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Fractal Foundation of Quantum Spin 

Ervin Goldfain 

Abstract 

We have shown over recent years that the dynamics of quantum fields is likely to slide outside equilibrium 

above the Fermi scale of electroweak interactions. In proximity to this scale, spacetime dimensionality flows 

with the probing energy and leads to the concept of minimal fractal manifold (MFM). It is known that 

modeling the physics on fractal manifolds requires use of fractional differential and integral operators.  

Here we show that deploying such operators on the MFM adds a non-vanishing correction to the standard 

orbital momentum, which can be identified with quantum spin. Our analysis paves the way towards a 

deeper understanding of the relationship between spin and several phenomenological aspects of quantum 

field theory (QFT). 
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fractional calculus.   

 

Conjectured to develop near or above the Fermi scale ( )EWM , MFM represents a 

spacetime continuum endowed with arbitrarily small yet non-vanishing deviations from 

four dimensions ( 4 1D    ) [1]. This report is a sequel to [2, 8], where quantum spin 

was shown to arise from the nontrivial geometry of the MFM.   

It is known that the linear, orbital, and angular momentum operators of QFT are 

respectively given by ( , 0,1, 2,3   )  [3] 

 P i


    (1) 
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 ( )L i x x


         (2) 

 J L S
  

    (3) 

In what follows we posit that dimensional deviations of the MFM are spacetime 

dependent ( ( ) ( )x x     ) and consider only those coordinates that are 

commensurate in magnitude with the inverse of the Fermi scale, (
1

( )EWx O M

 . It is then 

reasonable to assume that  

 1( ) 4 ( )x D x x      (4) 

in which the x  is expressed in dimensionless form ( 0x x x ). Since MFM is 

characterized by low-level fractality ( ( ) 1x  ), a convenient approximation of fractional 

derivative is given by [4]  

 1

1

1 ( ) ( ) ( ) ( ) ( ) ...x x x x D x          (5) 

 1 2

1
0

( ) (0)ln( ) ( ) ( ) ln( ') '
x

D x x x x x x dx             (6) 

where ( )x  is a well behaved function and   stands for the Euler constant.  

For simplicity and to drive home the main point of the argument, we assume below that 

the first and third terms of (6) can be safely dropped without incurring a significant loss 

of generality. By (1), (5) and (6), the fractional linear and orbital momentum operator 

defined on the MFM assume the form, respectively  

 1 ( )
( ) ( ) (1 )x
xP i i  




         (7) 
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 ( ) [( ) ( )]xL i x x x x         


             (8) 

The theory of fractal and multifractal sets is consistent with the premise that scaling 

dimensions carry an intrinsic statistical meaning [11]. Let ( )x  represent a fluctuating 

entity with zero mean, statistically independent from the momentum operator. It follows 

that the ensemble average of ( )x  is vanishing, hence 0        . By (7), one 

obtains    

 ( )P i i   


          (9) 

which means that the ensemble average of the fractional linear momentum is 

indistinguishable from the same average of (1). By contrast, the ensemble average of the 

fractional orbital momentum amounts to 

 [ ( ) ( ) ]L i x x x x         


             (10) 

Unlike (9), the second term of (10) cannot cancel out since ( )x    and ( )x    are 

weakly coupled through the nonlocal attributes of fractional differential operators [4-5]. 

A natural conjecture stemming from this observation is that the second term of (10) 

signals the presence of a spin operator, namely     

 L J L S
  

       (11) 

where 
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 ( )S i x x     


         (12a) 

The spin operator (12a) may be alternatively presented as 

 
1 2( ) ( )S i Q Q 



       (12b) 

in which 

 1( )Q x      ,   2( )Q x         (13) 

It is instructive to note that the nonlocal coupling of 
1Q  and 

2
Q  can be characterized 

through their correlation function, defined as 

 
1

1 2 1 2 1 20

1
( , ; ) ( ) ( )lim

K

k n kkK

C Q Q n Q Q Q Q
K

  




    (14) 

Here, n  denotes the number of iterations of the map 1( ) [ ( )]n nx x     describing the flow 

of ( )x  with the energy scale [6]. 

Passing from operators to observables, we distinguish two opposite cases. If the  

correlated observables 1Q  and 2Q  are equal (or substantially similar) in magnitude, it is 

sensible to assume that (12) describes a bosonic state of spin 0S   or 1S  . In short.  

 1 2

0
( )

1

S
Q O Q

S


  


  (15a) 

Let 0 0Q   denote an arbitrary reference value associated with measuring 1Q  and 2Q . The 

spin state 0S   corresponds to 1 2 0( )Q O Q Q  , whereas  1 2 0( )Q O Q Q   to 1S  .     
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If  the opposite of (15) is true and 1Q , 2Q  have dissimilar magnitudes, (12) is likely to 

describe a fermionic state as in 

 1 2
1
2

Q Q S     (15b) 

Furthermore, the condition 1 2Q Q  or 1 2Q Q  naturally implies chirality, which 

explains why a Dirac spinor consists of a left-handed ( L ) and a right-handed ( R ) Weyl 

spinor.    

Combined use of (4) and (12) hints that the numerical value of the spin observable must 

fall close to zer0. One must keep in mind, however, that our analysis applies to energy 

scales comparable to or higher than the Fermi scale. It is this regime that justifies the 

onset of the MFM, where the wavefunction undergoes large local fluctuations 

characterized by nearly-singular values of the slope ( ) ( ( ) ) 1x O x      . Since the 

MFM defines a non-local dynamic setting endowed with memory, it is expected that the 

effects of the MFM carry over to energy scales below EWM , i.e., EWM M .                 

It seems plausible that (15) may account for several distinctive features of quantum theory 

that are otherwise taken for granted. In particular, (15) may justify  

1) the existence of the spin-statistics theorem in ordinary 3D space, 

2) why there are only three low-dimensional representations of the Poincaré group 

corresponding to spin 0, 1 and ½ particles and, 

3) the existence of the exclusion principle for fermions and the existence of bosonic 

condensation. 

Other ramifications of our brief analysis may be further explored. In the spirit of [7], it is 

interesting to look at the connection between (12), Pauli matrices and quaternions. 
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Starting from [8], attention may be paid to the relationship between (12) and the violation 

of discrete symmetries in weak interactions. Likewise, following the insight that gauge 

fields and their charges emerge from the MFM [1, 9-10], it is worth delving into the 

fundamental mechanism underlying the magnetic properties of spin.     

References 

1. Available at the following sites:  

http://www.aracneeditrice.it/aracneweb/index.php/pubblicazione.html?item=9788854

889972 

https://www.researchgate.net/publication/278849474_Introduction_to_Fractional_Fi

eld_Theory_consolidated_version 

2. https://www.prespacetime.com/index.php/pst/article/view/701 

3. Maggiore M., “A Modern Introduction to Quantum Field Theory”, Oxford Univ. Press, 

2006.  

4. https://arxiv.org/pdf/physics/0511138.pdf 

5. https://arxiv.org/ftp/arxiv/papers/1803/1803.00750.pdf 

6. Available at the following site: 

https://www.researchgate.net/publication/343150014_Emergence_of_Quantum_Mec

hanics_from_Iterated_Maps 

7. Available at the following site: 

https://www.researchgate.net/publication/337262324_Minimal_Fractal_Manifold_as

_Foundation_of_Quantum_Information_Theory 

8. https://www.sciencedirect.com/science/article/abs/pii/S1007570406001183 

9. Available at the following site: 

http://www.aracneeditrice.it/aracneweb/index.php/pubblicazione.html?item=9788854889972
http://www.aracneeditrice.it/aracneweb/index.php/pubblicazione.html?item=9788854889972
https://www.researchgate.net/publication/278849474_Introduction_to_Fractional_Field_Theory_consolidated_version
https://www.researchgate.net/publication/278849474_Introduction_to_Fractional_Field_Theory_consolidated_version
https://www.prespacetime.com/index.php/pst/article/view/701
https://arxiv.org/pdf/physics/0511138.pdf
https://arxiv.org/ftp/arxiv/papers/1803/1803.00750.pdf
https://www.researchgate.net/publication/343150014_Emergence_of_Quantum_Mechanics_from_Iterated_Maps
https://www.researchgate.net/publication/343150014_Emergence_of_Quantum_Mechanics_from_Iterated_Maps
https://www.researchgate.net/publication/337262324_Minimal_Fractal_Manifold_as_Foundation_of_Quantum_Information_Theory
https://www.researchgate.net/publication/337262324_Minimal_Fractal_Manifold_as_Foundation_of_Quantum_Information_Theory
https://www.sciencedirect.com/science/article/abs/pii/S1007570406001183


 

7 | P a g e  
 

https://www.semanticscholar.org/paper/Chaotic-Dynamics-of-the-Renormalization-

Group-Flow-Goldfain/e959b4baa34c4c60950411f3997d8e141cb422a3  

10. https://www.sciencedirect.com/science/article/abs/pii/S0960077904002942 

11. Evertsz, C. J. G and Mandelbrot, B. “Multifractal Measures”, in “Chaos and Fractals, 

New Frontiers of Science”, Springer-Verlag (1992).  

 

https://www.semanticscholar.org/paper/Chaotic-Dynamics-of-the-Renormalization-Group-Flow-Goldfain/e959b4baa34c4c60950411f3997d8e141cb422a3
https://www.semanticscholar.org/paper/Chaotic-Dynamics-of-the-Renormalization-Group-Flow-Goldfain/e959b4baa34c4c60950411f3997d8e141cb422a3
https://www.sciencedirect.com/science/article/abs/pii/S0960077904002942

