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Abstract

In this paper, we discuss in brief the most common wave equations in quantum mechanics and some recent
development in wave mechanics. We also present two new quantum wave mechanics equations based on the
Compton momentum. We have good reasons to think that the standard momentum is a mathematical derivative
of the more fundamental Compton momentum. This will likely simplify interpretations of quantum mechanics
significantly. This is a first draft; we will show many more results in a future version.
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1 Important Fundamentals

1.1 Standard momentum and the de Broglie wave
The relativistic de Broglie wave [1] is given by
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Broglie wave is not mathematically defined for a rest-mass particle, as setting v = 0 means we are dividing by zero.
In addition, if we let just v be close to zero, then the de Broglie wave converges towards infinity. Next we solve the
de Broglie relation with respect to momentum; this gives

where h is the Planck constant, v = and v is the velocity of the mass. An important note is that the de
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This means that the momentum is not defined for a rest-mass particle, since )\ is not defined for a rest-mass
particle. This is somewhat new, as modern physics directly and indirectly assumes that the momentum is simply
zero when v = 0. For any v > 0, the formula gives the correct momentum, but again for a rest-mass particle, the
standard momentum is not defined.

It seems this has passed the discussion among physicists. We think the likely reason is that the standard
momentum was suggested long before the relativistic momentum was conceived. The idea that momentum is mass
times velocity was suggested in 1721 by John Jennings [2]. Jennings said that momentum is the quantity of matter
multiplied by the velocity, which is the standard momentum: p =~ muv, which holds when v << c¢. However, we
will claim it is not valid for v = 0. The momentum suggested by Jennings came long before the development of
relativity theory. So, the relativistic momentum p = muv~y was probably derived first by Einstein in 1905.

The de Broglie wave was a hypothesis set out by de Broglie in 1923. As it had been shown that light has
a particle-wave duality, de Broglie then speculated that matter had the same characteristics, so he assumed the
matter wave was given by A\, = mim That is, the de Broglie wave was derived from the momentum. The fact that
something was understood later does not mean that is less fundamental; on the contrary, since we live so far from
the quantum world in our everyday lives, physics has mostly developed from the top down. Therefore, we have come
up with rules and formulas for macroscopic objects and observations first, then later understood their connection to
the particle and quantum world. So, once the quantum world is established, we can just as well derive such things



as momentum from them. The point is that the momentum, from a quantum perspective, must be given by the
formula 2 and we have shown that this means neither the de Broglie wave nor the standard momentum formula are
valid when v = 0. As we will see, this is very important for quantum physics, as all the quantum wave equations
of modern physics will be impacted by this.

1.2 The Compton wave and the new Compton momentum

Around the same time as de Broglie introduced the hypothesis of his matter wave, Compton [3] calculated and
indirectly measured what today is known as the Compton wave. The relativistic Compton wave of an electron is
given by!
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First of all, here we see there are no issues with v = 0, as this just means that v = —= = = L _—= 1. That is,
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the Compton wave, unlike the de Broglie wave, is mathematically well defined for any velocity of v < ¢. See also

how to derive the Compton wave for any mass without knowledge of h [6].
Next, if we follow a similar approach to the one we used for the de Broglie wave, we get
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This is what we will call the Compton momentum and it is a new type of momentum recently introduced by
Haug [4]. Unlike the standard momentum, this momentum is well defined for v = 0 as well, since the Compton
wavelength A is well defined for v = 0. Also it dose not have strange properties such as going towards infinity
when v is close to zero. The Compton wave is always on the scale of the atomic quantum realm (very very short
compared to anything microscopic).

Further, it is important to note that we can always find the de Broglie wave from the Compton wave; we have
Ay = AL, So, if we know the Compton wave, we can calculate the de Broglie wave. The same is true with the
standard momentum (the de Broglie momentum); it can always be calculated from the Compton momentum as
p=pe-

Wily should there be two wavelengths linked to matter? And why should we have two types of momentum?
We will suggest that the standard momentum and the de Broglie wave only are derivatives of the true matter wave
and the true and deeper physical momentum, namely what we call Compton momentum. If we should connect the
standard energy definition to the Compton momentum, we simply get

E = pc (5)

That is, the total energy is equal to the Compton momentum multiplied by the speed of light; this is then a
new (additional) relativistic energy momentum relation. This means we can also derive a new quantum mechanical
wave equation from this new relation; this will be the relation between energy and the Compton momentum.

It is worth mentioning that the standard momentum is never observed directly — it is a mathematical construct.
First, assume we have a brass ball; we can measure its relative weight relative to one kg and then find its mass
relative to one kg. Second, we can put this brass ball in motion. We can then measure its velocity, but we cannot
directly observe mwv. What we can observe is the impact from its kinetic energy. We can drop a brass ball, for
example, and measure its velocity just before it hit a brick of ”soft” clay. Most of the kinetic energy will then be
used to make a indent in the clay. Gravesande [7] did this and confirmed that experimentally the kinetic energy
was a function of v? and not just of v. At that time, the question of whether the kinetic energy was a function
of v or v? had been a debate among leading physicists for many years. And at least when v << ¢, the kinetic
energy is a function of v2. So, indeed we can measure the kinetic energy of a moving body, and the mass of a body
easily when it is at rest, and we can easily measure the velocity of a body, but we cannot measure muv; this is a
mathematical entity, that is, however, linked to real observable entities, so it can be very useful. What about our
new Compton momentum? Can it be observed more directly? It should, because as we have explained here, we
think the standard momentum is a derivative of the true (more real) momentum.

First, looking at our new Compton momentum. when v = 0 we get

P =mecy =mc (6)

L Actually this is a relativistic extension of Comptons work, see [4, 5].



In other words, we get a rest-mass momentum that is mec. This is not easy to observe, as it is an embedded
momentum, a rest mass momentum. This may sound strange, as we are not used to thinking of rest-mass momentum,
and some may even say that this is impossible, as momentum is related to something that is moving. However, that
is the standard momentum that indeed only is defined for something that is moving. This is nothing more strange
than rest-mass energy. If the rest-mass momentum is p,, = mc, then we must also have what we can call a kinetic
momentum, and this must be

Pk =D — Pr = mcy —mc (7)
This formula holds for any v < ¢. It would require advanced laboratory equipment to test this when v is significantly

close to the speed of light ¢. However, when v << ¢ what do we expect to observe? When v << ¢, we can
approximate the formula above with the first term of a Taylor expansion, and we then get
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That is, our Compton momentum is a function of v? and not of v, so it is kinetic energy divided by ¢. Our Compton
momentum is exactly the same function of v as kinetic energy, but it is simply our standard energy defenition
divided by ¢, a significant finding (that we will come back to in a new update of this paper). Our momentum is
observable through measurements of impacts, while standard momentum is not as it is a function of v and not v2.
This supports our view that our newly defined Compton momentum is the real momentum and that the standard
momentum is a derivative of this momentum. While the reader may not wish to take this for granted, it will be
helpful to be open to the thought that there can be a momentum (or another term could be chosen and defined)
that is linked to the Compton wavelength, and next we will look at the Relativistic Energy Momentum Relation in
more detail.

2 Relativistic Energy Momentum Relation

The standard relativistic energy momentum of Einstein [8] is given by

E2 _ p202 + m2c4 (9)

the standard momentum and this relation have played a central role in developing the well known quantum mechan-
ical wave equations. If our analysis is correct and the standard momentum (de Broglie momentum) not is valid for
rest-mass particles and further, if it is a mathematical derivative of the Compton momentum, then any quantum
mechanical wave equation derived from it will be a wave equation linked to a derivative and all such quantum
mechanical wave equations will probably also not be valid for rest-mass particles.

Our new relativistic energy momentum relation is

E = pc (10)

When deriving a quantum mechanical wave equation consistent with this, the equation should also be valid for
rest-mass particles, and should also be more directly linked to the depth of the reality, and therefore likely easier
to interpret.

Next, we will shortly discuss a series of well-known quantum mechanical wave equations and also show a few
new quantum mechanical wave equations.

3 Two New Relativistic Wave Equations
We have that

E = jc (11)

This can be rewritten as

E = prc + mc? (12)

where p = mcy — me, in other words the kinetic Compton momentum. From this we get the following quantum
wave equation
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This we can rewrite as
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This is relativistic quantum wave equation consisting of a first order PDE where V is the operator linked to the
kinetic Compton momentum.

We also get a quantum wave equation linked to the total momentum instead of the kinetic momentum, this is
because

E = prc+ me? = pc (15)
This gives
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which can be simplified to (see also [4])
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That is, we have two new quantum mechanical wave equations

4 The Klein-Gordon Equation

Another well-known relativistic quantum equation is the Klein-Gordon equation, which is given by

E? = p?® + m?ct (18)

where p is the relativistic (de Broglie) momentum and m = %% When replacing E and p with their energy, ih%,

and momentum operator, iAV, we get
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The last line is how the Klein-Gordon equation is often presented, but the lines are all the same. Since the
— 2 2
reduced Compton wave is given by A\ = %, we can replace " in the equation above with 5\1—2 and we get
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The Klein-Gordon equation is indirectly liked to the de-Broglie momentum (standard momentum), p = muv~y,
which is a derivative of the real momentum. The Klein-Gordon equation is therefore unnecessarily complex. Yet,
it cannot be simplified further if we want a relativistic wave equation from the de-Broglie momentum. It is also
linked to a unnecessarily complex definition of energy. The formula is likely not valid for a rest-mass particle, since
it is derived from the de Broglie momentum.

The Klein-Gordon equation is often written as
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where [J is the d’Alembert operator: [ = C%g—; — V2, and p = = /—\% Do not let unfamiliar notation stop
you from exploring the mysteries of quantum mechanics.

5 The Schrodinger Equation

We have

1
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Based on this, we get the following wave equation, namely the Schédinger [9] equation
o 2R _,
h— =~ — v
ih 5 <2m V*+mc ) (23)
This we can rewrite further
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Note that when rewritten this way, there is no Planck constant in the Schrodinger equation. Also note that the
imaginary number not goes away.

6 Summary

Table 1 shows a summary of three well-known wave equations in quantum mechanics, as well as two new ones.
The three older equations are all rooted in standard momentum and therefore the de Broglie wavelength. The
standard momentum is not defined for v = 0, that is to say, for rest-mass particles, so we suggest that these three
traditional wave equations likely not are valid for rest-mass particles. In addition, these three wave equations are,
to a large degree, modeling mathematical derivatives of reality rather than the deeper reality because the de Broglie
momentum is a derivative of the more fundamental Compton momentum. The two new wave equations are linked
directly to the Compton momentum; therefore, they are simpler and also hold for v = 0.

e There is no Planck constant in the any of the wave equations except for the Dirac equation that we will soon
comment on separately. The apparent Planck constant in the Schrédinger and Klein-Gordon all cancel out
against a Planck constant that is hidden in the mass. What we obtain is the Compton-wavelength in the
Schrédinger and Klein-Gordon equations, or more precisely, the Compton frequency is also embedded in these
equations. One might think that such a line of thought is wrong, if one believed that the Planck constant is
needed to find the Compton wavelength. However, this is not the case, even from the Compton 1923 paper it
is clear that one can find the Compton wavelength without any knowledge of the Planck constant. Actually,
one can find the Compton wave for any mass without any knowledge of any fundamental constant, see [4].
In the Dirac equation, the Planck constant will indirectly cancel out as well, as the momentum operator on
the wave function returns the momentum, and the momentum embedded contains the Planck constant in the
mass will then cancel out against the Planck constant we see here.



Normal form: Comments : Comments
Schrodinger z%‘f ~ (%Vz + mTCQ) v de Broglie momentum Non-relativistic
deeper level z%‘f ~ (;CS‘VQ £> g
Klein-Gordon (Spin 0) — V20 + m c U =0 de Broglie momentum Relativistic
deeper level t — V2 + 5 C -0 =0 Relativistic
Dirac (Spin 1/2) ( i QD — ﬁmcz) U =0 de Broglie momentum Relativistic
deeper level ( e QnPy — Bi) U=0
Haug-2: (Spin ?) z%‘f = (z’cV + 2 T v Kinetic Compton momentum Relativistic
deeper level z%—‘f\IJ = (icV + %) LG
Haug-1: (Spin 7) %% -Vo =0 Compton total momentum Relativistic

Table 1: The table shows a summary of three well-known quantum mechanical wave equations derived from standard
momentum (de Broglie) momentum, and two new quantum mechanical wave equations derived from the Compton
momentum.

e The Schrodinger, Klein-Gordon, and Dirac equations all use a momentum operator on the standard momen-
tum. The standard momentum is, at a quantum level, actually directly linked to the de Broglie wave. The
de Broglie wave is not mathematically defined for a rest-mass particle. Second, the de Broglie wave and also
the standard momentum are just mathematical derivatives of the more fundamental Compton wave and what
we call Compton momentum. In other words, in the traditional equations, we are taking partial derivatives
of mathematical functions of reality, not of the deepest entities. This makes the Schrédinger, Klein-Gordon,
and Dirac equations all very hard to interpret at a deeper level. Of course, they are "easy” to interpret at
the surface of the exotic zoo of terminology that has evolved in physics and quantum physics, as long as the
analysis of modern physics does not go too deep.

e We have strong reasons to believe that our new quantum mechanical wave equations are better suited to
understanding certain aspects of the depth of reality. They are mathematically correct for v = 0, and they
are more directly linked to the depth of reality, as we are modeling from the Compton momentum directly
instead of the derivative of it, which is the de Broglie momentum and its corresponding de Broglie wave.
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