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The Ticker Tape Interpretation of Quantum Mechanics is a Kantian based interpretation, similar 

to Copenhagen. It examines the everyday properties of measurements and shows that they lead 

inexorably to Quantum Mechanics as we know it. The classical Quantum Mechanic formalism is 

derived. Some conjectures are made about the nature of time which allows the above results to be 

applied generally. 
 

  
The author has rather playfully borrowed the title of some of Einstein’s famous “Principles”. Even 

though the principles in this paper have the same names as those found in Special or General 
Relativity, they have nothing to do with any specifics of Special or General Relativity; the names 

were chosen however because, at some level, the both versions derive from an even more general 

principle. 
 

 

1. Philosophical Underpinnings 

 

This paper adopts a world view that is essentially Kantian. The Kantian world view consists of an 
external world that is perceived through our sensors; we use the information provided to build 
mental models of the external world but cannot know its true nature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  

Kantian World View (circa 1785). 
 
Copenhagen clarifies aspects of the Kantian world view. (It has been argued that the Copenhagen 

Interpretation is Positivist, however subtle arguments over philosophical classifications are beyond 

the scope of this paper) Quantum Mechanics replaces the vague idea of sensory input with that of 

measurement and precise mathematical description. The idea of a conscious agent is replaced by 

intelligence, which need not be human (although some commentators would dispute this). It could, 

for example, be a robot. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  
Copenhagen World View (circa 1928). 

 
The Copenhagen Interpretation acknowledges that our mental models may be incomplete; it may 

be necessary to apply a wave model in some situations and apply a particle model in another 
(Complementary Principle). Realism, on the other hand, is rooted in the belief that the world is as 

it appears, and seeks to preserve macroscopic models, possibly beyond their domain of 

applicability. 

 

2. Measurement 

 

Measuring devices feed specific observers with measurement streams; measurements are regarded 

as “elements of reality” by those observers. The observer is logically separate from the 
measurement itself. A measurement discontinuously changes the probability distribution an 

observer associates with the next measurement. 

 

Definition: A measuring device that produces a single real number as its output is called a “basic” 
measuring device, and the measurements it produces are called “basic” measurements. The 

notation X = x is used to mean the device X has been used to make a measurement and result has 

been reported as x.  
 

Why a real number? Measurement results can be put “in order” from the smallest to the largest. 

I.e. If M = {set of possible measurement values}, then there is a strict total ordering of M, which 

creates an order preserving mapping from M to some subset of Real numbers. 
 
It is postulated that meaningful measurements are basic measurements, or logical combinations of 
such measurements. For example, (X=x1 or X=x2) is the possible outcome of a measurement, as is 
(X > x1) and (X≠ x2) 
 

Definition: A history is a sequence of measurements and denoted H = (m0, m1, m2, ..., mnwhere  
mi are measurements. If all measurements are “basic”, the history will look like X = x0, Y1 = y1, 

Z2 = z2, ...., Wn = wn). 

 

3. The Equivalence Principle 

 

There is no transition from the Quantum world to the Classical world. The difference between 
measurement in the Classical world and measurement in the Quantum world is a matter of 
interpretation. 

 
Quantum Mechanics is a mental model; the waveform and any measurement operator A are 

mental constructions, built on top of the information gathered from “raw” measurements. Classical 

mechanics is also a mental model (since we know it is not “true”, it cannot be otherwise); 
typically, Classical Mechanics typically deals with quantities that (roughly) correspond with the 



expected value <A> and regards the difference from <A> to be “error”. 
 
 

 
 
Figure 3 

Measurements and Mental Models. 
 
In the diagram above, the left pane shows the “raw” position measurements of a particle moving 
diagonally from left to right is shown. The central pane adds the intellectual machinery of 

Quantum Mechanics; the calculated 95% confidence intervals are shown in gray. The right pane 

adds the intellectual machinery of Classical Mechanics; the presumed classical path is shown in 
red. 

 

In Quantum Mechanics, the uncertainty in the position of a particle is associated with the 

Heisenberg Uncertainty Principle and viewed as intrinsic to the system; the measurement 

themselves are taken at face value (The Principle of Exact Measurement – If no further 

information is available, how can a measurement contain error?).  

 

In Classical Mechanics, it is the measurement that contains “error” (uncertainty) in the position of 

the particle; the “error” has a multitude of sources external to the system itself, typically related to 

the construction of the measuring devices and lack of knowledge of initial conditions, but there is 

always a presumption that if these influences could be eradicated, exact measurements would be 

possible and that the predictions of Classical mechanics would be confirmed. 

 

4. Mach Devices 

 

Bohr expressed the opinion that measuring devices are “essentially classical” in that they measure 

classical quantities such as time and space 
[1]

. This implies knowledge of classical mechanics is 

required before Quantum Mechanical measurements can be understood, yet Quantum Mechanics 
is presumed to be more fundamental than classical physics. It is also not easy to apply Bohr's 
vision of essentially classical measuring devices to abstract concepts such as QCD colour. 
 

Rather than follow Bohr, we take a slightly different view of measurement. 

 

Definition: A measuring device is a Mach device with respect to an observer if the following 
applies: 
 

(i) The device produces a stream of basic measurements recorded on a tickertape (or 
equivalent) accessible to the observer. Measurements are recorded in the order they 
are made.  



 
(ii) The measurements are “repeatable”.   

 
(iii) The device’s internal structure is unknown. It is a “black box”. There is no a-prior 

information about what the numbers it produces mean.  

 

(iv) The observer does not have access to a clock.  

 

 
Figure 4.   

A Mach device. 

 

A Mach device is the most primitive measurement device possible: it only produces basic 

measurements.   

6.1 When is a measuring device not a measuring device? 

 

Classical "measuring” devices generally do not live up to the standard required to be measuring 
devices. Typical probability distributions associated with an “instantaneous” second measurement 

of a quantity, P(X | X=xi), are shown in figure 5.  

 

 
 

Figure 5.  
Probability distributions for a second instantaneous  

measurement of a quantity 
 
 

If there is overlap between the probability density functions (as is the case for the probability 
density functions for X = x 1 and X = x 2 in figure (5)), repeated measurements of the system may 
result in the different value for X. I.e. if there is any overlap in the probability density functions, 
the result of any measurement of X is not repeatable and so the measuring device does not satisfy 
any reasonable definition of a measuring device. 
 
 

5. Principle of Relativity (Mach's Principle) 
 

The output from a single Mach device is meaningless. 

 

This is a generalisation of Mach's Principle. Mach’s statement of the Principle of Relativity 

famously influenced Einstein but the principle itself dates back at least to Galileo. Ernst Mach 
argued that it would be meaningless to talk about the motion of a single particle in an empty 

Universe. All motion is relative. In fact, all measurement is relative. If there is no context, a 



measurement stream becomes a meaningless stream of numbers. 

 

6. Mach Banishes Determinism 

 

Suppose X = f(t) is a classical quantity, and X is a measuring device that faithfully returns X. If X 
is a Mach device with respect to an observer, it is not possible for that observer to determine what 
the device measures from the measurement history. Why? There is no way to calibrate the device. 

 

Suppose we construct a second device Y whose output is related to the first by 

 

Y = ζ (X(t)) 

 

The second device is sealed, mixed up with the first and given to the naive observer so they both 
become Mach devices. Which measures the “fundamental” quantity? X and Y? X? Y? In fact, we 
can build the device Y so it returns any measurement profile we like. 

 

If a measuring device qualifies as a Mach device except that it is known that it measures a 
quantity X where X = f(t) for some function f, then the output from that device is meaningless. 

 

7. State 

 

Definition: A system state is any representation such that there is a rule for the calculation of 

the probability P(x |) where x is a measurement outcome and P(x |) = P(x | H ) for all, where H 
is the known history of the system. 
 

The minimal sub-history H of H such that P(x | H) = P(x | H ) for all x is one possible system state 

representation. 

 

The test of a good theory is whether it can make accurate predictions. In the case of Quantum 

Mechanics, the obvious question is: How much history is necessary before an observer can make 

accurate predictions?  

 

The answer cannot be that the observer must know the entire history of a system since the 

beginning of time since that information will never be available. So, what are the alternatives? 

One possibility is to only count the last N measurements for some N, perhaps giving the more 

recent measurements more “weight”. But how do we choose N? Why is one choice of N better 

than another? How do we assign “weights” to newer and older measurements?  

 

Given the problems of choosing any special value for N, it makes sense that the probability of any 

measurement X=x depends at most only on the last value of each measuring device in the system. 

 

8. Transition Probabilities and Repeatability 
 

Measurements are expected to be repeatable. I.e. if two measurements are made, one immediately 

after the other, the results of the two measurements should agree.  

 

Mach devices do not come equipped with a clock. There is no sense of time. It is not possible to 
know what the interval between any two measurements is. If the results of two consecutive 
measurements disagree it could be that measuring device is a working Mach device and the 
interval was so long that the system slowly evolved into another state. It is also possible that the 

device is “faulty” (not a working Mach device). But it is not possible to tell which is the case. 
 

Since we have no clock, we restrict our attention to systems with stable state transition 



probabilities. I.e. P(|) = 1 for any state . I.e. From the ticker tape, select out measurements of 

the form (B = b, A = ?) and calculate the proportion that have A = ai.  

 

9. How do we know what we are measuring? 

 

If the stream of measurement is deterministic, then there is reason to believe the output from the 

device is meaningless. It seems that a measurement stream can only be “understood” if it contains 
a random component.   

 

We postulate the commutator relationships between measurement operators define “what we are 

measuring”. 

 

The proposition has several advantages: 

 
1.  The algebraic relationships between operators can be extracted experimentally (with the 

usual caveats) from a measurement stream, even though this may be very expensive. 

 
2. Commutators do not require Classical Physics to pre-define the concepts required for use 

by Quantum Mechanics.  

 
3. Commutators naturally define a “scale” and provide a natural mechanism for the 

introduction of constants. For example, suppose that  
 

[Xi, Xj ] = gij(X1 .. Xn) 
 

If one of the devices, Xi, is rescaled Xi  λXi then, there may be a detectable change in 

the commutator relations 

 

Assuming the measurement space is spanned by {Xi|i=1..n},  the simplest restriction would be to 

limit consideration to 

 

[Xi, Xj ] = aij+ cij
k
 Xk,  i,j,k =1..n. 

 

9.1 Principle of Scale 

 

A set of devices { Xi, … Xn } can be assigned meaning only if any rescaling (calibration) of the 

devices is detectable. 

 


[Lz', Lx'] = i λ
2

 
 
ħ Ly 

 

However no further scaling Ly  Ly' =  Ly ,  ≠ 0, ≠ 1 (below) can disguise the original 

change of scale. 

[Lx', Ly'] = i  ħ Lz' 

[Ly', Lz'] = i  ħ Lz' 

[Lz', Lx'] = i λ
2

 
 












1
ħ Ly' 

Conclusion: A set of Mach devices described by angular momentum operators { Lx, Ly, Lz } 

satisfies the requirements of the Principle of Scale and can therefore be regarded as producing 

meaningful measurements. 

 



Example 2: (Position and Momentum) Two devices are related by commutator relationship [x, p] 

= iħ.  

 

Rescale x  x' = λx (change in the choice of units), then  

 

[x', p] = [λx, p] = iλħ. 

 

The original scaling however can be hidden by rescaling p. I.e. p  










1
p.  

Example 3:  (Position and  Momentum in 3D + Angular Momentum). Calculations show these 

nine devices do not satisfy the requirement of the Principle of Scale. 

 

It is not surprising that measurements of position and momentum fail since these quantities are 

always relative to a second reference “point”, absent from the commutator relations, and scaling is 

relative to the speed of light. It does raise questions about the basis of scaling in the early opaque 

Universe. 

 

10. The Formalism of Quantum Mechanics 

10.1 Feynman’s Rules 

We follow the argument put forward by Ariel Caticha
[2]

. 
 

Definition: If HA = (m1,..., mk) and H B = (mk+1, ..., mk+m) are histories, then 
 

HA  HB = (m1, …, mk, mk+1, ..., mk+m) 

 

The history HA must “follow” the history HB and not overlap in time. The operator  is read as 

“and”. 
 
 

Definition: Let HA be a history, then HB is an alternative history to HA if HB is the same as HA 

except that some of the measurements, other than the initial and final measurements, have 

different values. 
 

Definition: If HA = (m, …, mAi, ..., mn) and HB = (m, …, mBi, ..., mn) are alternative histories 

which differ in the value of the i
th

 measurement, then 

HA  HB = (m, …, mAi  mBi , ..., mn) 

The operator  is read as “or”. 

 

If mAi is the measurement X= xi, and mBi is the measurement X= x2, then  

HA  HB = (m, …, X  {x1,x2} , ..., mn) 

and X  {x1,x2} is regarded as a measurement in its own regard, derived from the basic 

measurements X= x1 and X= x2. 

 

The operators  and  obey the following relations: 

 

a  b = b  a  
(a  b)  c = a  (b  c) 

(a  b)  c = a  (b  c)  
a  (b  c) = (a  b)  (a  c) 

 



If H = set of possible histories for a system, the any representation (, +, x) with  H → 

where  is some algebraic system, over a field F, and 

 

a  b) = a) + b) 

a  b) = a) x b) 

 
would carry these properties across. 

 

Caticha
[2]

 shows that standard addition and multiplication fit the requirements for + and x. 

10.2 Derivation of Standard Equations of Quantum Mechanics 

The mapping above assumes that each possible outcome is equally likely. We want to describe the 

case where one state Ψ’ is more (or less) likely than the other state - it seems sensible to try to 

represent Ψ’ = (λΨ).  

 

1) Feynman’s Rules imply that state has an algebraic structure generated by the union and 

concatenation of histories (and therefore states). In particular, 

 

P(Ψ + Ψ |) = P(Ψ  Ψ |) = P(Ψ |) 

 

and  

P(| Ψ + Ψ) = P(| Ψ  Ψ) = P(| Ψ). 

 

This implies 

 

P(λΨ) = P(Ψ) where λΨ = Ψ + … + Ψ (λ times) for all λ = 1,2,3,4… 

and  

P(0.Ψ) = P(ϕ) = 0 

 

This result can be extended to  

 

P(λΨ) = P(Ψ) where λ  F.     (10.2.1) 

 

2) Probability is not linear in state. If this was so then suppose P( | Ψ) > 0. It follows 

 

P(Ψ +  | Ψ) = P(Ψ| Ψ) + P( | Ψ) = 1 + P( | Ψ) > 1 

 

which cannot be correct. 

 

3) The numbers Ψ and  are not members of the field F If this was not the case, then Ψ =  for 

some number , and so 

 

P(Ψ | ) = P(| ) = P(| ) 

which cannot be correct. 

 

4) If Ψi are the states associated with distinct outcomes of a measurement, then  

 

P(Ψi | Ψk ) = δik    (10.2.2) 

 

The above expression looks a lot like an inner product, except that probability is always positive. 

 

Putting it all together, (10.2.1) strongly suggests that the probability is a function of 
Ψ

Ψ
 rather 

than Ψ. I.e. 



P(Ψ) = 
















Ψ

Ψ
g  

 

(10.2.2) strongly suggests that the presence of an inner product  

 

P(Ψi | Ψk ) = 
















k

k,

i

i

Ψ

Ψ

Ψ

Ψ
f    (10.2.3)  

 

where <.|.> is an inner product and f: R→ [0,1] with f(-1) = 1, f(0) = 0 and f(1) = 1. 

 

Choosing f(x) = |x|
2
, probably the simplest possible choice, and gives the “correct” QM 

formalization.  

 

The standard representation of measuring devices as operators and measurement values as 

eigenvalues follows. 

10.3 Some Examples - Algebraic Extensions 

 

It is sometimes asked why complex numbers are so prevalent in Quantum Mechanics. They 

simply occur as the solution to algebraic equations that arise in the calculation of representations  

 

Assume A and B are conjugate devices that both return two values ↑ and ↓. 

Let ΨA↑ = 








0

1
, ΨA↓ = 









1

0
, then finding a representation for ΨB↑ and ΨB↑ is equivalent to solving 

the equations 

 

ΨB↑ = aΨA↑ + bΨA↓   for some a,b 

ΨB↓ = cΨA↑ + dΨA↓  for some c,d 

 

subject to P(ΨAi | ΨBj) = 0.5 for i j in {↑,↓}. Solving yields (non-uniquely)  

 

ΨA↑ = 








0

1
, ΨA↓ = 









1

0
, ΨB↑ = 









1

1

2

1
, ΨB↓ = 









1

1

2

1
 

 
which leads to an obvious geometric interpretation. 

 

If a 3
rd

 2-valued conjugate device C is introduced, then finding a representation is again a case of 

finding  

ΨC↑ = a’ΨA↑ + bΨA↓   for some a,b 

ΨC↓ = cΨA↑ + dΨA↓  for some c,d 

 

subject to P(ΨCi | ΨAj) = 0.5 and P(ΨCi | ΨBj) = 0.5 for i j in {↑,↓}.  

 

The relevant equations admit no real-valued solutions. (Non-unique) solutions do exist if the “co-

ordinate” domain is expanded to included complex numbers (a standard practice in mathematics 

over the centuries). The standard solution looks like: 

 

ΨC↑ = 








i

1

2

1
, ΨC↓ = 









 i

1

2

1
 



 
The geometric justification for this is that it is not possible to have 3 sets of right-angles in 2-

dimensional Real space which all are at 45 degrees to each other; moving to complex 2-

dimensional space provides the additional degree of freedom. 

 

The corresponding standard measurement operators for Angular Momentum are 

 

Lz = 1/2. 








10

01
, Lx = 1/2. 









01

10
 , Ly = 1/2. 







 

0

0

i

i
 

 
If we add a 4

th
 2-valued conjugate quantity, then a solution requires quaternions. Re-solving to 

choose symmetric solutions, yields 

 










0

1
 , 









1

0
 , 









 i

1

2

1
 , 









 j

1

2

1
, 









 k

1

2

1
 

 
where i, j, k are quaternions. The corresponding operators are 

 

 = 








10

01
,  =

0

0

i

i

 
 
 

, =
0

0

j

j

 
 
 

, =
0

0

k

k

 
 
 

 

 

11. Time 
 

Naive observers, equipped only with Mach devices, do not have access to a clock. How would 

such an observer measure time? 

11.1 Pauli's Theorem 

 

Pauli's Theorem strongly suggests that there is no such thing as a time operator in Quantum 

Mechanics. No-go theorems always need to be treated with caution. The best attempts at building 

a quantum clock so far are statistical in nature. We go with the assumption that that’s as good as it 

gets. 

11.2 Ensemble Clocks (Quantum Egg-Timers) 

An ensemble quantum clock is a device consisting of many quantum subsystems (“particles”) that 

are initially prepared so that they are in identical states, denoted ↑. The “particles” spontaneously 

change state to a second state, denoted ↓. The transitions are not under the control of an observer, 

except perhaps that the observer may be able to switch the whole state transition process on or off. 

Each transition is believed, from the analysis of transition probabilities, to be statistically 

independent from any other.   

 

For a practical clock, it should also be possible to reset the clock so that the all the particles move 

back to the original ↑ state, and the whole process repeated (Flipping the Egg-Timer). 

 
A statistical estimate of the time past since the assembly of particles was prepared (t = 0) can be 

made by counting the number of particles that have changed state (t > 0). A clock can be designed 
with arbitrarily high confidence by increasing the number of particles in the ensemble. 

 

Typically if N(t) = expected proportion of “particles” in the ↑ state at time t, then the “measured” 

time t 

  



t  N 
-1

(n)

 

where n is the measured proportion of particles in the ↑ state, and t is suitable restricted.  
 
If there are N particles in the ensemble and the particles are ordered by the order in which they 
make their transition, the expected position in the ordering for any particle should be N/2. 
Repeatedly reset and run the clock. A sieve can be constructed to exclude any particles that do not 
appear to be independent of each other to within a specific confidence.   
 
Stepping back into a world equipped with measurable time..  
 

Once we have a clock, we can relax any requirement that transition probabilities are stable, and 

that always P(Ψ(t+δt) | Ψ(t)) = 1. The Hamiltonian can be introduced by “differentiating” the 

state vector Ψ(t) with respect to time.  

 

12. The Ticker-Tape Conjecture 
 

Time is a statistical concept. 

 

The implication is that in extreme conditions, time may cease to be measurable and therefore the 

equations of Quantum Mechanics break down, in much the same way that continuous fluid flow 

equations break down approaching the atomic level. 

 

13. Summary 

 

The Ticker-Tape Interpretation is based on Copenhagen (I would hope that Bohr, Heisenberg and 

Born would recognise it and approve) but rejects the view of Bohr that classical notions of space-

time and Physics are a necessary pre-requisite for the formulation of Quantum Physics.  

 

It demonstrates that every-day properties of measurement lead to Quantum Mechanics as we know 

it. It is difficult to imagine how the Universe could be any other way – the mathematics of 

Quantum Mechanics are the outcome of analysing measurement streams along with taking 

practical steps to limit the scope of the analysis to that part of the Universe that can be simply 

understood. It also explains why entanglement is more fundamental than notions of space-time. 

 

14. Request for Assistance 
 

This paper was part of a website that ranked #2 in Google and Bing searches for “Quantum 

Interpretations” in early 2000s. Any assistance leasing to the publication of this paper in a 

recognised journal would be appreciated. 
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