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Abstract

In recent years there has been a move away from the Copenhagen
Interpretation towards alternative interpretations of Quantum Mechan-
ics. There has also been an acknowledgement that there is no definitive
version of the Copenhagen Interpretation because the originators, Bohr,
Heisenberg et. al., did not agree over all aspects of the interpretation.
This paper revisits the philosophical approach taken by Bohr. The re-
sult is a new interpretation, named the Ticker-Tape Interpretation, which
is closely related to Copenhagen. The formalism of Quantum Mechan-
ics is derived from simple principles. The interpretation leads to some
conjectures.

Author’s Note: The author has rather playfully borrowed the title of some of
Einstein’s famous “Principles”. Even though the principles in this paper have the
same names as those found in Special or General Relativity, they have nothing
to do with any specifics of Special or General Relativity; the names were chosen
however because, at some level, the both versions derive from an even more
general principle.

1 A Theory of Everything
Quantum Mechanics seeks to be the “Theory of Everything” - It should be
consistent with modern Western Philosophy.

The problem is that much of modern theoretical Physics is divorced from
these considerations. The author believes the result is much confusion and
wasted effort.

The starting point of this paper is a modern presentation of the Copen-
hagen Interpretation. Note that the passage of time means that some aspects of
Copenhagen are no longer of much interest and may be excluded from or barely
mentioned in the presentation.
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Figure 1: Katian World View (circa 1781)

Figure 2: Copenhagen World View (circa 1928)

2 Philosophical Underpinnings
It is wrong to think that the task of physics is to find out how nature
is. Physics concerns what we can say about nature. Niels Bohr,
quoted in Aage Petersen, The Philosophy of Niels Bohr in Bulletin
of the Atomic Scientists, 1963.

What might be said of things in themselves, separated from all re-
lationship to our senses, remains for us absolutely unknown.
Immanuel Kant, Critique of Pure Reason, 1781.

This paper adopts a world view that is essentially Kantian. The Kantian world
view, shown in figure (1) consists of an external world that is perceived through
the sensors of an agent; the agent builds mental models of the external world
based on that sensory input but cannot know the true nature of the universe of
which his sensors give but a hint.

Copenhagen is startling similar, not accidentially, to the Kantian world view.
(It has been argued that the Copenhagen Interpretation is Positivist, however
subtle arguments over philosophical classifications are beyond the scope of this
paper) Quantum Mechanics replaces the vague idea of sensory input with that
of measurement and precise mathematical description. The idea of a conscious
agent is replaced by intelligence, nominally called the observer, which need not
be human. It could, for example, be a robot. The Copenhagen world view is
shown in figure (2).

The measuring devices represent the frontier of the interaction between the
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Figure 3: Measurements and Mental Models

observer and the rest of the universe; that abstract boundary is called the ’Clas-
sical/Quantum boundary’ (Bohr). In Kant’s world view, the corresponding
boundary represents the separation of self from the Universe.

Measurements are regarded as “elements of reality” (Einstein’s terminology).
No definition of what that means is given; they are physical interactions and they
are primitive concepts. The observer is logically separate from the measurement
itself. A measurement may discontinuously changes the value or probability
distribution of a value associated with a measuring device. The probability
distribution is said to ’collapse’ to its known value.

3 The Equivalence Principle
There is no transition from the Quantum world to the Classical world. The
difference between measurement in the Classical world and measurement in the
Quantum world is a matter of interpretation.

Quantum Mechanics is a mental model; the waveform and any measurement
operator A are mental constructions, built on top of the information gathered
from “raw” measurements. Classical mechanics is also a mental model (since
we know it is not “true”, it cannot be otherwise); typically Classical Mechanics
deals with the expected value < A > and regards the difference from < A > to
be “error”.

In the figure (3), the left pane shows the “raw” position measurements of
a particle “moving” diagonally from left to right is shown. The central pane
adds the intellectual machinery of Quantum Mechanics; the calculated 95%
confidence intervals are shown in gray. The right pane adds the intellectual
machinery of Classical Mechanics; the presumed classical path is shown in red.

In Quantum Mechanics, the uncertainty in the position of a particle created
by Heisenberg Uncertainty Principle is viewed as intrinsic, and the measurement
themselves are taken at face value (The Principle of Exact Measurement) since
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no other information is available.
In Classical Mechanics, it is the measurement that contains the “error” (un-

certainty) in the position of the particle; the “error” has a multitude of sources
external to the system itself, typically related to the construction of the mea-
suring devices and lack of knowledge of initial conditions, but there is always a
presumption that if these influences could be eradicated, exact measurements
would be possible and that the predictions of Classical mechanics would be
confirmed.

4 The Ticker-Tape Interpretation
The Copenhagen Interpretation represents a coherent merging of Kantian phi-
losophy and quantum phenomena. Indeed it is difficult to see how to modify
Copenhagen without diverging from Kant, except for a single area where the
author is in dispute with Copenhagen: Bohr expressed the opinion that mea-
suring devices are essentially classical, and that a description of reality requires
a-prior understanding of classical quantities such as position and momentum
[1]. Apparently a knowledge of Classical Mechanics is required before Quan-
tum Mechanical measurements can be understood, yet Quantum Mechanics is
presumed to be more fundamental theory than Classical Mechanics. It is also
not easy to apply Bohr’s vision of essentially classical properties to abstract
concepts such as QCD colour.

Rather than follow Bohr, we take a slightly different view and create and
develop a new interpretation, the Ticker-Tape Interpretation, which assumes
the same Kantian world-view as Copenhagen but assumes a slightly different
characterisation of measurement.

The Ticker-Tape Interpretation introduces the following:

• Alternative measurements characterisation - developed throughout this
paper.

• Histories - sequences of measurements.

• A metaphorical ticker-tape that records the history of measurements made
by an observer.

• Mach Devices - primitive measurement devices.

4.1 Measurement
Mach devices measure quantities that are essentially real numbers. Why? Real
numbers can be put “in order” from the smallest to the largest. I.e. If M =
{set of possible measured values}, then there is a strict total ordering ’<’ of M,
which creates an order preserving isomorphism from M to some subset of Real
numbers. I.e. It is always possible to compare measurements. If Xa = x1 and ,
then it is possible to say Xa > Xb if x1 > x2.
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We shall use the notation X = x to mean the device X has been used to
make a measurement and result has been reported as x.

Not all measurements are single values. A measurement may only restrict
the values to a specific range (e.g. a < X < b or x ∈ [a, b]) or a union of ranges
(e.g. x ∈ (a, b) ∪ [c, d]). The notation X = x can be expanded to include these
examples (x can an union of intervals).

4.1.1 Quantum Measurements

Looking forward, the formalism developed here to describe quantum systems
applies to systems other than quantum systems, but the only systems that
naturally follows the rules are quantum systems. In line with a Kantian world
view, the only source of information is those measurements.The theory does not
describe non-observables like hidden particle trajectories and such constructions
will not be discussed. TODO: Bells Inequality?

4.2 Histories
A history is a sequence of measurements denoted H = (m0,m1,m2, ...,mn)
created from a single measurement X = x, or from a number of meaurements
conbimed using the logical connectives ∧(and) or ∨(or).

If HA = (m1, ...,mk) and HB = (mk+1, ...,mk+m) are histories, then HA ∧
HB = (m1, . . . ,mk,mk+1, ...,mk+m). The history HA must “follow” the history
HB and not overlap in time. The operator ∧ is read as “and”.

Definition: Let HA be a history, then HB is an alternative history to HA if
HB andHA contain the same initial measurements m0, and the final measure-
ment in each history is made by the same device. I.e. mAfinal is (Y = y1) and
mBfinal is (Y = y2).

Definition: If HA = (m0, . . . ,mAi, ...,mAfinal) and HB = (m0, . . . ,mBi, ...,mBfinal)
are alternative histories, then HA∨HB is the history HA, HB . The operator ∨
is read as “or”.

No distinction is made between alternative descriptions; various histories are
equivalent if they contain the same measurements under the same conditions.
E.g. H1 ∨H1 ∨H3 and {H1, {H2, H3}} and {{H1, H2} , H3}

Histories may represent actual measurements, or they may represent hypo-
thetical histories in some sample space.

TODO: Tidy up.

4.3 Mach Devices
A measuring device is a Mach device, or M device, with respect to an observer
if the following applies:

1. The device produces a stream of measurements (Real numbers), that are
recorded on a (metaphorical) ticker-tape accessible to an observer. Mea-
surements are recorded in the order they are made.
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Figure 4: The output of a Mach device viewed as a “ticker tape”

Figure 5: Probability distributions for numeric “labels”

2. The measurements are “repeatable”.

3. The device’s internal structure is unknown. It is a “black box”. There is no
a-prior information about what the numbers the device produces mean.

4. The observer does not have access to a clock.

A Mach device is the most primitive (abstract) measurement device possible.
Caveat: A “measuring device” which produces only a single number is not

necessarily a Mach device. Figure 5 shows a typical set of probability distri-
butions P (X|X = xi), i = 1, 2, 3 for a classical measurement device (5). If
there is overlap between the probability density functions, as is the case for the
probability density functions for X = x1 and X = x2 in figure (5), repeated
measurements of the system may result in the value x1 or x2. I.e. if there is
any overlap in the probability density functions, the result of any measurement
of X is not repeatable and so the device is not a Mach device.

5 Principle of Relativity (Mach’s Principle)
How can we tell what a Mach device measures?

The output from a single Mach device is meaningless.
This is a generalisation of Mach’s Principle. Mach’s statement of the Princi-

ple of Relativity famously influenced Einstein but the principle itself dates back
at least to Galileo. Ernst Mach argued that it would be meaningless to talk
about the motion of a single particle in an empty Universe. All motion is rela-
tive. In fact, all measurement is relative. If there is no context, a measurement
stream becomes a meaningless stream of numbers.
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6 Mach Banishes Determinism
Suppose X = f(t) is a classical quantity, and X is a Mach device with respect
to an observer, then it is not possible for that observer to determine what the
device measures solely from the measurement history.

Why? There is no way to calibrate the device. Suppose we construct a
second device Y whose output is related to the first by Y = ζ(X(t)). The
second device is sealed, mixed up with the first and given to the naive observer so
they both become Mach devices. Which measures the “fundamental” quantity?
X and Y? X? Y? In fact, it is possible to build a device Z that returns any
measurement profile we like. There is no way to chose a preferred M device.

If it is known that a measuring device produces values X = f(t) for some
function f (X is a function of time, X is deterministic) then the output from
that device is meaningless.

7 Repeatability
Measurements are expected to be repeatable. It is one of the 2 defining charac-
teristics of a measurement. I.e. if two measurements are made, one immediately
after the other, the results of the two measurements should agree. However Mach
devices do not come equipped with a clock. There is no sense of time. What
does “immediately after” mean? If two consecutive measurements disagree, and
it is not not possible to know the time interval between the two measurements,
it could be that measuring device is OK and the interval was so long that the
system slowly evolved into another state. It is also possible that the device is
“faulty” (not a Mach device). How is it possible to tell the two case apart?

7.1 Plan of Attack
How should we further develop the Ticket-Tape interpretation?

We adopt the following plan of attack to address the short-comings in our
definitions:

1. Develop the interpretation/formalism for “stable” systems. (The next sec-
tion of this paper will restrict its attention to “stable” systems).

2. Introduce a clock.

3. Remove the restrictions regarding stable systems.

Stable systems are characterised by:

• Repeated measurements by the same device produce the same result even
over “long” periods of time.

• Transition probabilities do not change with time. Transition probabilities
are calculated from repeated measurements using the standard formula
P (A = a|B = b) = N(A=a|B=b)

NTotal
.
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7.2 Particles
It is observed (and not outlawed by the definition of repeatability) that the
measurement of one system property X can randomise the value of another
system property Y .

It is this property that allows use to define what we mean by a “particle” or
simple quantum system. E.g. Suppose we have measuring devices A,B,C,D.
Measurements of A “wipes out” the value of measurements of B,A wipes out the
measurements of C but measurements of D are always unaffected. A,B,C mea-
sure properties of the same particle/system. D measures properties of another
particle/system.

It turns out that repeatability is central to the definition of a particle.
Suppose that A, B, C are Mach devices and have the following relationships.

• A measurement of B produces random effect on further measurements of
A. e.g. A = a,A = a,B = b, A = z.

• Measurements of A do not effect repeated measurements of C.e.g. A =
a,A = a,C = c, A = a.

Devices A and B measure properties of the same particle, and device C measures
properties of another separate particle.

8 The Calibration Problem
It seems that a measurement stream can only be “understood” if it contains a
random component.

where the probabilitiesP (X|Y ) are derived via Bayesian analysis of a large
number of previous measurements.

Fortunately early 20th Century scientists have done most of the work for
us. We assert that it is possible to assign meaning to a measurement stream
provided that

1. The measuring devices associated with the measurement stream are con-
jugate.

2. The state transition probabilities are symmetric with respect to the start
and end states. i.e P (A|B) = P (B|A)

A physical system, measurement devices and observers that satisfy the condition
above is collectively called a quantum system.

9 The Formalism of Quantum Mechanics

9.1 Feynman’s Rules
We follow the argument put forward by Ariel Caticha [2]. The operators ∧ and
∨ obey the following relations
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a ∧ b = b ∧ a

a∨b = b∨a

(a∨b)∨c = a∨(b∨c)

(a∧b)∧c = a∧(b∧c)

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

for histories a, b, c. In general, there is an structure preserving mapping from
the space of all histories H to a field F with Ψ : H → F defined by

Ψ(a∨b) = Ψ(a)+Ψ(b)

Ψ(a∧b) = Ψ(a).Ψ(b)

9.2 Quantum State
A state is any representation of the system such that there is a rule for the
calculation of the probability of outcomes of future measurements from the
representation.

Suppose H is the known history of a system, then minimal sub-history Ψ of H
such that P (x|Ψ) = P (x|H) for all x is one possible system state representation.
No predictive power is lost by using this representation rather than the complete
history.

The test of a good theory is whether it can make accurate predictions. In
the case of Quantum Mechanics, the obvious question is: How much history
is necessary before an observer can make accurate predictions? The answer
cannot be that the observer must know the entire history of a system since the
beginning of time since that information will never be available. So what are
the alternatives? One possibility is to only count the last N measurements for
some N, perhaps giving the more recent measurements more “weight”. But how
do we chose N? How do we assign “weights” to newer and older measurements?

So what should a suitable representation look like? What do we know about
state?

1. Feynman’s Rules imply that state has an algebraic structure generated by
the aggregation and concatenation of histories (and therefore states). In
particular,

P (Ψ∨Θ|Φ) ≡ P (Ψ + Θ|Φ) (1)

and
P (Φ|Ψ∨Θ) ≡ P (Φ|Ψ+Θ) (2)
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2. Probability is not linear in state. If this was so then P (Ψ + φ|Ψ) =
P (Ψ|Ψ) + P (φ|Ψ) = 1 + P (φ|Ψ) > 1 which cannot be correct.

3. If Ψi are the states associated with distinct outcomes from a single mea-
surement device, then

P (Ψi|Ψk) = δik (3)

Equation (1) implies

P (λΨ|Φ) = P (Ψ|Φ) (4)

where λΦ = Φ + . . .+ Φ (λ times) for all λ = 1,2,3,4. . . It appears that in the
quantum world “size doesn’t matter”.

The minimal path state representation is incomplete; it can express all pos-
sible experiment outcomes, both past and future, but does not incorporate the
probability information present in the probability transition matrix.

We make the leap that the state space is a vector space. Feynman’s rules
can be used to satisfy many of the requirements, except that the defintion of
λΨ is not well defined,and consequentially neither is −λΨ. We proceed on the
basis that the meaning of λΨ will “come out in the wash”.

Equation (4) implies the probability is a function of Ψ
|Ψ| rather than just Ψ.

I.e.

P (Ψ) = g

(
Ψ

|Ψ|

)
for some positive function g : R → [0, 1] with g(0) = 0.

Equation (3) looks like an inner product, except that probability is always
positive. It is then natural to speculate that

P (Ψi|Ψk) = f

(〈
Ψi

|Ψi|
| Ψk

|Ψk|

〉)
(5)

where < .|. > is an inner product and f : R → [0, 1] with f(0) = 0 and f(x) > 0
for x ̸= 0.

Putting f(x) = x2 yields the “correct” QM formalization.
It is well known that each device has an operator representation A associated

with it such that < A >=< Ψ|A|Ψ > for the normalized state Ψ.

9.3 Some Examples - Algebraic Extensions
A “wipes out” any knowledge of B, so any state vector, which encompasses our
knowledge of the system, can be expressed only in terms of the probability of
outcomes of measurements of A. I.e. the space is spanned by {ΨA,↑,ΨA,↓} where
ΨA,↑ is the state A =↑.

ΨB,↑ = a.ΨA,↑ + b.ΨA,↓
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ΨB,↓ = c.ΨA,↑ + d.ΨA,↓

for some a, b, c, d.
Noting that the probability of specific outcomes. . . Solving yields (non-

unique)

ΨA,↑ =

[
1
0

]
,ΨA,↓ =

[
0
1

]

ΨB,↑ =
1√
2

[
1
1

]
,ΨB,↓ =

1√
2

[
1
−1

]
which leads to an obvious geometric interpretation shown in figure (??).

If a 3rd 2-valued conjugate device C is introduced, the relevant equations
admit no real-valued solutions. The Principle of Relativity (no preferred frame
of reference) however suggests that all devices and states should be treated
equally; a particular choice of basis should not preclude a solution. Solutions
do exist if the “coordinate” domain is expanded to included complex numbers
(a standard practice in mathematics over the centuries). The resulting solution
looks like:

ΨC,↑ =
1√
2

[
0
i

]
,ΨC,↓ =

1√
2

[
0
−i

]
The measurement operators are found to be

Lx =
1

2

[
0 1
1 0

]
, Ly =

1

2

[
0 i
i 0

]
, Lz =

1

2

[
1 0
0 −1

]
If we add a 4th 2-valued quantity conjugate, then re-solving to choose symmetric
solutions, yields[

1
0

]
,

[
0
1

]
,
1√
2

[
0
±i

]
,
1√
2

[
0
±j

]
,
1√
2

[
0
±k

]
where i, j, k are quaternions. The corresponding operators are

K0 =

[
1 0
0 −1

]
,K1 =

[
0 −iσx

iσx 0

]
,K2 =

[
0 −iσy

iσy 0

]
,K3 =

[
0 −iσz

iσz 0

]
which are recognizable as variants of the Dirac’s matrices.

10 The Principle of Scale
How do we know what we are measuring? The commutator relationships be-
tween measurement operators define “what we are measuring”. The proposition
has several advantages:
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1. The algebraic relationships between operators can be extracted (with some
caveats) experimentally from a measurement stream, even though this may
be very computationally expensive.

2. Commutators can define a “scale” and provide a natural mechanism for
the introduction of constants.

[Xi, Xj ] = cijkXk

If the devices,Xi, are rescaled Xi → fi(Xi) then, depending on the algebra,
the re-scaling may be a detectable as a change in the measured commutator
relations.

[fi(Xi), fj(Xj)] = cijkfk(Xk)

A set of devices Xi, . . . Xn can be assigned meaning only if any rescaling
(recalibration) of the devices is detectable. The commuatator relations provide
a method of ensuring different separated measuring devices use the same units.

10.1 Example 1: Angular Momentum
Three devices are related by the commutator relationship

[Lx, Ly] = iℏLz

[Ly, Lz] = iℏLx

[Lz, Lx] = iℏLy

Rescale Lx → Lx′ = λLx with λ ̸= 0, λ ̸= 1 then

[Lx′ , Ly] = iλℏLz

[Ly, Lz] = i

(
1

λ

)
ℏLz

[Lz, Lx′ ] = iλℏLy

The rescaling of Lx can be partially hidden by the simultaneous rescaling Ly or
Lz. If Lz → Lz′ = λLz., then

[Lx′, Ly] = iℏLz

[Ly, Lz′ ] = iℏLx

[Lz′ , Lx′ ] = iλ2ℏLy
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However no further scaling Ly → Ly′ = λLy , with λ ̸= 0, λ ̸= 1 (below) can
disguise the original change of scale.

[Lx′ , Ly′ ] = iλℏLz, [Ly′ , Lz′ ] = iλℏLx, [Lz′ , Lx′ ] = iλ2ℏLy′

Conclusion: A set of Mach devices described by angular momentum op-
erators Lx, Ly, Lz satisfies the requirements of the Principle of Scale and can
therefore be regarded as producing meaningful measurements.

10.2 Example 2 : Position and Momentum
Two devices are related by commutator relationship [x, p] = ℏ. Rescale x →
x′ = λx (change in the choice of units), then [x′, p] = [λx, p] = λℏ. The original
scaling however can be hidden by rescaling p. I.e. p →

(
1
λ

)
p.

Conclusion: A set of Mach devices described by angular momentum opera-
tors x, y, z, py, py, py do not satisfies the requirements of the Principle of Scale
and so the set of operators cannot be regarded as producing meaningful mea-
surements.

10.3 Example 3: Position, Momentum and Angular Mo-
mentum

There are nine devices in all. The non-zero commutator relations are shown
below.

[Lx, Ly] = iℏLz, [Ly, Lz] = iℏ, Lx[Lz, Lx] = iℏ

[x, px] = ℏ, [y, py] = ℏ, [z, pz] = ℏ

[x, px] = ℏ, [y, py] = ℏ, [z, pz] = ℏ

[Lx, py] = iℏpz[Ly, pz] = iℏpx[Lz, px] = iℏpy

Any rescaling of the angular momentum devices is immediately detectable.
The position and momentum operators can be undetectably rescaled in any
direction provided that if x → x′ = λx, then px →

(
1
λ

)
px. However a simple

rescaling in 1 dimension can be detected. The angular momentum commutator
relationships provide a mechanism for comparing the scaling of position and
momentum devices in different “orientations”. For example, rescale x → x′ = λx,
then

[Lz, x
′] = iℏy

becomes

[Lz, λx] = iλℏy
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which is detectable. If however all three position operators are rescaled
(x → x′ = λx, y → y′ = λy and z → z′ = λz) then the rescaling is not
detectable.

Conclusion: The set of Mach devices described by angular momentum, po-
sition and momentum operators do not satisfy the requirement of the Principle
of State and position and momentum operators therefore cannot be regarded as
producing meaningful result.

The result is not a surprise. Einstein Theory of Relativity makes it clear
there is a missing component: the speed of light.

11 Time
Naive observers, equipped only with Mach devices, do not have access to a clock.
How would such an observer measure time?

11.1 Pauli’s Theorem
Pauli’s Theorem famously states that if the Hamiltonian H is bounded from
below, then there is no (time) operator T which obeys the expected commutator
relation [H, T ] = iℏ, and has unbounded eigenvalues.

Pauli’s Theorem suggests that there is no such thing as a “forever” time
operator in Quantum Mechanics. We accept this at face value.

11.2 Different concepts of Time
At least 3 different ’roles’ for time have been identified by various writers (names
vary). E.g.[5].

• External Time - The time is supplied from an uncoupled external source
and appears as a ’parameter’ in the equations of motion. If H = (m0,m1,m2, ...,mn)
is a history, then an increasing numeric time value is assigned to each mea-
surement so that the history becomes H = ((m0, t0) , (m1, t1) , (m2, t2) , ..., (mn, tn))
The enhanced elements of the history are called events. As the time values
have an external source, there is no quantum uncertainty.

• Clock Time - a specific observable of the system under investigation may
“mirror the passing of time”. The evolution of that quantity (e.g. the
changing position of a second hand on a clock) is used as a proxy for the
passage of time.

• Intrinsic Time - Time is a measure of the “aging” of the Universe.

11.3 Do fundamental particles have wrinkles?
A muon decays with a mean lifetime of 2.2 μs. What is different between a
newly created muon and the same particle 2.2 μs later? What changes within
the particle as it ages? Do sub-atomic particles get wrinkles?
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The decay follows a Poisson distribution which means that the probability of
decay dp is directly proportional to the infinitesimal amount of time dt passed,
and not dependent on the time itself.

dp = λdt

How is the muon aware of amount of time dt passed?
Electrons, photons and gluons do not decay. In that sense, they do not seem

to experience time at all.
Conjecture: Perhaps elementary particles do not experience time - they do

not decay, and the majority of the particles of the standard model are not
elementary, rather they are compound quantum systems like protons. If so, the
concept of intrinsic time can be dispensed with, and the lack of a Time operator
is not disturbing since there is no intrinsic time to measure. Clocks are used to
assign the time (an numerically increasing real number) to measurements in the
tickertape.

Irrespective of the any concept of the aging of fundamental particles, we
shall develop Quantum Mechanics without any concept of Intrinsics Time, and
instead focus entirely on clocks and external time.

12 The Transition to Dynamic Probabilities
Our original treatment of QM was somewhat artifical. It assumed stable systems
for which the probability transitions from one state to another did not change.
Once we have a clock, that can change.

The definition of “repeatable” can be expanded so that measurements need
only be repeatable “in a small period of time dt”. The Hamiltonian H can
then be introduced to describe the evolution of quantum systems with dynamic
transition probabilities. Let

HΨ = iℏ
∂Ψ

∂t

then
Ψ(t+∆t) = [1− i

ℏ
H.∆t]Ψ(t)

13 Clocks
Clocks have the following characteristics:

1. Clocks don’t affect the one another. If one clock runs fast or slows down,
it does not affect any other clock.

2. Clock time flows one way; it never flows backwards.

3. Clocks should not “speed up” or “slow down”. Time is, by definition,
homogenous.
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An isolated clock is not of much use since it is not possible to determine whether
it is running true by comparing it to other clocks.

Multiple clocks need to run at the same rate, or at least in concert, to be able
make time-senstive predictions about systems which are potentially separated
from each other across time and space.

Each system in a set of n > 1 quantum systems {Ci}with observable Ti is a
clock if

1. Each observable Ti is independent of each other observable Tj .

2. Each observable Ti is strictly monotonic increasing. i.e. If separate mea-
surements t1 and t2 are the result of measurements of Ti and t2 is made
“after” t1, then t1 < t2.

3. Each pair of clocks Ci and Cj are in concert. I.e. the following applies:
Ti = κ.(Tj +∆t) where ∆t is the difference in clock time assigned to the
same event in the tickertape, and κ is an arbitrary constant.

13.1 An Ensemble Clocks (Quantum Egg-Timers) - An
Example

The diagram below shows a ensemble quantum clock frequently described in the
literature. (Type “ensemble quantum clock” into Google to see this) The device
consists of a large number of subsystems (“particles”) that are initially prepared
so that they are in identical states, denoted ↑. The “particles” spontaneously
change state to a second state, denoted ↓. They cannot revert to their previous
state or the clock only counts the initial transition. The transitions are not
under the control of an observer, except perhaps that the observer may be able
to switch the whole process off or on. The clock may also “reverse” so that
the particles move back to the original state ↑, and the whole cycle start again
(Flipping the Egg-Timer).

A statistical estimate of the time past since the assembly of particles was
prepared (t = 0) and the clock started can be made by counting the number
of particles that have changed state (t > 0). A clock can be designed with
arbitrarily high confidence by increasing the number of particles in the ensemble.

If Et(N) is the expected proportion of “particles” in the ↑ state at time t,
then

Et(N) =< N >t= e−λt

Solving for the time T :

T =
−ln(N)

λ

Flipping the Egg-Timer also provides us with ability to accumulate statistics
and check the operation of the clock. The individual particles that make up the
clock are independent of each other. I.e. (P (AB) = P (A)P (B) where A and
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Figure 6: A Ensemble Clock

B represent specific particle state transitions). Each particle should be equally
likely to make a transition “at any time”.

The opertor t defined above for an esemble clock satisfies the requirement
for a clock time since:

1. Each subsystem transition (“decay” from ↑ to ↓) is statistically indepen-
dent from any other.

2. The proportion of decayed particles always increases, (T is monotonic)

3. The clock actually consists of multiple sub-clocks. A second clock can
be constructed from the main clock simply by selecting a subset of the
particles in the main clock; the proportion of particles in the decayed
state will be the same in both clocks. Both clocks will be synchronised.

Both clocks are of the same construction and κ = 1.

14 Comments
The Kantian world view leads to a calculus that is recognisably Quantum Me-
chanics. Paradoxes such as the Measurement Problem simply do not exist; they
are the artifical creation of moving away from Copenhagen’s Kantian roots.

The current situation with interpretations is not good. Von Neumann has
managed to spread his “waveform” confusion to several generations of Physicists
and spawn a small industry producing quantum interpretations. The Copen-
hagen Interpretation meanwhile has become so polluted as a brand that it is
now virtually impossible to determine what it is without inordinate research.
This confusion is unlikely to get better in the near future as unfortunately there
is a distaste for or lack of knowledge of philosophy amonst practical engineers
who would prefer to crunch numbers and build things. Many feel philosophy
and interpretations add nothing to the Physics. String theoriest, in particu-
lar, have a habit of making glib comments such as “Everything is a wave”. Of
course, waveforms feel comfortable to those who like their quantum mechanics
with a dash of the macroscopic familiar, but that’s not the real world. In fact,
waveforms cannot be fundamental since the quantum formalism does not even
require space-time, a prerequisite for any waveform.

Bohr got it essentially right.
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