attract and repel simultaneously?  Also, their creation need not be at the Planck temperature, 

~ 𝐸32 𝐾𝑒𝑙𝑣𝑖𝑛.  If 𝐺 is varying with respect to cosmological time, then, 𝐺−1(𝑎) , could have 

formed out of the vacuum at a reduced temperature of the order, ~ 𝐸21 − 𝐸22 𝐾𝑒𝑙𝑣𝑖𝑛.  

Irrespective of the temperature of formation, we would have a vacuum, which is not only 

electrically neutral, but also massively neutral in its very earliest stages.  It is well known that all 

particles in the standard model, i.e, all quarks and leptons, started to freeze out later at 

reduced temperatures, well below, ~ 𝐸16 𝐾𝑒𝑙𝑣𝑖𝑛, 𝑜𝑟 1 𝑇𝑒𝑉 [24-27].  According to the 

proposed model, the universe is born electrically and massively neutral because there are equal 

numbers of positive and negative masses, as well as positive and negative charges.  In the 

Winterberg model, fermions, and interacting bosons are quasiparticles, i.e., collective 

excitations, which are stable and form within the two component superfluid.  See reference, 

[23], for specific details. 
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The outline of this paper is as follows.  In section II, we formulate the 𝑄 theory, the assumption 

that Planck mass and Planck charge were created at the same time, as two components of the 

same particle.  The temperature of formation could be at, ~ 𝐸32 𝐾𝑒𝑙𝑣𝑖𝑛, but also in the 

neighborhood of ~ 𝐸21 − 𝐸22 𝐾𝑒𝑙𝑣𝑖𝑛.  Upon their creation, two force laws were formed 

simultaneously, and spontaneously, one electrostatic, and one seemingly gravistatic.  In fact, 

both will be shown to be electrostatic in origin, in section III. 

In section III, we show that the gravitational force is electrostatic in origin.  We derive an 

expression for the Planckion spring constant.  Then we proceed to find the number density of 

planckions, and nearest neighbor distance of separation, using box quantization.  In section IV, 

we calculate individual displacements for various gravitational pressure fields.  We show how 

gravitational potential, and gravitational pressure, within the vacuum are related.  We also talk 

about latent gravitational field energy and vacuum resiliency.  When the vacuum is 

mechanically stressed through very intense gravitational fields, it may have its limits.  Gravitic 

breakdown is a possibility.  The Winterberg vacuum is mechanistic in its very structure.  In 

section V, the present day imbalance in planckion number density is discussed.  Because there 

is net mass in the universe, there is also, a net cosmic gravitational field mass density by 

Gauss’s law.  That will result in a net planckion mass density, which is unequal to zero.  The 

reason why the planckion number densities are mismatched,  𝑛+̅̅̅̅ > 𝑛−̅̅̅̅ , in the current era is 

unknown, but we speculate it may have something to do with macroscopic mass formation.   

Our summary and conclusion is presented in section, VI. 

 

II The 𝑸 Theory 

We start by noting that Planck mass, 𝑚𝑃𝑙 , is related to Planck charge, 𝑞𝑃𝑙 , by the following 

relation. 

    𝑚𝑃𝑙
2  𝐺 = ħ 𝑐 = 𝑞𝑃𝑙

2  𝑘                             (2 − 1) 

This is easily proven by using the respective definitions for both, 𝑚𝑃𝑙, and, 𝑞𝑃𝑙.  In the above 

equation, 𝑘, is related to the electric permittivity of free space, 𝜀0
𝑒𝑙𝑠𝑡𝑎𝑡, by the equation, 

𝑘 = 1/(4𝜋𝜀0
𝑒𝑙𝑠𝑡𝑎𝑡) = 8.988 𝐸9  (𝑀𝐾𝑆).  All units not expressly written out are 𝑀𝐾𝑆 units.  

Using equation, (2 − 1), both, 𝑚𝑃𝑙, and, 𝑞𝑃𝑙 , could have been created at the same time, and 

not necessarily at 𝐶𝐵𝑅 temperature, 10 𝐸32 𝐾𝑒𝑙𝑣𝑖𝑛.  If 𝐺 varies with cosmological time, then 

equation, (2 − 1), tells us that, 𝑚𝑃𝑙 , must also vary such that the product of, 𝑚𝑃𝑙
2  𝐺 = ħ 𝑐 , 

stays constant.  In the current epoch, 𝐺 = 𝐺0 = 6.674 𝐸 − 11 (𝑀𝐾𝑆).  This fixes the Planck 

mass in the present epoch to equal, 𝑚𝑃𝑙 = 𝑚𝑃𝑙,0 = 2.178 𝐸 − 8 𝑘𝑔. 
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We next multiply equation, (2 − 1), by 1/𝑟2.  The, 𝑟 , will stand for the distance of separation 

between two Planck mass particles, which is the same distance as between the two Planck 

charge particles.  Because they are one and the same particle by our hypothesis, we have two 

separate forces coming into being at the same time, as two separate force magnitudes are 

formed. 

    𝐺 𝑚𝑃𝑙
2 /𝑟2 = ħ 𝑐/𝑟2 = 𝑘 𝑞𝑃𝑙

2 /𝑟2               (2 − 2) 

Along a line connecting the two particles, one of the forces, 𝐺 𝑚𝑃𝑙
2 /𝑟2, will be attractive, and 

the other, 𝑘 𝑞𝑃𝑙
2 /𝑟2, repulsive, when acting on an individual Planck particle, or planckion.  From 

equation, (2 − 2), it follows namely that, 

    (𝐺 𝑚𝑃𝑙
2 /𝑟2 − 𝑘 𝑞𝑃𝑙

2 /𝑟2) 𝑖̂ = 0                (2 − 3) 

The unit vector, 𝑖̂, points from one mass to the other.  In equation, (2 − 3), we see that 

Newton’s law, and Coulomb’s law, hold for two positive, as well as two negative, planckion 

masses or charges.  What about a positive with a negative mass/ charge?  Then we introduce a 

minus sign for the two terms on the left hand side of equation, (2 − 3).  Their sum still adds up 

to zero.  Positive and negative planckions do not interact directly, but indirectly [11,23], 

through fluid forces.  These fluid forces are caused by particles within their own species.  The 

fluid forces are such as to make the positive and negative mass particles spread out evenly.  

However, because the two species occupy the same space, the positive and negative particles 

are invariably drawn next to each other through their respective fluid forces.  They are forced 

to rub shoulders with one another, so to speak, without necessarily interacting.  Nevertheless, 

equation, (2 − 3), still works as an effective force law between unlike charges/masses.   

Equations, (2 − 2) , or, (2 − 3), are the effective forces acting on individual planckions due to 

another specific planckion in the vicinity.  The simplest way to write this force law is simply, 

           𝐹 = ħ 𝑐/𝑟2 = 𝐹𝑔𝑟𝑎𝑣 = 𝐹𝑒𝑙𝑠𝑡𝑎𝑡                (2 − 4) 

These planckions need not be nearest neighbors.  This is both simultaneously an attractive and 

a repulsive force by virtue of equations, (2 − 2), or, (2 − 3).  When attractive, we call it 

gravity.  When repulsive, we call it electrostatic.  Positive and negative mass planckions want to 

maintain a fixed distance of separation from other positive and negative mass planckions. 

Numerically, the Planck charge has the value, 𝑞𝑃𝑙 = 1.876 𝐸 − 18 𝐶.  This can be evaluated 

using equation, (2 − 1).  The Planck charge is related to the elementary unit of charge, 

𝑒 = 1.6 𝐸 − 19 𝐶, by the Sommerfeld fine structure constant, 

    (𝑒/𝑞𝑃𝑙)2 = 𝛼𝐸𝑀 = 𝑘𝑒2/(ħ𝑐) = 1/137              (2 − 5) 



 
 

8 
 

We interpret 𝑞𝑃𝑙 as the naked charge of an electron or a proton, whereas “e” is the dressed 

charge, which takes into account the electrostatic polarization of space surrounding the naked 

charge [28].  Due to the screening in electrostatics, the polarization cloud will lower the original 

naked charge by a factor, (1/137)1/2.  The elementary unit of charge is what is measured and 

not the naked charge.  We expect the same in gravistatics.  The, 𝑚𝑃𝑙 , will not be measured 

directly, but rather a dressed version, taking the gravistatic polarization cloud into account.  In 

contrast to electrostatics where we have screening, in gravistatics, we have anti-screening.  This 

should serve to enhance, i.e., increase the naked mass.  The dressed mass will be heavier than 

the naked Planck mass, a prediction. 

It was stated that positive and negative mass planckions want to maintain a fixed distance of 

separation from one another.  When displaced from equilibrium, the planckions will experience 

a restoring force wanting to bring them back to their original configuration.  For a positive and 

negative mass planckion, those forces are [11], respectively, 

𝐹+,𝑥 = (𝑚𝑃𝑙) 𝑥̈ = −𝜅 𝑥              (2 − 6𝑎) 

𝐹−,𝑥 = (−𝑚𝑃𝑙) 𝑥̈ = +𝜅 𝑥              (2 − 6𝑏) 

The, = 𝜅+ = 𝜅− , is the planckion spring constant, which is assumed the same for both positive 
and negative mass particle.  The, +𝜅 , on the right hand side of equation, (2 − 6𝑏), is needed 
for a bounded solution.  Choosing a negative spring constant on the right hand side would give 
us a hyperbolic sinusoidal solution, which is unbounded.  The, 𝑥 , here, refers to the 
displacement from equilibrium, either positive or negative, along a particular direction.  If 
planckion particles get too close to other particles of the same species, then there will be 
repulsion.  If they stray too from each other, then there will be attraction.  In this way 
equilibrium is maintained within the fluid, where the individual planckions are, more or less, 
anchored in position. 

As was demonstrated by Winterberg, the collective fluid force acting on a positive mass 
planckion is, 

𝐹+
⃗⃗⃗⃗⃗ = −𝑛+

−1 ∇⃗⃗⃗𝑝+                 (2 − 7) 

          = −𝑛+
−1 (∇⃗⃗⃗𝑛+) 𝑚𝑃𝑙𝑐

2 

This is due to the other positive mass planckion particles within the fluid. In equation, (2 − 7), 

𝑛+(𝑥⃗) stands for the positive mass planckion number density, and ∇⃗⃗⃗𝑝+ is the gradient of the 
planckion pressure, 𝑝+(𝑥⃗) .  The positive planckion pressure exerted by the other positive mass 
planckions is defined as, 𝑝+ ≡ 𝑛+ 𝑚𝑃𝑙𝑐

2, where 𝑐 is the speed of light and, 𝑚𝑃𝑙 , is  the Planck 
mass.  Like all fluids, for an increase in pressure in moving the particle from, 𝑥, to, 𝑥 + 𝑑𝑥, there 
is a restoring force acting in the opposite direction, wanting to bring the particle back.  In one 
dimension, equation, (2 − 7), namely reads,  
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    𝐹+,𝑥 = −𝑛+
−1  𝑑𝑛+/𝑑𝑥  𝑚𝑃𝑙   𝑐2                

    −𝜅𝑥 = −𝑛+
−1  𝑑𝑛+/𝑑𝑥  𝑚𝑃𝑙  𝑐

2               (2 − 8) 

We have set the left hand side of equation, (2 − 8), equal to – 𝜅𝑥, because this is our restoring 
force.  Think of the left hand side as a response to the right hand side, where we assume some 
sort of external influence. 

Equation, (2 − 8), is easily solved by bringing the, 𝑑𝑥, over to the left hand side and 
integrating.  The solution is 

    𝑛+(𝑥) = 𝑛+(0)  𝑒𝜅𝑥2/(2 𝑚𝑃𝑙 𝑐2)               (2 − 9) 

Increasing 𝑥 in either the positive or negative sense, increases the number density, 𝑛+, but also 
at the same time, the planckion mass density, 𝜌+ ≡ 𝑚𝑃𝑙 𝑛+(𝑥), and the planckion pressure, 
𝑝+ ≡ 𝑚𝑃𝑙 𝑛+(𝑥) 𝑐2.  This produces a force, acting in the opposite direction, as indicated by 
equation, (2 − 8).  Equation, (2 − 9), indicates a “hole”, or trough, centered about, 𝑥 = 0, for 
the positive mass planckion to “rest” in.  The minimum planckion pressure is achieved when, 
𝑥 = 0. 

For a negative mass planckion, the counterpart to equation, (2 − 7), is found by replacing all 
positive signs by negative signs and vice versa, and making the substitution, 𝑚𝑃𝑙 → −𝑚𝑃𝑙.  
Thus, the fluid force acting on the negative mass planckion equals, 

𝐹−
⃗⃗⃗⃗⃗ = +𝑛−

−1 ∇⃗⃗⃗𝑝−               (2 − 10) 

          = +𝑛−
−1 (∇⃗⃗⃗𝑛−) (−𝑚𝑃𝑙)𝑐2 

This force, 𝐹−
⃗⃗⃗⃗⃗ , is due to the other negative mass planckions populating the vacuum.  

Here, 𝑛−(𝑥⃗) stands for the negative mass planckion number density, and,  𝑝−(𝑥⃗) is the 
corresponding negative mass planckion pressure, defined by, 𝑝− ≡ 𝑛−(𝑥⃗)  (−𝑚𝑃𝑙) 𝑐2 =
−𝑛− 𝑚𝑃𝑙𝑐

2.  We notice that 𝑝− is inherently negative.  The mass density, 𝜌− ≡ 𝑛−(𝑥⃗)  (−𝑚𝑃𝑙), 
is also inherently negative.  Note that in equation, (2 − 10), the negative mass particle is taking 
the path of steepest ascent, because we are taking the positive gradient.  Think of a negative 
mass particle in the earth’s gravitational field… it would accelerate upwards when released.  
This is in contrast to equation, (2 − 7), where we are looking at the path of steepest descent, 
i.e., negative the gradient, for a positive mass particle. 

In one dimension, equation, (2 − 10), reduces to  

    𝐹−,𝑥 = +𝑛−
−1  𝑑𝑛−/𝑑𝑥  (−𝑚𝑃𝑙)  𝑐2                

    +𝜅𝑥 = −𝑛−
−1  𝑑𝑛−/𝑑𝑥  𝑚𝑃𝑙  𝑐

2             (2 − 11) 

See equation, (2 − 6𝑏).  We have set the left hand side equal to, +𝜅𝑥, because this is a 
restoring force for the negative mass planckion.  The solution to equation, (2 − 11), is found by 
integration.  The result gives, 
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    𝑛−(𝑥) = 𝑛−(0)  𝑒−𝜅𝑥2/(2 𝑚𝑃𝑙 𝑐2)             (2 − 12) 

This Gaussian looking function indicates a peak at, 𝑥 = 0, versus a trough, as in equation, 
(2 − 9).  A peak for a negative mass particle is equivalent to a “hole “, for a positive mass 
particle.  In other words, a negative mass planckion will move in such a way, as to increase its 
planckion pressure.  Think of a negative mass particle in the earth’s gravitational field.  When 
released it would accelerate upwards at, 9.81 𝑚/𝑠2, increasing its gravitational pressure.  At, 
𝑥 = 0, in equation, (2 − 12), we have maximum pressure for a negative mass planckion.  Any 
positive or negative displacement from this equilibrium position, will lead to restoring forces 
tending to bring the negative mass particle back to, 𝑥 = 0. 

The total planckion pressure, p , due to positive and negative Planck particles, in a region of 
space, 𝑥⃗ , is 

     𝑝 = 𝑝+ + 𝑝− 

         =  𝑚𝑃𝑙 𝑐
2  (𝑛+ − 𝑛−) 

         = 0                 (𝑢𝑛𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 𝑓𝑙𝑢𝑖𝑑)                    (2 − 13) 

         ≠ 0                 (𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 𝑓𝑙𝑢𝑖𝑑;  𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑖𝑒𝑙𝑑) 

For the undisturbed fluid (vacuum) with no gravitational fields, the positive and negative mass 
number densities balance, i.e., 𝑛+(𝑥⃗) = 𝑛−(𝑥⃗).  The Planck pressure, = 𝑝𝑃𝑙 , is related to the 
planckion mass density, 𝜌 ,by the equation of state, 𝑝 = 𝑤 𝜌 𝑐2, where, 𝑤 = 1.  Individually, 

𝑝+ = 𝑤 𝜌+ 𝑐2 = 𝜌+ 𝑐2, 𝑝− = 𝑤 𝜌− 𝑐2 = 𝜌− 𝑐2,  𝑝 = 𝑤 𝜌 𝑐2 = 𝜌 𝑐2     (2 − 14𝑎, 𝑏, 𝑐) 

, where,  𝑤 = +1, in all instances.  Therefore, by equation, (2 − 13), we may also write, 

𝜌(𝑥⃗) = 𝜌+ + 𝜌− 

               =  𝑚𝑃𝑙 (𝑛+ − 𝑛−) 

                  = 0    (𝑢𝑛𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 𝑓𝑙𝑢𝑖𝑑)           (2 − 15) 

               ≠ 0    (𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 𝑓𝑙𝑢𝑖𝑑;  𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑖𝑒𝑙𝑑) 

In a gravitational field, the two component superfluid will no longer be undisturbed.  If, 𝑔⃗ ≠ 0, 
then we have a perturbed state where,  𝑛+(𝑥⃗) > 𝑛−(𝑥⃗) , as will be shown shortly.  Then we 
have a net planckion pressure, and a net planckion mass density, which is now unequal to zero.  
A net planckion mass density and pressure for the vacuum is a new prediction of Winterberg’s 
theory. 

In a gravitational field, there is an increase in gravitational pressure.  The total gravitational 
pressure, 𝑝𝑔𝑔(𝑥⃗), which can be thought of as equivalent to gravitational field energy density, 

equals, 

    𝑝𝑔𝑔 = 𝜌𝑔𝑔 𝑐2 = 1/2  𝐾 𝜀 𝑔2              (2 − 16) 



 
 

11 
 

In this equation, 𝜌𝑔𝑔, is the gravitational field mass density, 𝐾 , the relative gravitational 

permittivity, and , 𝜀, the gravitational permittivity, defined as, 𝜀 = 1/(4𝜋𝐺), by analogy to 
electrostatics.   In the present cosmological epoch, 𝜀 = 𝜀0 = 1/(4𝜋𝐺0) = 1.192 𝐸9 (𝑀𝐾𝑆).   
Both, 𝐾 = 𝐾(𝑎), and, 𝜀 = 𝜀(𝑎), are thought to be epoch dependent [12].  We presented two 
specific models for both, 𝐾 = 𝐾(𝑎), and, 𝜀 = 𝜀(𝑎), where, 𝑎, is the cosmic scale parameter, in 
previous work.  By analogy to electrostatics, there is an energy density associated with 
gravitational fields.  For gravistatics, we replace the electrostatic version of electric field energy 
density, 1/2  𝐾 𝜀0  𝐸

2 , by its gravitational counterpart, 1/2  𝐾 𝜀 𝑔2 [11].  Wherever we have a 
gravitational field, we have energy trapped in a box, and by default, an equivalent mass density.  
Through equation, (2 − 16), we can calculate the amount. 

We next set the gravitational field mass density, in equation, (2 − 16), equal to the net 
planckion mass density, equation, (2 − 15), in the disturbed vacuum state. 

      𝜌 = 𝜌𝑔𝑔   

    [𝑛+(𝑥⃗) − 𝑛−(𝑥⃗)] 𝑚𝑃𝑙 = 1/(2𝑐2)  𝐾 𝜀 𝑔2            (2 − 17) 

We no longer have, 𝑛+(𝑥⃗) = 𝑛−(𝑥⃗), but, 𝑛+(𝑥⃗) > 𝑛−(𝑥⃗), because of the presence of the 
gravitational field.  If we multiply equation, (2 − 17), through by, 𝑐2, then we see that the 
planckion pressure equals the gravitational pressure.  If, 𝜌𝑔𝑔(𝑥⃗) ≠ 0, we literally create mass 

out of the vacuum, and since the vacuum is made up of planckions and blackbody photons 
exclusively, this mass increase must be due to a net planckion mass density.  The same holds for 
gravitational pressure.  If the net gravitational pressure at a point in the vacuum is unequal to 
zero, 𝑝𝑔𝑔(𝑥⃗) ≠ 0, then the massive planckions must be responsible, and, therefore, we can set, 

𝑝 = 𝑝𝑔𝑔 ≠ 0.   

In a small enough region of space, the gravitational field, 𝑔⃗(𝑥⃗) , is uniform and constant.  
Without loss of generality, we can assume that 𝑔⃗(𝑥⃗) points in the negative 𝑥 direction, −𝑖̂.  
Equation, (2 − 17), can then be rewritten as, 

   [𝑛+(𝑥) − 𝑛+(0)] − [𝑛−(𝑥) − 𝑛−(0)]  = 𝜌𝑔𝑔/𝑚𝑃𝑙 

  𝑛+(0) [  𝑒𝜅𝑥2/(2 𝑚𝑃𝑙 𝑐2) − 1] − 𝑛−(0) [  𝑒−𝜅𝑥2/(2 𝑚𝑃𝑙 𝑐2) − 1] = 𝜌𝑔𝑔/𝑚𝑃𝑙 

   𝑛+(0) [  𝑒𝜅𝑥2/(2 𝑚𝑃𝑙 𝑐2) −  𝑒−𝜅𝑥2/(2 𝑚𝑃𝑙 𝑐2)] = 𝜌𝑔𝑔/𝑚𝑃𝑙                    (2 − 18) 

For the second line, we made use of equations, (2 − 9), and, (2 − 12).  And for the third line, it 
was recognized that, 𝑛+(0) = 𝑛−(0). 

We next make a change of variable.  Let us define, 

     𝑦 ≡ 𝜅 𝑥2/(2 𝑚𝑃𝑙 𝑐
2)  ≥ 0             (2 − 19) 

Then equation, (2 − 18), becomes 

         𝑛+(0) [𝑒𝑦 −  𝑒−𝑦] = 𝜌𝑔𝑔/𝑚𝑃𝑙       
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            𝑛+(0) 2 sinh(𝑦) = 𝜌𝑔𝑔/𝑚𝑃𝑙                                       (2 − 20) 

We have employed a mathematical identity, [𝑒𝑦 −  𝑒−𝑦] = 2 sinh (𝑦), for the second line.  In a 
gravitational field the, 𝑛+(𝑥⃗) , will increase, and the, 𝑛−(𝑥⃗), will decrease over, the 𝑛+(0) =
 𝑛−(0) values.  Due to the symmetry between positive and negative planckions, the increase in, 
[𝑛+(𝑥) − 𝑛+(0)], equals the decrease in, [𝑛−(𝑥) − 𝑛−(0)].  The factor of two in equation, 
(2 − 20), reflects that fact. 

Several notes are in order regarding equation, (2 − 20).  First, we have literally created mass 
out of the vacuum through the introduction of,  𝑔⃗(𝑥⃗).  See equation, (2 − 17).  Second, even 
though positive and negative mass planckions, are spatially anchored in position, they can be 
displaced by external influences, such as a g-field.  This will produce net gravitational, or, net 
planckion pressure, as well as net gravitational mass density, or net planckion density.  Third, 
equation, (2 − 20), shows us how much of a displacement we can expect for a given 
gravitational field.   On the right hand side, we have, 𝜌𝑔𝑔 = 1/2  𝐾 𝜀 𝑔2, and on the left hand 

side, we have 𝑦 ≡ 𝜅 𝑥2/(2 𝑚𝑃𝑙 𝑐
2).  Within this expression for, 𝑦, is the displacement, 𝑥.  What 

is needed is the spring constant, 𝜅 , which we will soon evaluate.  For small values of, 𝑦 , the, 
𝑠𝑖𝑛ℎ(𝑦) ≅ 𝑦 , and equation, (2 − 20), reduces to, 

   𝑛+(0) [𝜅 𝑥2/(𝑚𝑃𝑙 𝑐
2)] = 1/(2𝑐2)  𝐾𝜀 𝑔2/𝑚𝑃𝑙 (𝑦 ≪ 1)        (2 − 21) 

Simplifying and rearranging, we have, 

     𝑥 = [𝐾𝜀/(2 𝜅 𝑛+(0))]1/2 𝑔  (𝑦 ≪ 1)        (2 − 22) 

We notice that in the limit where, 𝑦 ≪ 1, the displacement, 𝑥, is directly proportional to, 𝑔.  
The other terms are constants.  Fourth, to determine,  𝑛+(0) , one needs, 𝑦, or, equivalently, 
𝜅 𝑥2.  Fifth, the restoring force depends on, 𝜅, the planckion spring constant.  The 
displacement, 𝑥, should depend on that as well.  In equation, (2 − 22), we see clearly that an 
increase in, 𝜅, leads to a decrease in displacement, 𝑥. 

In the present epoch, the gravitational permittivity, 𝜀 = 𝜀0 = 1/(4𝜋𝐺0) = 1.192 𝐸9 (𝑀𝐾𝑆).  
The relative permittivity, 𝐾, is a bit tricky.  It is determined from the gravitational susceptibility,  
, through the relation, 𝐾 = 1 − 𝜒.  The gravitational susceptibility has been found for the 
cosmos as a whole, as a smeared quantity [11].  However, its value locally depends on many 
factors such as the localized gravitational dipole moment, local gravitational field, and local 
ambient temperature [12].  It varies from place to place in the universe.  Fortunately, however, 
there is a relation, which can help us.  As shown in reference [11], the bound mass, 𝑀𝐵 , made 
up of macroscopically ordered dipole moments, is related to the free, source mass, 𝑀𝐹 , made 
up of quarks and leptons, through the relation, 𝑀𝐵 = (𝜒/𝐾) 𝑀𝐹.  The masses, 𝑀𝐹 , and, 𝑀𝐵, 
are the masses contained within a Gaussian surface.  The, 𝜒, and, 𝐾 = 1 − 𝜒 , on the other 
hand, are the susceptibility, and relative permittivity values on the Gaussian surface, 
respectively.  In many instances, when considering astronomical bodies, such as the earth, or a 
black hole, we can estimate the surface gravitational dipole moment, the ambient surface 
temperature, as well as the surface gravitational field.  Thus we can estimate, 𝜒.  In many 
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instances, right outside the surface, 𝜒, is negligible, which tells us that the bound mass 
contained within that surface is negligible.   If, 𝜒 ≅ 0, then it follows that, 𝐾 ≅ 1.   

We next focus on finding a relation between the planckion spring constant, 𝜅, and, 𝑛+(0), the 
planckion number density for an undisturbed planckion fluid. 

 

III Determination of Planckion Number Density, Nearest Neighbor Distance of 

Separation, and Planckion Spring Constant 

We next want to establish a connection between the planckion spring constant, 𝜅, which holds 

for both species of Planck particle, and, 𝑛+(0) = 𝑛−(0), the undisturbed positive and negative 

mass planckion number density.  As shown previously in section II, a positive mass planckion 

will simultaneously attract and repel another positive mass planckion through gravitational and 

electrostatic forces.  The same will hold true for negative mass planckions.  In short they strive 

to maintain a fixed distance of separation from one another.  Unlike mass planckions really do 

not interact directly [23,11].  Instead they interact indirectly by being forced close to one 

another by their respective fluid forces. 

Consider a string of positively charged planckions, all in a row, along the 𝑥-axis, and label them, 

#1, #2, #3, etc.  Due to the symmetry, forces in the, 𝑦, and, 𝑧, direction cancel, and we are 

concerned only with forces in the 𝑥-direction.   Focus on particle, #3, and sum up the forces 

acting on that particle, when that 3rd particle is displaced a distance, 𝑥 , to the right.  We 

claimed previously, that displacing this planckion will cause a restoring force in the amount, 

𝐹+,𝑥 = (𝑚𝑃𝑙) 𝑥̈ = −𝜅 𝑥, and so we obtain, 

−𝜅 𝑥 = 𝐹43𝑥 + 𝐹23𝑥 + 𝐹53𝑥 + 𝐹13𝑥 + ⋯                    (3 − 1) 

         = −𝑘𝑞𝑃𝑙
2  [1/(𝑙+ − 𝑥)2 − 1/(𝑙+ + 𝑥)2 + 1/(2𝑙+ − 𝑥)2 − 1/(2𝑙+ + 𝑥)2 + ⋯ ] 

   = −ħ𝑐/𝑙+
2    [1/(1 − 𝑥/𝑙+)2 − 1/(1 + 𝑥/𝑙+)2 + 1/(2 − 𝑥/𝑙+)2 − 1/(2 + 𝑥/𝑙+)2 + ⋯ ] 

In the last line, we used equation, (2 − 1).  The force that particle, #4, exerts on particle, #3, 
which is, 𝐹43𝑥, is pointing to the left, and hence the negative sign in equation, (3 − 1).  The 
force that particle, #2, exerts on particle, #3, which is, 𝐹23𝑥, is pointing to the right, and hence 
the positive sign associated with this force in equation, (3 − 1).  The positive and negative signs 
for all subsequent forces are found in this fashion.  In equation, (3 − 1), 𝑙+ , is the unperturbed 
or average nearest neighbor equilibrium distance of separation between two planckions of the 
same species.   

The,  𝑙+ = 𝑙+(0), is related to the positive mass planckion number density, 𝑛+(0), through the 
equation, 

     𝑛+(0) = 𝑙+(0)−3                (3 − 2) 
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Next, we recognize that, for any arbitrary, “𝑏”, and, "𝛽" values, the following identity holds, 

   1/(𝑏 − 𝛽)2 − 1/(𝑏 + 𝛽)2 = 4𝑏𝛽/(𝑏2 − 𝛽2)              (3 − 3) 

This can be proven algebraically.  We set, 𝛽 = 𝑥/𝑙+ , and substitute this together with equation, 
(3 − 3), for various, “𝑏”, values into equation, (3 − 1).  We find, 

 −𝜅 𝛽 𝑙+ = (−ħ𝑐/𝑙+
2 )  [4𝛽/(1 − 𝛽2)2 + 8𝛽/(4 − 𝛽2)2 + 12𝛽/(9 − 𝛽2)2 + ⋯ ]  (3 − 4) 

In equation, (3 − 4), we first factor out the, −𝛽,  term on both left and right hand sides.  Then 
we bring the, 𝑙+ , term from the left hand side over to the right hand side, and make use of 
equation, (3 − 2), to simplify.   The result, after pulling out a factor of 4, is, 

𝜅 = [4 ħ𝑐 𝑛+(0)]  [1/(1 − 𝛽2)2 + 2/(4 − 𝛽2)2 + 3/(9 − 𝛽2)2 + ⋯ ]      (3 − 5) 

Equation, (3 − 5), holds for any value of 𝛽 , including 𝛽 = 0, or, what is equivalent, 𝑥 = 0.  
Therefore it follows that, 

𝜅 = [4 ħ𝑐 𝑛+(0)]  [1 + 1/8 + 1/27 + 1/64 + ⋯ ]                            (3 − 6) 

The infinite series within equation, (3 − 6), is a known series, 

     ∑  (1/𝑛3) = 𝜁(3) = 1.202 …∞
𝑛=1               (3 − 7) 

Here, 𝜁 , is the Riemann Zeta function [29-30], and 𝜁(3) equals Apery’s constant, an irrational 
number.  Numerically, 𝜁(3) = 1.202 ….  Making use of this value, we now have an expression 
for, 𝜅, the planckion spring constant.  It reads, 

     𝜅 = 4 ħ𝑐 𝑛+(0) 𝜁(3) 

    = (4.808 … ) (ħ𝑐) 𝑛+(0)               (3 − 8) 

More generally, irrespective of the value of, 𝛽 = 𝑥/𝑙+ , in equation, (3 − 5), the infinite series 
within that expression on the right hand side, must equal, 𝜁(3). 

The arguments above for a positive mass/charge planckion particle also hold for a negative 
mass/charge planckion particle,.  Some of the signs change, but the outcome is the same.  The 
negative mass planckions are also held in check by what are, essentially, electrostatic forces. 

We still have to determine the planckion number density, 𝑛+(0) = 𝑛−(0), for an undisturbed 
vacuum.  To fix a value for, 𝑛+(0) , and thus determine a value for 𝜅, by equation, (3 − 8), we 
use the fact that our planckions are, more or less, spatially anchored or locked in position.  
Hence they are confined to a region of space where box quantization must apply.  They are also 
oscillating, i.e., continuously accelerating, which produces gravitational radiation.  Because they 
are “boxed in”, and radiating, the energy of the radiation emitted must be related to the energy 
level jumps, or transitions, permissible within that box.  Much like the Bohr atom for Hydrogen, 
energy level transitions account for the radiation frequency emitted.  The situation here is 
totally analogous. 



 
 

15 
 

To see this more clearly, we consider the energy levels for a particle trapped in a 3-dimensional 
cubic box, having volume, 𝐿3.  These are well known to be quantized, and given by the 
expression [31], 

    𝐸 𝑛𝑥 𝑛𝑦 𝑛𝑧
= 𝜋2ħ2/(2𝑚𝐿2)  (𝑛𝑥

2 + 𝑛𝑦
2 + 𝑛𝑧

2)              (3 − 9) 

The, 𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 , are quantum numbers, which can take on the values, 1,2,3, ….   The lowest 

energy level, or ground state, is specified by, (𝑛𝑥 , 𝑛𝑦  , 𝑛𝑧) = (1,1,1).  In this instance, equation, 

(3 − 9), reduces to,  

𝐸111 = (7.566 𝐸 − 60)/𝐿2                          (3 − 10) 

For the mass of the confined particle, we have chosen the Planck mass, which in the present 
epoch, equals, 𝑚𝑃𝑙 = 2.176 𝐸 − 8 𝑘𝑔.  The next highest energy level has three-fold 
degeneracy, because, 𝐸211 = 𝐸121 = 𝐸112 = 2𝐸111.  The next highest energy level also has 
three-fold degeneracy since, 𝐸122 = 𝐸212 = 𝐸221 = 3𝐸111.    The fourth level has no 
degeneracy,  𝐸222 = 4𝐸111.  Continuing in this fashion, we can account for all the energy levels. 

If the positive mass planckion is excited, due to collisions with 𝐶𝐵𝑅 photons, for example, 
transitions between energy levels are possible.  We have quantum jumps where the energy 
emitted is, 

     ∆𝐸 = 𝐸 𝑛𝑥 𝑛𝑦 𝑛𝑧
− 𝐸 𝑛𝑥

′   𝑛𝑦 
′  𝑛𝑧

′              (3 − 11) 

The unprimed quantum numbers refer to the situation before, and the primed quantum 

numbers correspond to the situation after the transition.  This is completely analogous to the 

situation in the Hydrogen atom, where we have the Lyman series, the Balmer series, the 

Paschen series, etc. 

The most probable transition is the most frequent one, and there, ∆𝐸 = 𝐸111.  This is already 

obvious from the few examples of energy levels given.  Transitioning from higher to lower levels 

gives exactly this amount.  For example, transitioning from, 𝐸222 → 𝐸221, gives exactly this 

amount. 

The energy being emitted is determined by the Planck radiator formula, 

    ∆𝐸 = ℎ𝜈/2  +   ℎ𝜈/[𝑒(ℎ𝜈/𝑘𝐵𝑇) − 1]             (3 − 12) 

Here, 𝜈, is the frequency of the photon being emitted, and 𝑇 is the blackbody 𝐶𝐵𝑅 

temperature.  The, 𝑘𝐵, is Boltzmann’s constant.  Nowhere in this formula, is mass, or charge, 

explicitly stated.  We interpret this to mean that any quantum radiator will emit this amount of 

energy irrespective of whether it is mass or charge which is oscillating.  In our case, it is both, 

due to the 𝑄 hypothesis. 
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We will consider quantum radiators due to planckions at 𝐶𝐵𝑅 temperature.  In the present 

epoch, 𝑇0 = 2.725 𝐾𝑒𝑙𝑣𝑖𝑛.  Equation, (3 − 12), the becomes, 

    ∆𝐸 = [. 5 + .0633](1.061 𝐸 − 22) 

            = 5.976 𝐸 − 23  𝐽𝑜𝑢𝑙𝑒𝑠              (3 − 13) 

In equation, (3 − 13), we have chosen the most probable frequency, for the frequency for this 

particular CBR temperature.  In general the peak frequency is specified by, 

     𝜈𝑝𝑒𝑎𝑘 = 2.8214 (𝑘𝐵𝑇/ℎ) 

                 = 1.601 𝐸11    𝐻𝑧             (3 − 14) 

The oscillating and continuously accelerating positive mass/charge planckion acts as a radiator, 

and at a 𝐶𝐵𝑅 temperature of 2.725 𝐾𝑒𝑙𝑣𝑖𝑛 emits this specific frequency as its peak frequency.  

In reality a whole spectrum of frequencies are being emitted as an infinite number of quantum 

transitions are possible.  See equation, (3 − 11).  We singled out one particular frequency, the 

most probable. 

Equation, (3 − 9), is explicitly mass dependent.  If the mass of the positive mass planckion 

changes, due to a change in 𝐺 value, this will affect the energy levels, and the transitions which 

are possible.  Lower mass means higher energy levels for the same quantum numbers according 

to equation, (3 − 9).  This means that, in general, larger frequencies will be emitted.  But this is 

exactly what we expect at higher 𝐶𝐵𝑅 temperature. The frequencies being emitted, in general, 

will also change as a consequence, being shifted towards higher values.  They are still 

quantized, but will take on different values. 

What about the negative mass planckions?  For a negative mass, such as a negative mass 

planckion, the energy levels are inherently negative, by equation, (3 − 9), as measured from 

the top down.  We have inverted box quantization, where instead of a potential energy square 

well, we have the mirror image, an upright potential energy square well.  This upright well is 

populated with energy levels, according to equation, (3 − 9), taken from the top down.  The 

largest energy level jumps are near the top. The highest level in this inverted potential energy 

well is the “ground state”.  And negative mass particles will want to transition to this highest 

energy level.  Equation, (3 − 11), is still valid.  But instead of going from less negative energy to 

more negative energy, which is the case for a positive mass particle, we will be transitioning 

from positive energy levels to higher positive energy levels for a negative mass particle.  By 

transitioning upwards, a negative mass planckion actually lowers its binding energy.  Due to the 

symmetry of the energy levels between positive and negative planckions, the most probable 

transition here, also, releases, ∆𝐸 = 𝐸111 = 5.976 𝐸 − 23  𝐽𝑜𝑢𝑙𝑒𝑠, of energy. 
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It is worth mentioning that the frequency of emission, 𝜈 , is exactly equal to the difference in 

oscillating frequencies of the planckions.  Since the positive and negative mass planckions are 

continuously accelerating, with a specific frequency, the frequency of emission should equal the 

difference, ℎ𝜈 = ħ𝜔𝑖 − ħ𝜔𝑓, in oscillating frequencies, where, 𝜔𝑖 , is the angular frequency of 

the planckion before the transition, and, 𝜔𝑓 , is the angular frequency after the transition. 

Since both the positive and negative mass planckions contribute their fair share of energy to 

the radiator at a particular temperature, we set two times the energy value, indicated by 

equation, (3 − 10), equal to one times the value of equation, (3 − 13), which is the resulting 

energy output.  Thus, 

2 (7.566 𝐸 − 60)/𝐿2  = 5.976 𝐸 − 23             (3 − 15) 

This is easily solved for length,  , and we obtain, 

    𝐿 = 𝑙+(0) = 𝑙−(0) = 5.032 𝐸 − 19 𝑚𝑒𝑡𝑒𝑟𝑠            (3 − 16) 

The dimensions of the cubic box, just so happens to equal the distance of separation between 
nearest neighbor positive, and negative, mass planckions.  The only difference is that the 
geometric center of the box is centered around the positive or negative mass planckion.  

One will notice that our nearest neighbor inter-planckion separation distance, within a specific 
species, is very close to the limits what modern day accelerators are able to probe.  The 
diameter of a quark is about, 8.60 𝐸 − 19 𝑚𝑒𝑡𝑒𝑟𝑠 , and equation, (3 − 16) , is just a hair below 
that.  The 𝐿𝐻𝐶 at 𝐶𝐸𝑅𝑁 produces 7 𝑇𝑒𝑉 protons whose Compton wavelength is 1.78 𝐸 −
19 𝑚𝑒𝑡𝑒𝑟𝑠.  All these distances are comparable to the nearest neighbor inter-planckion 
separation distance.  If our estimates are correct, we may be on the verge of establishing an 
inherent "graininess” for the vacuum. 

Having determined the nearest neighbor separation distance, we proceed to find the average 
number density for both the positive and the negative mass planckions, when the vacuum is in 
the undisturbed state.  For this, we use equations, (3 − 2), and, (3 − 16).  Substituting 
equation, (3 − 16), into equation, (3 − 2), we find that, 

    𝑛+(0) = 𝑙+(0)−3 = 7.848 𝐸54 𝑚−3                      (3 − 17𝑎) 

    𝑛−(0) = 𝑙−(0)−3 = 7.848 𝐸54 𝑚−3                      (3 − 17𝑏) 

The number densities are, needless to say, very high.  But now, we are attempting to find a 

graininess to the vacuum, or space, which many believe is smooth and continuous. 

Finally, let us come back to the spring constant for planckions, equation, (3 − 8).   Using 

equations, (3 − 8), and (3 − 17𝑎), we can now evaluate its value.  We obtain for this 

calculation, 
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     𝜅 = 1.194 𝐸30    𝑁𝑒𝑤𝑡𝑜𝑛𝑠/𝑚𝑒𝑡𝑒𝑟            (3 − 18) 

This is a current epoch value because the spring constant will scale upon expansion of the 

universe, as shown in reference [11].  This large value for a spring constant justifies our 

assumption that we are dealing with a very stiff superfluid/ supersolid when we are considering 

the vacuum.  Inter-planckion restoring forces are indeed very, very large, even for the smallest 

displacements. 

In this section, the spring constant was defined strictly in terms of electrostatic forces.  See 

equation, (3 − 1), which is entirely electrostatic in origin.  In the previous section, 𝜅 , was 

associated with the restoring force if either the gravitational force or the electrostatic force got 

the upper hand.  For equilibrium, the electrostatic force of repulsion counteracted the 

gravitational force of attraction between two like mass planckion particle.  Realizing that we are 

dealing with the same  𝜅 , it should be recognized that the gravitational force is really 

electrostatic in nature. 

We can look more carefully at the sum given in equation, (3 − 1).  All the negative sign 

contributions pull the #3 particle to the left.  All the positive sign contributions pull planckion 

particle #3 to the right.  If,  𝑥 = 0, then there is no displacement and particle #3 is in 

equilibrium.  In other words, both the individual forces pulling to the left and the individual 

forces pushing to the right add up to zero.  We can identify the gravitational force with the sum 

of either one of these net forces, pushing or pulling.  The electrostatic force would then be 

identified with the counteracting force.  In short, the force of gravity is really electrostatic in 

origin within the 𝑄 theory. When the planckions were first created two force magnitudes were 

simultaneously created.  But one counteracted the other, and being an attractive force 

between two masses was treated as a gravitational force.  The gravitational force has evolved 

with cosmological time through a varying 𝐺 value, whereas the electrostatic force has not.  That 

is our hypothesis. 

 

IV Gravitational Displacements, the Gravitational Potential, Latent Gravitational 

Field Energy, and Vacuum Resilience 

We saw that the inter-planckion distance of separation, between like mass planckions, is of the 

order, ~ 5 𝐸 − 19 𝑚𝑒𝑡𝑒𝑟𝑠.  This must be close to the maximum displacement that a planckion 

particle can experience.  Gravitational displacement within the vacuum will occur whenever we 

have an external applied field, such as that what might be found just outside the surface of a 

black hole.  It is now time to look at such situations.  We first start, however, with another 

example, the cosmos as a whole. 



 
 

19 
 

It was shown in a previous work [11], that we can define a cosmic gravitational field, due to all 

the ordinary, and polarized bound mass contained within the cosmos.  Polarized bound mass 

was identified as dark matter.  Using Gauss’s law, and the 𝛬𝐶𝐷𝑀 parameters in Friedmann’s 

equation, we found that, 

     𝑔0̅̅ ̅ = 2.387 𝐸 − 9 𝑚/𝑠2                           (4 − 1) 

The subscript, “0”, refers to the present epoch, and the bar indicates an average or smeared 

quantity.  At distance scales in excess of about, 100 𝑀𝑝𝑐, the universe is fairly homogeneous 

and isotropic.   The cosmic gravitational field, 𝑔0̅̅ ̅ , in equation, (4 − 1), is the value obtained at 

the surface of the Hubble bubble, our Gaussian surface, and takes into account all matter, 

ordinary, and bound, contained within this sphere.  Even though, 𝑔0̅̅ ̅ , technically, is a surface 

gravitational field, we argued that it holds point for point within the cosmos, because one 

observer’s surface is another observer’s point of reference.  Any observer within the universe 

would measure this same value, irrespective of location.  It is a smeared or average value which 

holds for the universe as a whole. 

We identified the cosmic gravitational field mass density,  𝜌𝑔𝑔̅̅ ̅̅ ̅ ≡ 1/(2𝑐2) 𝐾𝜀 𝑔̅2, with dark 

energy.  It permeates all of space, takes into account source matter, made up of quarks and 

leptons, as well as bound, or polarized matter, due to macroscopic ordering of gravitational 

dipole moments within the vacuum.  Using the 𝛬𝐶𝐷𝑀 parameters in Friedmann’s equation, it 

was found that numerically, the relative cosmic gravitational permittivity, 𝐾0 = .158, in the 

present epoch.  Moreover, the gravitational permittivity, defined by, 𝜀 ≡ 1/(4𝜋𝐺), equals 

𝜀0 = 1.192 𝐸9 (𝑀𝐾𝑆), in the current era.  The, 𝐺, is Newton’s constant, which may or may not 

be a cosmological constant.  Since, 𝜌𝑔𝑔,0̅̅ ̅̅ ̅̅  , represents dark energy, it follows that 

    𝜌𝑔𝑔,0̅̅ ̅̅ ̅̅ = 𝛺𝛬,0  𝜌0̅̅ ̅ = (.6911)(8.624 𝐸 − 27) 

                 1/(2𝑐2) 𝐾0 𝜀0 𝑔0̅̅ ̅2 = 5.960 𝐸 − 27   𝑘𝑔/𝑚3                           (4 − 2) 

Solving this for,  𝑔0̅̅ ̅ , gives us the value as is indicated in equation, (4 − 1).  We are using the 

latest cosmological parameters as found by the Planck collaboration (final release) [32-33]. 

Let us find the average displacement associated with this cosmic gravitational field.  We can use 

either equation, (2 − 20), to find this displacement, or, since 𝑦 << 1 , equation (2 − 22).  

We’ll use equation, (2 − 20), because we cannot be sure that 𝑦 << 1.  We first rewrite 

equation (2-20) in the form, 

                 sinh(𝑦) = 𝜌𝑔𝑔 (2 𝑛+(0) 𝑚𝑃𝑙)
−1                                  (4 − 3) 

Next we evaluate the right hand side using equations, (4 − 2), (3 − 17𝑎), and, 
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𝑚𝑃𝑙 = 𝑚𝑃𝑙,0 = 2.176 𝐸 − 8 𝑘𝑔                     (4 − 4) 

Evaluating the right hand side of equation, (4 − 3), gives 

     sinh(𝑦̅) = 1.745 𝐸 − 74               (4 − 5) 

This is clearly a very small value and we are justified in using the approximation, sinh(𝑦) ≅ 𝑦.  

We next substitute our value for, 𝑦, equation, (2 − 19), for the left hand side of equation, 

(4 − 5).   This renders,  

𝑦̅ ≡ 𝜅 𝑥̅2/(2 𝑚𝑃𝑙 𝑐
2)  = 1.745 𝐸 − 74              (4 − 6) 

This equation can be solved for, 𝑥̅.  For the planckion spring constant, 𝜅, we’ll use equation, 

(3 − 18).  The Planck mass is specified in equation, (4 − 4).  And the speed of light is also 

known.  Evaluating 𝑥̅ gives, 

  𝑥̅ = 7.566 𝐸 − 48 𝑚𝑒𝑡𝑒𝑟𝑠 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑚𝑖𝑐 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)             (4 − 7) 

This is an incredibly small displacement.  However, we keep in mind that space is very, very 

dilute, only about 6 hydrogen atoms per cubic meter.  Due to this dilution, there is hardly any 

displacement.  In the true voids, where there is no source matter, we would expect zero 

gravitational field displacement.  Also keep in mind that the maximum displacement seems to 

be in the neighborhood of about, 5 𝐸 − 19 𝑚𝑒𝑡𝑒𝑟𝑠, as is indicated by equation, (3 − 16). 

Another example might be the gravitational field of the earth.  On the surface of the earth, the 

source gravitational field is, 9.81 𝑚/𝑠2.  The relative permittivity, 𝐾, is essentially one because, 

as far as we are able to determine, there is virtually no vacuum susceptibility on the surface of 

the earth, if we take this surface to equal our Gaussian surface.  There is virtually no polarized 

mass enclosed within this surface.  For that we have to have a substantial vacuum or “empty” 

space, which doesn’t exist close to the earth.  We calculate, 𝜌𝑔𝑔, using equation, (2 − 16), and 

find 

𝜌𝑔𝑔 = 1/(2 𝑐2)  𝐾 𝜀 𝑔2 = 6.373  𝐸 − 7              (4 − 8) 

The gravitational permittivity equals,  𝜀 = 𝜀0 = 1.192 𝐸9  (𝑀𝐾𝑆).  Following the same steps as 

before, but now using the new gravitational field mass density, indicated by equation, (4 − 8), 

we find for the new gravitational displacement, 

   𝑥 = 7.824 𝐸 − 38 𝑚𝑒𝑡𝑒𝑟𝑠  (𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑒𝑎𝑟𝑡ℎ)             (4 − 9) 

Compared to the value in equation, (2 − 6), this is about 10 orders of magnitude larger.  

However, it is still extremely small in value.  
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We next look at the gravitational potential and its relation to the gravitational pressure.  We 

designate the gravitational potential by, ∆𝑉𝑔𝑔 , because it is really a difference in gravitational 

voltage that we are considering.  The subscripts indicate that this difference in voltage is due to 

gravitational fields. 

We start with equation, (2 − 8).  If we bring the infinitesimal displacement, 𝑑𝑥, over to the left 

hand side, we really have, −𝑑𝑈𝑥 = +𝐹𝑥 𝑑𝑥 , where, 𝑑𝑈𝑥 , is the infinitesimal change in 

gravitational potential energy.  However, we know that gravitational potential is related to 

gravitational potential energy by the relation, 𝑑𝑉𝑔𝑔,𝑥 = 𝑑𝑈𝑥/𝑚𝑃𝑙.  Once the, 𝑑𝑥, has been 

brought over to the left hand side in equation, (2 − 8), we divide both sides by −𝑚𝑃𝑙 , to 

obtain the relatively simple expression, 

𝑑𝑉𝑔𝑔,𝑥 = 𝑛+
−1  𝑑𝑛+  𝑐2                          (4 − 10) 

We integrate this from, 𝑥 = 0, to, 𝑥 , and find, 

     ∆𝑉𝑔𝑔,𝑥 = ln [𝑛+(𝑥)/𝑛+(0)] 𝑐2            (4 − 11) 

To take the two species of planckion particles into account, the positive and the negative mass 

species, we multiply this expression by a factor of two.  Thus, 

 ∆𝑉𝑔𝑔,𝑥 = 2 ln [𝑛+(𝑥)/𝑛+(0)] 𝑐2            (4 − 12) 

Finally, using equation, (2 − 9), this can be shown to equal, 

     ∆𝑉𝑔𝑔,𝑥 = 𝜅 𝑥2/𝑚𝑃𝑙              (4 − 13) 

This is a very simple and straightforward expression.  Once we calculate a gravitational 

displacement, due to a specific gravitational field, we can find the corresponding increase in 

gravitational voltage, or gravitational potential, within the vacuum.  We simply use equation, 

(4 − 13), with our 𝜅 value, specified in equation, (3 − 18).  The planckion mass in the present 

epoch, is indicated in equation, (4 − 4). 

Some numerical examples are as follows.  For the cosmos as a whole, the average displacement 

of planckions within the vacuum, due to the presence of source and bound mass,  is specified 

by equation, (4 − 7).  Here, equation, (4 − 13), gives 

 ∆𝑉𝑔𝑔,𝑥 = 3.141  𝐸 − 57  𝑚2/𝑠2    (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑜𝑠𝑚𝑜𝑠) 

                     (4 − 14) 

On the surface of the earth, we have a difference displacement, indicated by equation, (4 − 9).  

This leads to a different gravitational potential in the amount, 
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  ∆𝑉𝑔𝑔,𝑥 = 3.359  𝐸 − 37  𝑚2/𝑠2 (𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑒𝑎𝑟𝑡ℎ)            (4 − 15) 

Note that the units for gravitational potential are the same units as, 𝑐2. 

The general relation between gravitational pressure, and gravitational potential, is considered 

next.  Start with equations, (2 − 19), and, (2 − 20), and recognize that, 𝑦 ≡ 𝜅 𝑥2/

(2 𝑚𝑃𝑙 𝑐
2)  = ∆𝑉𝑔𝑔,𝑥/(2𝑐2).  We rewrite equation, (2 − 20), as, 

𝜌𝑔𝑔 = 2𝑚𝑃𝑙 𝑛+(0) sinh( ∆𝑉𝑔𝑔,𝑥/(2𝑐2) )                             (4 − 16) 

We next multiply equation, (4 − 16), through by the factor, 𝑐2, to obtain the gravitational 

pressure, 

𝑝𝑔𝑔 = 2𝑚𝑃𝑙𝑐2 𝑛+(0) sinh( ∆𝑉𝑔𝑔,𝑥/(2𝑐2) )                         (4 − 17) 

This is our desired relation between gravitational pressure, 𝑝𝑔𝑔, and gravitational 

potential, ∆𝑉𝑔𝑔,𝑥 .  In most instances, ∆𝑉𝑔𝑔,𝑥 ≪ (2𝑐2), and we can use the approximation, 

sinh (𝑦) ≅ 𝑦.  In this approximation, equation, (4 − 17), simplifies to, 

𝑝𝑔𝑔 = 𝑚𝑃𝑙 𝑛+(0)  ∆𝑉𝑔𝑔,𝑥                                             (4 − 18) 

Here, we see a direct proportion between gravitational pressure and gravitational potential.  

The mass of the planckion, and planckion number density are also important.  Incidentally, 

planckion pressure and gravitational field energy density, 𝑢𝑔𝑔 , are equal to one another, since 

     𝑝𝑔𝑔 = 𝜌𝑔𝑔 𝑐2 = 𝑢𝑔𝑔              (4 − 19) 

We already identified, 𝜌𝑔𝑔, with dark energy [11].  See also equations, (2 − 16), and, (4 − 2).   

Gravitational pressure, gravitational field mass density, which is the same as planckion mass 

density, and dark energy, are all synonymous with one another.  Equations, (4 − 17), and 

(4 − 18), are another way to find gravitational potential, ∆𝑉𝑔𝑔,𝑥 .  They will of course give the 

same results as before. 

We close this section with some thoughts on the magnitude of the gravitational pressure here 

on the surface of the earth.  As we saw, the mass density equaled the value indicated by 

equation, (4 − 8), namely, 6.373  𝐸 − 7  (𝑀𝐾𝑆).  This is much, much, less than the lightest 

gases found here on the earth’s surface.  We can multiply this by 𝑐2 to obtain the gravitational 

pressure, or gravitational field energy density.  The result is, 

 𝑝𝑔𝑔 = 𝑢𝑔𝑔 = 5.736  𝐸10   𝑁/𝑚2 , 𝑜𝑟  𝐽/𝑚3           (4 − 20) 
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This is a comparatively large value for pressure, or energy density.  Atmospheric pressure, for 

example, equals, 1.013 𝐸5  𝑁/𝑚2.   Why don’t we feel this gravitational pressure?  Why can’t 

the energy in one cubic meter be released? 

In cosmology, the energy densities can be related to the stress-energy tensor.  To release the 

energy trapped in a box, means we would have to alter the stress energy tensor. For that to 

happen, it takes a certain violent gravitational reaction, such as a supernova explosion, or a 

black hole merger.  These are not the conditions found here on earth.  To give you an analogy, 

there is a lot of energy trapped within the nucleus.  But only under certain circumstances can 

this be released, such as in a reactor, or in a bomb, or in a star.  We believe something similar 

happens here.  This is not energy trapped in matter, but energy stored, or trapped, within the 

vacuum, i.e., space itself.  It cannot be released without altering the gravitational field itself.  If 

there is no gravitational field, then there is no gravitational pressure, nor is there a gravitational 

field energy density.  We would have to alter the, 9.81 𝑚/𝑠2, here on earth, in order to tap into 

this energy, or release the gravitational pressure associated with this slightly gravitationally 

stressed vacuum.  If we could eliminate the 9.81 𝑚/𝑠2 in a box, one cubic meter in size, here 

on earth, we would liberate, 5.736  𝐸10   𝐽𝑜𝑢𝑙𝑒𝑠, according to equation, (4 − 20).  We can 

refer to this energy as latent gravitational energy. 

This brings us to mechanical resiliency.  Wherever there is a gravitational field, the vacuum is 

stressed, i.e., the individual planckions making up the vacuum are displaced from equilibrium.  

Our vacuum is very much mechanical in origin.  In material science, resilience is the ability of a 

material to absorb energy when it is deformed elastically.  Once the stress is released, the 

elastic energy goes away upon unloading.  This describes the vacuum particularly well to our 

thinking.  Resilience, or mechanical energy storage capacity, can be defined for the vacuum, 

and is measured in units of, 𝑁/𝑚2 , 𝑜𝑟  𝐽/𝑚3. 

The maximum resilience of space seems to be in the neighborhood of about, 8.66 𝐸33 𝐽/𝑚3, to 

about, 1.54 𝐸34 𝐽/𝑚3.  The first value holds on the surface of a four solar mass black hole, 

where the gravitational field is particularly strong, about, 3.81 𝐸12 𝑚/𝑠2.  The second value is 

the gravitational field energy density for a three solar mass black hole, where the gravitational 

field is even stronger, approximately, 5.08 𝐸12 𝑚/𝑠2.  No black holes have been found in 

nature having a mass less than three solar masses.  The cutoff between neutron stars and black 

holes seems to lie in the neighborhood between three to four solar masses.  Neutron stars can 

have gravitational fields as high as roughly, ~ 2 𝐸12 𝑚/𝑠2, once newly formed.  So the 

gravitational fields above seem to fit the scheme.  Now it is known, that next to a black hole, 

three dimensional space will develop a rip or a tear in the space-time continuum according to 

the general theory of relativity.  In other words, three dimensional space starts to break down.  

This would be our version of “gravitic breakdown”.  Just like there is dielectric breakdown when 
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the electric fields get too strong for the medium, we can expect that gravitationally, something 

similar happens.  The gravitational fields listed above must be close to those limits.  It should 

have been mentioned that the smallest mass black holes have the largest gravitational fields, 

due to the Schwarzschild condition.  So the above gravitational fields are probably the strongest 

macroscopic gravitational fields known to science. 

 

V Net Planckion Imbalance in the Present Universe 

Gravitational field energy density, which is the same as gravitational pressure, depends on 

stressing the vacuum, through the introduction of gravitational fields.  The number density of 

planckions is, thereby, directly affected.  This is seen explicitly in equation, (2 − 17), where we 

set the mass density of planckions, equal to the gravitational field mass density.  The left hand 

side of equation, (2 − 17), is no longer equal to zero, if, 𝜌𝑔𝑔 ≠ 0.  In fact, we will have an 

imbalance in planckion number density, where now, 𝑛+(𝑥⃗) > 𝑛−(𝑥⃗). 

Before we consider the universe at large, let us consider other situations where we have a 

gravitational field and a net imbalance in planckion density.  We start with the examples of a 

three, and, four, solar mass black hole.  Just outside the surface, we probably will have the 

largest gravitational fields found in nature.  It can be shown quite easily that the gravitational 

field right outside a black hole is given by,  

   𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐺𝑀𝐵𝐻/𝑅𝐵𝐻
2  (−𝑟̂) = 𝑐4/(4𝐺 𝑀𝐵𝐻)  (−𝑟̂)               (5 − 1) 

Use of the Schwarschild condition, 𝑅𝐵𝐻 = 2𝐺𝑀𝐵𝐻/𝑐2, has been employed to reduce the 

expression to a relation only involving the black hole mass, 𝑀𝐵𝐻.  The radius of the event 

horizon is, 𝑅𝐵𝐻.  We notice that the least massive black holes have the largest gravitational 

fields, by equation, (5 − 1).  Just like the earth, we assume negligible vacuum susceptibility 

right outside the black hole.  Little enclosed polarized mass is thought to exist within the black 

hole itself.  We substitute the appropriate black hole masses into equation, (5 − 1), and obtain, 

   𝑔(0) = 5.08 𝐸12  𝑚/𝑠2 (3 𝑠𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑏𝑙𝑎𝑐𝑘 ℎ𝑜𝑙𝑒)             (5 − 2𝑎) 

𝑔(0) = 3.81 𝐸12  𝑚/𝑠2 (4 𝑠𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑏𝑙𝑎𝑐𝑘 ℎ𝑜𝑙𝑒)             (5 − 2𝑏) 

Next we calculate the gravitational field mass densities, just like we did for the earth.  See 

equation, (4 − 8).  Using our new values for surface gravitational fields, indicated in equations, 

(5 − 2𝑎, 𝑏), we evaluate, 𝜌𝑔𝑔, and find,    

   𝜌𝑔𝑔 = 1.71 𝐸17  𝑘𝑔/𝑚3 (3 𝑠𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑏𝑙𝑎𝑐𝑘 ℎ𝑜𝑙𝑒)             (5 − 3𝑎) 
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𝜌𝑔𝑔 = 9.63 𝐸16  𝑘𝑔/𝑚3 (4 𝑠𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑏𝑙𝑎𝑐𝑘 ℎ𝑜𝑙𝑒)             (5 − 3𝑏) 

If we multiply these, 𝜌𝑔𝑔 , values by, 𝑐2 , we obtain the corresponding gravitational field energy 

densities on the surface of these black holes.  They are the, 1.54 𝐸34   𝐽/𝑚3, and, 8.66 𝐸33   𝐽/

𝑚3, respectively, the same values as mentioned previously, at the end of section IV.  

Incidentally, the gravitational field mass densities are not that far off from the source mass 

densities.  For the two black holes considered, we obtain, 

𝜌𝐵𝐻 = 2.05 𝐸18  𝑘𝑔/𝑚3 (3 𝑠𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑏𝑙𝑎𝑐𝑘 ℎ𝑜𝑙𝑒)             (5 − 4𝑎) 

𝜌𝐵𝐻 = 1.16 𝐸18  𝑘𝑔/𝑚3 (4 𝑠𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑏𝑙𝑎𝑐𝑘 ℎ𝑜𝑙𝑒)             (5 − 4𝑏) 

These mass densities are only about an order of magnitude larger.  The exact number is twelve 

times larger, which can be easily proven for any mass spherically symmetric black hole.  Just set 

up the ratio, 𝜌𝑔𝑔/𝜌𝐵𝐻, and work out the details, using the defining relations for the variables 

within the ratio.  We find that, 𝜌𝑔𝑔/𝜌𝐵𝐻  = 1/12 , a very interesting result since it is 

independent of mass or size. 

We know from equation, (2 − 17), that 

[𝑛+(𝑥⃗) − 𝑛−(𝑥⃗)]  = 𝜌𝑔𝑔/𝑚𝑃𝑙              (5 − 5) 

Therefore, using equations, (5 − 3𝑎, 𝑏), and, (4 − 4), it is possible to find the planckion 

number density imbalance.  From equation, (5 − 5), we have 

[𝑛+(𝑥⃗) − 𝑛−(𝑥⃗)] = 7.85 𝐸24  𝑚−3 (3 𝑠𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑏𝑙𝑎𝑐𝑘 ℎ𝑜𝑙𝑒)             (5 − 6𝑎) 

[𝑛+(𝑥⃗) − 𝑛−(𝑥⃗)] = 4.42 𝐸24  𝑚−3 (4 𝑠𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑏𝑙𝑎𝑐𝑘 ℎ𝑜𝑙𝑒)             (5 − 6𝑏) 

Because of the intense gravitational fields, and the very extreme gravitational field mass 

densities, we have an enormous imbalance in planckion number density.  In one cubic meter on 

the surface of these black holes expect about, 10 𝐸24 −  10 𝐸25, more positive mass 

planckions than negative mass planckions.  Like we said, this is probably some sort of upper 

limit for what three dimensional space will tolerate, as far as gravitational stress is concerned. 

For the earth, the numbers are drastically reduced because the surface gravitational field is so 

much less.  We still use equation, (5 − 5), but now the mass density is given by equation, 

(4 − 8).  Substituting this value into equation, (5 − 5), and carrying through the calculation, 

gives 

[𝑛+(𝑥⃗) − 𝑛−(𝑥⃗)] = 29.3  𝑚−3 (𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑒𝑎𝑟𝑡ℎ)             (5 − 7) 
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This is a very interesting result.  The imbalance only amounts to approximately 29 more positive 

mass planckions than negative mass planckions in one cubic meter. 

Next we look at the cosmos.  There we also have a net macroscopic gravitational field due to 

the ordinary and polarized matter, which is contained within it. This gravitational field is a 

smeared average, valid only for distance scales in excess of about, 100 𝑀𝑝𝑐.  Only then is the 

cosmos fairly homogeneous, and isotropic.  The appropriate gravitational field mass density is 

specified by equation, (4 − 2).  We substitute this value into equation, (5 − 5), and find, 

[𝑛+̅̅̅̅ − 𝑛−̅̅̅̅ ] = 2.74 𝐸 − 19  𝑚−3 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑠𝑚𝑜𝑠)        (5 − 8) 

This is not the lowest value possible.  In a void, where there is no source mass present, and thus 

no polarized mass, the value would be exactly, [𝑛+(𝑥⃗) − 𝑛−(𝑥⃗)] = 0.  But then we would have 

an undisturbed vacuum.  For the very dilute universe we have today, there is an average of one 

excess positive mass planckion over negative mass planckion, every, [2.74 𝐸 − 19  𝑚−3]−1 =

3.65 𝐸18 𝑚3. 

Why the universe has a net positive mass is unknown.  The result in equation, (5 − 8), may 

suggest that, when planckions were first formed, there was an excess of positive mass 

planckions over negative mass planckions.  But this would go counter to the 𝑄 theory, because 

as planckion mass was created, so too was planckion charge.  And, as far as we can tell, the 

universe has zero net charge.  Somehow between then, when planckions were first created, 

and now, the imbalance must have formed.  And it probably had something to do with the 

formation of quarks and leptons.  Why and how negative mass planckions were used up in this 

process is unclear.   

We close with a quick calculation for the imbalance in terms of absolute planckion numbers.  If 

the Hubble radius in the present epoch is, 𝑅0 , then,  

𝑁+,0 − 𝑁−,0 = [𝑛+,0̅̅ ̅̅ ̅ − 𝑛−,0̅̅ ̅̅ ̅] (4𝜋𝑅0
3/3) 

        = 3.81 𝐸64                (5 − 9) 

For, [𝑛+,0̅̅ ̅̅ ̅ − 𝑛−,0̅̅ ̅̅ ̅] , we have used equation, (5 − 8).   And for the radius of the observable 

universe, 𝑅0, we took this to equal, 𝑅0 = 3.215 𝐸27 𝑚𝑒𝑡𝑒𝑟𝑠, a value found in reference, [11].  

The, 𝑁+,0 − 𝑁−,0, is the present day difference in planckion numbers, with the positive mass 

planckions being more plentiful than negative mass planckions.  This excess, while it appears 

large, is only an insignificant amount when compared to total planckion numbers. Using 

equations, (3 − 17𝑎), or, (3 − 17𝑏), and equation, (5 − 8), we see that 

[𝑛+̅̅̅̅ − 𝑛−̅̅̅̅ ]/𝑛+(0) = 7.09 𝐸 − 74               (5 − 10) 
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This fraction is very minute. 

 

VI Summary and Conclusions 

We introduced a model where Planck mass and Planck charge were frozen out of the vacuum 

simultaneously.  We treated mass and charge as two components of a more fundamental 

particle, the planckion.  Based on previous and extensive work by Winterberg, the vacuum is a 

vast assembly (sea) of positive and negative mass planckions, which form a two component 

superfluid and fills all of space.  This ether is initially massively, and electrically neutral, has zero 

net mass density, zero net gravitational pressure, and zero net entropy in the undisturbed 

state.  Within the Winterberg model, we introduce 𝑄 theory, the notion that Planck mass and 

Planck charge were created simultaneously, as well as two force laws, one electrostatic, and 

one seemingly gravitational in nature.  The electrostatic force keeps two planckions of the same 

species, whether they have positive or negative mass, apart.  The gravistatic force brings them 

together.  Thus equilibrium is achieved, where individual planckions maintain a fixed distance of 

separation from each other within their species.  Along with the simultaneous creation of mass 

and charge, we also posited the simultaneous creation of two force laws.  Equation, (2 − 2), 

shows us how they are connected. 

Planckions are anchored, or locked, in position spatially via fluid forces.  Equation, (2 − 7 ), 

holds for positive mass planckions, and equation, (2 − 10), is valid for negative mass 

planckions.  Both lead to number density functions, which will tend to bring the planckions back 

to equilibrium, if displaced.  See equations, (2 − 9), and (2 − 12 ).   The total gravitational 

pressure is zero, and so is the energy density, if planckions are undisturbed.  See equations, 

(2 − 13), and (2 − 15).  If the vacuum is disturbed through the introduction of an applied 

gravitational field, we obtain equations, (2 − 17), and, (2 − 20).  We identified the 

gravitational field energy density, or dark energy, with planckion mass density.  This lead to 

equation, (2 − 22), relating planckion displacement to gravitational field intensity. 

In section III, we looked at the restoring force acting on individual planckions more carefully and 

discovered it was entirely electrostatic in origin.  In other words, the gravitational force 

introduced in section II, within the 𝑄 theory, is, in reality, electrostatic in nature.  See equation, 

(3 − 1).  The planckion spring constant could thus be evaluated, and the result is equation, 

(3 − 8).  Moreover, by appealing to box quantization, and Planck’s radiator formula, we could 

estimate the average number density for the positive and negative mass planckions in the 

undisturbed vacuum.  Equation, (3 − 17 ), is the result.  This planckion number density holds 

only in the present cosmological epoch.  Given the relation between number density, and mean 

distance of separation, equation, (3 − 2), we could determine the nearest neighbor inter-
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spatial distance between planckions of the same species.  Those values are given in equations, 

(3 − 16𝑎, 𝑏) .  Numerically, the planckion spring constant equals, 𝜅 = 1.194 𝐸30  𝑁/𝑚, as 

indicated in equation, (3 − 18).  The vacuum is very stiff, and this spring constant value is also 

epoch dependent. 

In section IV, we considered various examples of planckion displacements.  For the cosmos as a 

whole, there is a net gravitational field due to all the matter contained within it, ordinary and 

bound, i.e., polarized matter.  Due to this smeared gravitational field, the average planckion 

displacement is a mere, 𝑥̅ = 7.57 𝐸 − 48 𝑚𝑒𝑡𝑒𝑟𝑠, which is equation, (4 − 7).  For the 

gravitational field of the earth, on the surface we find a shift in the amount, 𝑥 = 7.82 𝐸 −

38 𝑚𝑒𝑡𝑒𝑟𝑠, equation, (4 − 9).  We derived relations between gravitational potential, and 

gravitational pressure.  Those relationships are presented in equations, (4 − 17), and, (4 −

18).  An easy way to calculate gravitational potential is through equation, (4 − 13).  It was also 

recognized that dark energy is synonymous with gravitational field mass density, which is the 

same as planckion mass density.  See equations, (2 − 17), (4 − 2), (4 − 19), and, (4 − 20) .  

Whenever we have a gravitational field we have a gravitational, or planckion, pressure imposed 

upon the vacuum.  The vacuum is stressed, even here on the surface of the earth, by a minute 

amount.  This is a latent form of energy we argued, and it can only be released under extreme 

conditions where the gravitational field gets wiped out.  See the discussion following equation, 

(4 − 20).  We also argued that the vacuum has a certain mechanical resiliency, which we 

estimate lies in the neighborhood of about, 8.66 𝐸33 𝐽/𝑚3, to, 1.54 𝐸34 𝐽/𝑚3.  Gravitational 

fields beyond that may lead to “gravitic breakdown” or “vacuum breakdown”. 

Finally, in section V, we considered the imbalance in planckion mass density between positive 

and negative mass planckions.  Because there is ordinary mass in the universe, a given, and 

polarized mass in the cosmos, an assumption, we have a net smeared gravitational field which 

does not vanish for the cosmos as a whole.   By equations, (5 − 5), and, (5 − 8), this forces us 

to accept that, in the present epoch, the average positive planckion number density exceeds 

the average negative mass planckion number density, 𝑛+̅̅̅̅ > 𝑛−̅̅̅̅ .  There are more positive mass 

planckions per unit volume than negative.  The exact amount has been calculated in equation, 

(5 − 8).  The reason for this is unclear, although it may have something to do with ordinary 

matter, made up of quarks and leptons, being formed in the universe.  When planckions were 

first created in the very early universe, there were equal numbers according to the 𝑄-theory. 

There is also the intriguing possibility, although not very likely, that there are regions in the 

universe where planckion mass density, or dark energy, is negative.  This would balance the 

total number densities between positive and negative mass planckions, then, in the early 

universe, as well as now, in the present epoch.  There is, however, no direct observational 
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evidence for this, i.e., negative dark energy does not appear to exist.  As such, we are left with 

equation, (5 − 8), which shows a net imbalance. 

𝑄-theory explains charge and mass neutrality in the early universe, but it does not explain 

quasiparticle formation, collective excitations in the Winterberg model.  Nor does it explain 

positive planckion density imbalance over negative planckion density, in the present epoch.  𝑄 

theory can, however, provide a connection between gravistatic and electrostatic force laws.  In 

the very early universe these were formed simultaneously.  The gravistatic force of attraction, 

upon closer inspection, turned out to be electrostatic in origin. 

Work is in progress on a microscopic theory of planckions, which would include scaling behavior 

upon expansion of the universe. 
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