TIME-PERIODIC SOLUTION TO THE COMPRESSIBLE VISCOELASTIC
FLOWS IN PERIODIC DOMAIN

ZEFU FENG, XU JIAO, AND KUN ZHAO*

ABSTRACT. In this paper, we are concerned with the time-periodic solutions to the three-
dimensional compressible viscoelastic flows with a time-periodic external force in a periodic
domain. By using an approach of parabolic regularization and combining with the topology
degree theory, we show the existence and uniqueness of the time-periodic solution to the model
under some smallness and symmetry assumptions on the external force.

1. INTRODUCTION

In this paper, we consider the existence and uniqueness of time-periodic solution for the
compressible viscoelastic flows (cf. [7, 11, 14, 22, 31]):

pt+ V- (pu) =0,
(pu)i+V-(pu@u)+ VP -V -S=aV- (pFFT) + pf(x,t), (1.1)

Here z € Q = (=L, L)Y (N > 1), p > 0, u = (u1,u9,,uyn), and F € MN*N(the set of
N x N matrices with positive determiants) are, respectively, the density, the velocity, and the
deformation gradient. P is the pressure function, for the case of ideal gas, it satisfies

P(p) = Ap", (1.2)
While S is the viscous stress tensor, which is given by Newton’s viscosity formula:
S = u(Vu+ (Vu) ") + AV - ul,

where (Vu) ' is the transpose matrix of Vu and I is the n x n identity matrix, the constants p
and A are the viscosity coefficients, which satisfy the physical restrictions

>0, NX+2u>0.

The parameter a > 0 denotes the speed of propagation of shear waves which we set to unity. For
system (1.1), the corresponding elastic energy is chosen to be the special form of the Hookean
linear elasticity

1 [P
W(E) = 2|FP2+ / P(s)ds, a > 0.
2 P Jo
In addition, f(z,t) is a given external force with periods 2L and T both in space and time,

respectively. We also assume that
div(pFT) =0, F*(0)V,FY(0) = FY(0)V,F*(0). (1.3)

The condition (1.3) is preserved by the flow, please refer [13, 29].

In the past few decades, there are a lot of research on the viscoelastic flows. For the in-
compressible cases, the existence of classical solutions of both the Cauchy problem and the
initial-boundary value problem are extensively studied, in [5, 6, 21, 23-25, 35]. The Long-time
behavior and weak-strong uniqueness of solutions was proved by Hu-Wu in [15]. The global

2010 Mathematics Subject Classification. 35Q30, 35B10, 35Q35.
Key words and phrases. Compressible viscoelastic flows, time-periodic, topology degree theory.
*Corresponding author.

1



2 Z.-F. FENG, J. XU, AND K. ZHAO

existence of weak solution to the two-dimensional incompressible viscoelastic flows with discon-
tinuous initial data was proved by Hu-Lin in [16]. On the other hand, the global existence of
weak solutions with large initial data is still an open problem. For the compressible viscoelastic
flows, when the external force f = 0, the global existence of classical solutions to the two-
dimensional Oldroyd model was proved by Lei-Zhou [22] via the incompressible limit. Hu-Wang
[12] proved the local existence of strong solutions. Later, the global existence to the system (1.1)
with the initial data close to constant equilibrium in the critical L? Besov space was stuied by
Hu-Wang [13] and Qian-Zhang [29]. See also [14, 28] for the global existence and optimal time
decay for the Cauchy problem to the system (1.1), respectively, for the initial data are close to
the constant equilibrium state in H? and in LP critical spaces. As for the initial boundary value
problem, a global-in-time solution was proved to exist close to the equilibrium state, please refer
to [15, 30] and references. However, the existence and uniqueness of time-periodic solution to
the system (1.1) in bounded periodic domain or unbounded domain remains open. It is worth
noting that when F' is a constant matric, the system (1.1) reduces to compressible Navier-Stokes
equation. There has been much nice work on the periodic solution to compressible Navier-Stokes
equation and related models; refer to [1—1, 10, 17-20, 26, 27, 33] and references therein. Here we
only mention some of them for bounded domain. The existence and uniqueness of time-periodic
solution to the compressible Navier-Stokes equations in bounded bounded domain and periodic
domain was obtained by Jin in [17] and Jin-Yang in [18], respectively. And for the works on the
time-periodic solutions to some models related to the compressible Navier-Stokes equations, see
[3, 31], for instance, and references therein.

In this paper, we shall establish the existence and the uniqueness of a time-periodic solution to
the system (1.1) for (p,u, F') around the constant equilibrium state [p, 0, I] in a periodic domain,
which can be reformulated problem as follows:

ot + divu = —div(ou),

up — i I(_)Au - 'Zj: ;Vdivu +vpVo —divE = —(u - V)u — g(o)Vo (1.4)

+(ET-V)E + f(a,t),
E; —Vu=—-u-VE+ VuFE.

Here,c =p—p, E=F—1,~v= %, g(o) = Plé%;p). The proof is based on the combination of
topology degree theory with some a priori estimates under the oddness and smallness assumption
on the periodic external force. The key of matter of the present paper is the uniform estimates of
the dissipation on ||V *2¢| 2 and |[V™F2E|| 2. For this goal, special attention has to be paid
on the coupling between the second and third equations as well as the condition div(pFT) = 0

and structure of the equation for F:

e The presence of the deformation gradient F' in the transport equation gives rises to the
the unexpected extra linear term divFE in the reformulated system. In spite of can be
handled directly by virtue of the linearized equation for F, however, we can’t directly
get the estimate of dissipation on ||V 20| ;2 and |[ V™ 2E| 2 by virtue of multiplying
by V"tlg and V" E respectively. To get over this difficulty, we take the Hodge
decomposition of the momentum equation, and then the linear term Vp and divE are
separated, which enables us to obtain the estimates of dissipation on |[|[V™ 25| 2 and
IV 2B 2.

e To get the dissipation of ||V™2E||, making use of the structure of the equation for F
and the condition div(pFT) = 0, namely, curlE is a high order term, we succeed in
establishing estimates of dissipation for |[V™"2E||. Please refer proposition 3.1 for the
details.

Before stating the main results, we explain the notations and conventions throughout this paper.
We denote by C' a generic positive constant. For two quantities A and B, we write A ~ B if
C~1A < B < CA. The notation A < B means that A < CB for a universal constant C' > 0
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independent of time ¢. We denote Q7 = Q x (0,7") and let
v - (axlvax27' T 78501\1)

and put 0Lf = V!f = V(VI=1f).For any integer m > 0, we use H™ to denote the standard
Sobolev space H™(Q2). Let L? = H™ when m = 0. For simplicity, the norm of H™ is denoted

by || - |lm, and in partlcular denote || - || =: || - |lo. We use (-,-) to denote the inner product over
the Hilbert space L2(€2), i.

/f r)dr, f = f(x), g=glx) € I*(Q)
We define that
© = {(o,u, E);0,E € L>(0,T; H™2(Q)),u € L>(0,T; H™(Q)) N L*(0, T; H™*?);
o,u, E satisfy (a), (b) and (¢) in Theorem1.1},
and set the space
I = {(p,w,e) € L0, T; H™(Q)) N L*(0,T; H™(Q)), p,w, e satisfies (a), (D), (c)}

and
2 T 2 2
I'r= {(p,w,e) €I’y sup H(p7wae)(t)HHm+1 +/ H(pawve)(t)HHﬂH-?dt <R }
0<t<T 0

Now it is the place to state our main results on the existence and uniqueness of time-periodic
solution to the system (1.4).

Theorem 1.1. Assume that the integer m > [§] + 1 and f(x,t) € L*0,T; H™*Y) with

f(=z,t) = —f(x,t), in addition fOT | f (@, t)||3mrs is suitably small, Then there exists a time-

periodic solution (o,u, E) € @ NTR to the system (1.4), where © and T'r are defined in section

2. Here, the solution (o,u, E) also satisfies the following property

(a) (o,u, E) is periodic with the space period 2L and time period T';

(b) [qo(z t)de =0, [u(x,t)de =0, [ E(x,t)de=0;

(c) o(z,t) =o(— ZL‘t) u(z, t): —u(—z,t), E(x t) = E( x,t).

Moreover, if sup |[(o,u, E)(t)||gm+2 is small enough, the uniqueness of time-periodic solution
t€[0,T]

(o,u, E) holds.

2. PRELIMINARIES

In this section, we collect some facts and inequalities which will be frequently used in the
subsequent analysis. In what follows, we shall introduce some Sobolev inequalities for later use

(cf. [9, 32]). Let us begin with the following interpolation inequality.
Lemma 2.1. Let 0 < m, k <1 and the function f € C§°(Q2), then we have
IV Flliee S IV £V L2, (2.1)

where 0 < 0 <1 and k satisfy

(3w (1)

The second inequality is the LP estimate on any two product terms with the sum of the order
of their derivatives equal to a given integer.

Lemma 2.2. Let n > 1. Let o' = (al,---,al) and o® = (a2, ,a2) be two multi-indices

with || = k1, |o?| = ko and set k = ki + ko. Let 1 < p,q,r < oo with % = %+ % Then, for
uj: R" = R (j =1,2), one has

al Ol2
0% u10% uz| r) < C <||U1HLq(Q)HVkWHLr(Q) + HUQHL‘Z(Q)Hvkul”LT(Q)> (2.2)

for some constant C > 0 independent of u; and us.
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As a generalization of Lemma 2.2, we have also

Lemma 2.3. Let n > 1,1 > 2 be integers. Let of = (af, - ,oz%), 1 < j <1 be multi-indices
with |o?| =kj, 1 <j<landk =k +ko+--+k. Let 1 <p,q,r<oo with%z%%—%. Then,
foru= (uy, - ,u): R* = R, one has

l
[To%w < Cllull2 g lll ooy [ VEul Lo (2.3)
j=1 P (9)
for some constant C > 0 independent of u.

To study the existence of time-periodic solutions for (1.4), let us first consider the following
regularized problem

or —eAo + pdivu = —div(ou),
ur = i pAu — Zi;Vdivu +vpVo -V -E=—(u-V)u—g(c)Vo (2.4)
E,—Vu—eAE =—u-VE + VuFE.

Now, let’s use the topology degree theory to establish the existence of solutions (o, u., E:).
Define an operator

g:FRX [0,1]—>F,
((p,w,e),7) = (o,u, E)

with R being suitably small, where (o,u, F) is the solution of the following linear parabolic
problem

oy —eAo + pdivu = Gy (p,w, e, T),
I [T N _
up — Au — Vdivu +vpVo — V- E = Ga(p,w, e, 7) + 7f(x, 1), (2.5)

p+Tp p+Tp
E; — Vu —eAFE = Gs3(w, e, 1),

where
Gl (p7w’ 677—) = —TdiV(pW)’
P'(3)  P(p+7p)
Go(p,w,e, T :< — — —
2 ) p (p+7p)

Gs(w,e,7) = 7(—w - Ve + Vwe).

> Vp—7w-Vw+1(el - Ve,

First, we shall prove that G is well defined in the following:

Lemma 2.4. Assume that R is suitable small and (p,w,e) € I'g, then for any T € [0, 1], there
exists a time-periodic solution (o,u, E) € I to the problem (2.5).

Proof. Firstly, in view of ||p[|r~ < C sup |p||gm < CR, we get for suitably small R that
0<t<T

<p+Th<2p

N

which implies
(2.6)

N
b\"_‘
eyl

+

\]

)
o
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Set the operator

eA —pdiv 0
B=|—-vpV p+TpA + lﬁf:‘ Vdiv div (2.7)
0 \% eA

and let U = (o,u, E), W = (p,w, e), G(W) = (G1,G2,G3), Q@ = (0,7f,0). The system (2.5) can
be reformulated as follows:

U =BU+GW)+Q.
To obtain the solution U € I, we first consider the following initial value problem of the linear
system U; = BU in () with periodic boundary

o; —eAo + pdivu = 0,
B ay HT

+ A
Vdi Vo -V E=0,
prre T prap YuEAPYe (2.8)

—Vu—ce¢AFE =0,
(O—v u, E)(l‘, 0) = (007 Uug, Eo)($>
where oq(x) and Eo(z) are even function with [, oo(x)dz = 0 and [, Eg(z)dz = 0, up(x) is odd
functions. Obviously, these properties are remained for the corresponding solutlon (o,u,E). Ap-

plying V! to (2.8) and multiplying the resulting equations by yV™ g, V"+ly and V"1 E,
respectively, then integrating the resulting equations by parts, we have

Ut —

1d
5@ (,y‘varlU’Q_'_ ‘vm+lu‘2+ ‘vm+1E‘2)dx
Q
A
+/ <e(7|vm+2012+\vm+2E2)+ﬁf pyvm“ ul® + :;L |Vm+1dlvu|2>
0 T

:/ Z Ck+lvk F gmti—kpvmtly, - v gmr2vmtly | de
& \i<k<m+1 prTp prTp

A A
N S Ty R P LSt
@ \1<k<mt1 p+Tp p+Tp

< CUIVpllze=lIV2ull zm + V2]l oo | pll gm0 ) IVl 12 + ClIV pll oo [V 20| 2|V e 2

< C(llpll s 1ullFm+2),
S CR||U”§{m+2- (29)
If R is small enough, we have

d

G | OIT il [V £ (VR + 22 [ (970 4+ VB da

A
+/ <M_|Vm+2u|2 pt \Vm+1dlvu|2> dzx <0. (2.10)
o \3p p

By Poincaré inequality, we have
IV (o, u, B)|| 2 < V™ (00, w0, Eo) || 26,

which means that
HeﬂBU[)”HmH < HU()HHmHefCEt.

By Duhamel’s principle, the solution U = [0, u, E] to the system (2.5) can be formally written
as

t
Ut) = / B (GW) (s) + Q(s))ds. (2.11)

—00
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Utilizing the time-periodic property of W and @, we have

Ut+T) = / T T GW) (5) 4 QUs))ds

— 00

which means U (t) is periodic with period T'. Combing (2.11) with the property of W and F, we
obtain

1T @) rme+1 S/ 1" =R(GW (7)) + Q(7) | s dr

t
< / O |G (7)) + Q) g dr

1
2

e ") + QI

Furthermore, utilizing the classical theory of parabolic equations, we have that the problem
(2.5) admits a time-periodic solution (o, u, E) € I for any (p,w,e) € I'g, 7 € [0,1]. On the other
hand, if there exists another solution U = (7, u, F) satisfied (2.5), then we have

(U -TU), =BU - D).

Using (2.10) again, we have (U — U) = (0,0, 0), which means the uniqueness is proved. Noting
that if (o (x,t), u(z,t), E(z,t)) is the periodic solution of (2.5), then (o(—x,t), —u(—=x,t), E(—x,t))
is also the solution of (2.5), thus using the uniqueness of solutions, we have (o(z,t), u(z,t), E(z,t)) =
(o(—z,t), —u(—=x,t), E(—x,t)). We complete the proof of Lemma 2.4. O

Next, we shall prove that G is compact and continuous. We first give the complete proof of
compactness of G in the following lemma.

Lemma 2.5. If R is small enough, then the operator G is compact.

Proof. Let |a| = m + 2, applying 0% to (2.5), it follows that

0%0y — eds Ao + pdydivu = 05G1(p,w, e, T),

Iz LA _ .
o,  aa Au) — &% d e — °divE = 8%
Oguy — 0 (Tp - u) — 08 (Tp n pV ivu) + ypdy Vo — dydiv 0y Ga(p,w, e, 1) (2.12)

+70; f (@, 1),
0OE, — 80°Vu — e0°AE = 19%Gs(w, e, 7).
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Multiplying (2.12),-(2.12)5 by v050, 03u, and 0 E, respectively, and integrating by parts, we
get

1d
5% ("}/|Vm+20‘2+‘Vm+2u‘2+|vm+2E|2)dl‘+€/(’y’vm+3U|2+|vm+3E|2)d£€
Q
A
+ / — V™| dr + / f‘L\vmﬁdivuy?dag
Qp+TP Qp+Tp
/7‘7Vm+2div(pw)vm+2crd:v—l—/ Z C’,ln+2 Vm+2 AUV 2udz
Q1<i<mt2
/ Y CLaVE B G iy V™ 2uds / VAL vi o v
Q<i<m+2 prTP Q PP
PF A Cma2 g m+2 m+2 m+2
— [ V——V""divuV" udr + [ V" (=7 (w - V)w)V T ude
Q pP+TPp Q
/(= Pl =
—/ vmt? <(p (,p) — Ep—i— Tp))Vp—i— rel - Ve + Tf) V" 2udx
Q p p+Tp

+ 7‘/ V™ 2(—w - Ve + Vwe) V™' H2E
Q
=L+ I+ + Ip.

By virtue of the periodic boundary condition, we have |[V*(p,w,e)||2 < C||V*V(p,w, €)] 12 for
all k> 0. For any m > [5] + 1, similar to [18], using lemmas 2.2-2.3, we have

1] < CIV™ ol 2 (IVpllLe V™l 2 + IV pll 2 Jwl| oo
+ ol [V 2wl g2 + [V || [ Vew| o)

~ye
< EHV"”?’GH%z + CllpllFrms2lwllzpmer + ol Frms |l 3pme2)-

Since (p,w,e) € I'r, we have
L], T3] < CIV™ Pul| 2 (| V20l g [V pl poe + [V 20| oo || pl| gt )

< Cllpll g [Pl
< CR|V™ul3.

L), | I5| < OV pll Lo V™ FBul| 12| V™ 2ul| 12
< CR||V™ 3.,

|6l < CIIV™ P ull g2 (wl| oo | V™ 2wl| 2 + [V p2]| Ve || o)

< Cllwllpm [V 2wl 2 [Vl 2,

12| < CIIV™ P ull g2 (ol V™ pll 2 + V" pll 22l Vol <)
< CIV™ 2l llpl mea [V Pull 2,

[Is| < IV 21V P e,

o] < CIV™Pul pa(lle | oo [V el g2 + [V e ]| 2| Ve )

< Cllellgma [V el 12|V Pl 2,
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Lol < CIV™ B 2 ([ Vel [V wl g2 + [V el pallwllzoe + llellz [V 2wl 2
+ IV el 2l Ve o)
£
< SIVTE|Ls + Celllelfmes |wllime)-

Then, choosing R sufficient small and combining the estimates I1-11g, we have

d
pn |V 2612 4 |V 4 (VT2 E 2 da + / e(y|V™ T30 |? 4+ [V E|?)dx
Q Q

A
+/ ﬂ_|Vm+3u|2d:U +/ L—i__ |V 2 divul?de
Q2p o P
< CllplGpmsz + llelFrmea) |wllimr + CUlplFpmsr + el Frmr) lwl G
+ CllwlFpmss [wllFgmse + CllelFpmsa el Fpmsz + CllpllFme ol Frmsa
+ OV |25 (2.13)
Then integrating (2.13) over [0, 7], we obtain

T
| Il + [V B + 29l
0

T T
<C swp [[(pw,€)[Zmns / (0, w0, )3 sadt + C / IV 2ade (2.14)
0<t<T 0 0
=K. (2.15)
Then, there exists a time t* € (0,T") such that

* * K *
e(YTIIV™ o (t) 2 + TV EX)IIZ:) + 2—ﬁ||vm+3u(t Nz < K.

So, using the Poincaré inequality yields
V20 () 2 + [V EEE)2s + [V 2l |2 < OK.
Integrating (2.13) from t* to ¢ for ¢ € [0, T], we have
T 20(0) 2 + IVTHRE@)2: + |9 2u(t)|2 < CK. (2.16)
Combing (2.16) with (2.14) and the Poincaré inequality, we obtain

T
u
sup (Yl|ol[Fms + [l Frmerz + | Bl Fme2) +/ eVt mss + | Bllfmss) + ;Hulﬁqmwdt
0<t<T 0 P

T T
<C sup (g, [ (0, )Bmead+ C [ 97 Bt (2.17)
0<t<T 0 0

Applying V™! to (2.5), multiplying the resulting equations by (V™*lg);, (V™*lu);, and
(V™HLE),, respectively, and integrating it over Qr = Q x [0, T yields

T
| U0 + 1 e + (7 Byl
T T
<C swp (g O)pes [ o) s+ C [ felfyniad
0<t<T 0 0
T T T
+c/ ||wyy§,m+2dt+c/ V™ fl12.dt + C sup |yp||§,m+1/ [V F]| e dt
0 0 0<t<T 0

T
+C(sup [|plmr + sup_[lelZmen) sup [[(psw, )l 3mrn / 19,0, €) [Zymradt,  (2.18)
0<t<T 0<t<T 0

sup ||
0<t<T
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We get by virtue of (2.17) and (2.18) that G is a compact operator. The proof of present lemma
is complete. O

Then, the continuous of G is showed in the following lemma.
Lemma 2.6. If R is small enough, then the operator G is continuous.

Proof. Assume that (p,,wn,e,) € Tr, T, € [0,1], (p,w,e) € T'g, 7 € [0,1], and
T
lim sup [|(pn p,wn—w,en—e)\|ém+1+/ 1o — prtom — w0, em — €)(O)|Zmsadt = 0
n—>000<t<T 0
and lim 7, = 7. Denote (o, un, En) = G((pn,wn,en), ™), (0,u, E) = G((p,w,e), 7). Let 6 =
n—o0

Opn—0, % = Uy —1U, E = E,—E. Then (6,4, E) is the periodic solution of the following equations

& —eAG + pdivii = Hi(pp,wn, €n, Tn, pyw, €, T),

. o - A . N .

Uy — —— Ay — ——Vdiva + ypVeo + divE = H. s Wiy €ny Tray Py Wy €, T

t 5+ Topn B+ Top 4 2(pn ns €ny Tny P ) (2.19)
(Tna )fu

~AE —Vi= Hs3(pn, Wn, €ny Tny Py w, €,T),
Hy = (1 — 1)div(pw) — 7, div((pn — p)w + (wn — w)pn),

1 1
Hy = — A A Vdi
? <p+rnpn p+rpn>(“ ut (o AVdive)

1 1
- A di
+ <ﬁ+7pn ,5+7‘,0> (nAu ~+ (p + N)Vdivu)

— (1 — T)(wn - V)wp — 7[((wn, —w) - V)wy + (w0 - V) (wp, — w)]

() (Vpn — V) + — (¢ 7o) =5+ 7)) V1

ptT
/= s P 1 1
+ [HTP(P (P4 Tnp) = P'(p+ Tnpn)) Vo + P (p+ Tupn) <ﬁ+7p - [Hmp) Vp
+P’(p+rnpn)< +1 -5 +1Tnpn> Vp
+ (7o = T)(en - Vel = 7[((en —€) - V)ep, + (e V) (en —€)'],
H3 = —(1 — 7)(wn - V)en — 7[(wn —w) - V]ep — 7(w - V)(en —e)

+ (T — T)Vwnen + 7(V(wy — w)e, + Vw(e, — €)).

with periodic boundary condition. Similar to the method in the proof of the compactness of the
operator G in Lemma 2.5, we obtain that

T
lim sup ||(oy — 0, un —u, By — E)()||3ms1 + / (on — 0y upn — u, By — E)(t)||3m+2dt = 0.
n—00 0<t<T 0

Thus, the continuity of the operator G is proved. O

3. EXISTENCE OF PERIODIC SOLUTIONS

In this section, we are devoted to studying the existence of periodic solutions to the problem
(1.1). For this goal, we shall first focus on study of the reformulated problem (1.4) stated in the
first section, which is equivalent to the problem (1.1), the desired solution of the problem (1.4)
will be obtained by an approaching process for the regularized problem (2.4). We first show the
existence of solutions for (2.4) by virtue of the topological degree theory.
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3.1. The existence of approximated solution.

Proposition 3.1. Under the condition Theorem 1.1, the regularized problem (2.4) admits a
solution (o,u, E) € T'g.

Proof. To solve problem (2.4) (o,u, E) € I'p in (2.4) is equivalent to solve the equation
U-GU1)=0, U= (o,u,E) €.

In order to apply the topological degree theory, we only have to show that there exists a R > 0,
which is to be determined as below, such that

(I —G(-,7))(0Bgr(0)) #0, for any T € [0,1], (3.1)

where Br(0) is a ball of radius R centered at the origin in I'. If (3.1) holds, then to prove the
existence of solution, we only need to prove that

deg(I - g(7 1)7 BR(0)> O) 7£ 0,

For this purpose, we are going to show that there exists R > 0 such that (3.1) holds, We prove
it by contradiction, let ((o,u, E),7) be a solution of (3.1) for some small R > 0 by replacing
(p,w,e), then ((o,u, E), T) satisfies

o; —eAo + pdivu = —Tdiv(au),

ug — E Au A Vdivu + vpVo — divE = <
p+T0o p + TO

—7(u-Vu+7ET . VE 4 7§,
—Vu—eAE =7(—u-VE + VuE).

P’Eﬁ) B P’(ﬁ+70)> Vo

p p+To (3.2)

Applying V™2 to the (3.2) then multiplying the resulting equations by yV™*2, V™+2y and
V™2 E, respectively, and summing the resultant equations and integrating it over 2, we have

1d
5@ (7|Vm+20’2+ Vm+2u‘2+‘vm+2E‘2)da?+/E(’y|vm+30‘2+‘vm+3E‘2)dl'
Q Q
A
+/ <|Vm+3 2+ ptA |Vm+2divu|2> dx
p+TO0 p+TO0
= —T’y/ Vm+2dlv(au)vm+2ad:6+/ Cl oV |V AV ™ 2y | de
Q +TU
1<I<m+2
/ C! l'u+)\ Vm+2 WdivuV™*2ud —/ v E gms, vty gy
Q<i<my2 2y prT @ pPtTOo

A
- / V_MLVm”divuVm“udx + 7-/ v (ET . V)E — (u- V)u) V™ uda
Q ptTO Q

—/Vm+2(g(TJ)VU)Vm+2ud:U+T/Vm+2fVm+2ud:c
Q Q

+7 / V" 2(—u-VE + VuE)V" " Edz. (3.3)
Q
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Using Lemmas 2.1-2.3, Cauchy inequality and Sobolev inequality, let R is small enough, we
deduce that

1d
2dt/(’7|vm+2(f’2+vm+2u‘2+|vm+2E|2)dx+/ 5(’7|vm+30|2+|vm+3E|2)dx
@ Q

A
+/ #]VerSu]Q—Q—L\VdeivuP
a\p+70 p+

TO
< Cll(o,u, B)|[pmia (@ s E)[Fpmrz + CLR(IV™ 20|72 + [V 2B 72)
+ OV 2. (3-4)

Now, we turn to estimate the dissipation | V™ 2¢|| 2. Noticing that the condition div(pF’) =0
which gives
divdiv[(1 + o)(E + I)T] =0,

thus we have

2( i
6(912 %) = divdiv(ET)
= divdiv[(1 + o)(E + I)T] — divdiv(oI + o ET)
= —Ac — divdiv(cET). (3.5)
Thus by applying div to the second equation of (3.2), we obtain
(divu); — div <,5 fTJ Au) —div <;:T); Vdivu) + (yp + 1)Ac = divgy, (3.6)

where
g1 = g(t0)Vo +7div(u - VYu+7ET - VE + 7f — div(cE).
Applying V™ *! to (3.6), multiplying the resulting equation by V™ *!o, and then integrating
them over €2, we obtain

(o) [ [0 Pda
Q

< / V™ (divu), V" od 4 ||V (= P Aut £ A Vdivu)| 2| V™ 20| 2
Q p+T10 + 710

IV Hdiv(o ) 2| VIV o 2 4 974 (r(ET - VE — u- V) |12 V™20 1o
+IV™ (g(ro) Vo) + 1) || 2l V™o | 2. (3.7)
Using equation (3.2); and integrating by parts, we have

/Vm+1divutvm+10dm: —/ V", V" Veds
Q Q
= —d/ Vm+1uvm+1Vde—/Vdeivuvm"‘lo—tdm
= _c;it/ VTV IV eds 4 p|| VT divu|3 —|—5/ V"IV e VT Auda
Q Q

+ / 7V div(ou) V™ divude
Q

d

< —— [ V"V IV edr + p|| VT divul|F e + ]| V20| 12| V| 2

=Tt ),
+ |V div (o) || 2 |V diva 2. (3.8)
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‘We obtain

541
% / \Vm+2cr|2dx+% / VY Vods
Q Q

< Gl V™ PullZe + Cllolfpme [ulzmee + Cllullzpme [ulzmee + Cllolzme o Fme

ol fmir [ Bl s + ClElpmes + CIV™ 7. (3.9)
Taking the transpose of (3.2), and then minusing (3.2),, we obtain
(ET —E);+V —eA(ET —E)=hT —h—u-V(ET - E), (3.10)

where V = Vu — (Vu)? = curlu, h = VuE. Noting the condition FI*V,F = FUV,Fi* for all
t > 0, which implies

ViEY + E*V,EY =V, E* + EVV,E* ¢ > 0. (3.11)
Thus we have

V,;ViE* — v,V E*
= V.V, E* - v, Vv, E*
= VkaE” — VkaEji + Vk(Elkleij — ElelEik)
— Vi(E*V,E' — B, E7%)
= A(EY — BT 4+ V(E*V,EY — EVV,E*) — V(E*V,E7 — BV, E%). (3.12)
Thus by applying curl to (3.2),, we have
Vi — pAV + A(ET — E) = curlgy + S, (3.13)

where go and the antisymetric matrix S are defined as

P(ro + p)
Gr it )Y

9 :T(E-VET+f)( p> (uAu+()\+,LL)Vdivu)Tu-Vu(

p+T0

Applying V™ *! to (3.13), multiplying the resulting equation by —V™*+(ET — E), then inte-
grating it over {2, we have

/ |V 2(ET — E)|?dx
Q

< / (VHV)VHET — B)dr + p| VTV 2| VA(ET - B)| 12
Q

+ [V eurlga|| 2 [V FH(E — ET)| g2 + [ V7S] 12| VH(ET — B)| 2. (3.14)
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/ (VYY) v ET — E)da
Q

d

== / vy vt Y ET — E)dr — / vy vt Y ET — E)dx
Q

= dt/ vyt ET — B)dr + / VY 2 de — 5/ VYV HIA(ET — E)dx
Q Q Q

-7 / vy vty T — p)de + 7 / vyt (ET — B))dzx
Q Q

d
< —
T dt

IV VYV T = Bl + 972V 2|97 (- V(ET = Bl

/ VYT — B)de + VPV + e VTRV V(BT — B)|l 2

d m . . - N
_dt/Qv +1VV —H(ET*E)d:EqLHV +1V”%2+8Hv +2V||L2||V +2(ET*E)||L2

V2V | [l g | Bz + V™2V 2|l g | B s (3.15)

We have

1
2/Q|vm+1(ET — E)|*dx

< G [TV ET — B)da+ Coll V™V s + OB pmllulfns + CIE sl

+ Cllul G [ullFpmrz + CIE s | Ellfgmia + Clo|Fmir o Fmse + CIUV™ T 72. (3.16)
From (3.5) and (3.12), we arrive at
AdivE = VdivdivE + divcurldivE
= —AVo — Vdivdiv(c ET) — Adiv(E — ET) — divS. (3.17)
Applying V™ *! on (3.17), then using the property of the Riesz potential, we have
vV E|T2 < C(IV™ 2 2: + [VPPHET = B)|[7: + [V (0 B) |72 + V" (EVE)|7:)
< C|V™2(0,E" - E)|2. + CR||V™2E|3.. (3.18)
From the above estimate, utilizing the (3.11), we have
IV VB2, < [V HAvE|2: + [V eurl B2,
< C|V™* (0, ET — B)|7. + CRIV™" 2 E| 7. + V" (EVE)||7
< C|V™2(0, BT — B)|7. + CR|V™2E| 2,

which implies

V™2 E|7. < CIV™ (0, ET - B)|72. (3.19)
Therefore, multiplying (3.9) and (3.16) by ?gjﬁ and 4C1 R, respectively, then taking R suffi-

ciently small with 60{5’:215" 8% and 4C1RC5 < 8% . Then, adding the resulting equations with
(3.4) to yields

1d
2dt Jq

6C1R
(7’Vm+20|2 + |vm+2u|2 + |Vm+2E|2 1
v

——— V"I tlye + 40, RV VY ET — E))da
P

- / (ClRyvaaP + vV 0|2 + 8%|vm+3u12 + C1RIV(ET — E))? +¢|V(ET — E)\2> da
Q

< Cll(0, u, E)l[7ms1ll(0 w, B) [ Gpmsz + CIVH . (3.20)
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Let

U(t) :/ (7vm+20|2+|vm+2u’2+’vm+2E’2+(SC;]%VerluvarIVh
Q

+4C, RV YV VT ET — B)) dx.
It is easy to see that there exist constants C, C such that
C|IV™ (o, u, B)(t)|[72 < (1) < C|V™ (0,4, E) (D)7,

if R is suitable small. Note that we also have
/ (01R|Vm+2cr!2 + %|vm+3u|2 + C’1R|Vm+2E|2) dz
Q
2 M/(|vm+20_’2 + ‘vm+2u|2 + |Vm+2E|2)d9;7
Q
for some positive constant M. Integrating (3.20) from 0 to T" over ¢ yields

T T
[ IV B3t <€ sup (o B)gms [ 10,0, E) e
0 0<t<T 0
T
v [
0

T
SCRU4C [Vt (3.21)
0

where we have used the fact of time periodicity of (o,u, E). By using the mean value theorem,
there exists a time ¢ € (0,7 such that

MWH@MEMN;SC#+GAﬂNWvMMt
Then, integrating (3.20) from ¢ to ¢ for any t € (¢, T] yields
wa>g<3#+wiﬁTuvm+Uw%~
Since o, u, F are periodic, then it yields
wmr—wavSCR*+c[vam”ﬂEMt
Thus, integrating (3.20) from 0 to ¢ for ¢ € [0, 7], we have

T
sup U(t) < CR*+ C/ IV F)|3 2 dt.
0<t<T 0

This together with (3.21) and the Poincaré inequality

T
sm>wmexm@ml+/‘mmmExm@mﬂﬁ
0<t<T 0

T
< sup [0 EYO) e+ [ 100, ) ot
0<t<T 0

T
<CuRb 4 Cs [V,
0
which implies

T
R? < C4R* + Cs/ [V f|13 2t
0
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Choose R and let C5 fOT [V Fl|3 . dt < R{, then the above inequality is a contradiction. Thus,
(3.1) holds. Now, we will show that G(-,0) = 0. In fact, when 7 = 0, similar to the proof of
(2.10), we can easily obtain (o, u, E) = 0 by the Poincaré inequality. Hence, we have

deg(f - g(a 1)7BR(0)70) = deg(I - g(vo)aBR(0)70) = deg(Iv BR<O)70) =1

Consequently, we have proved (3.1) which implies that (2.4) admits a solution (o, u, F) € T'g.
The proof of proposition 3.1 is completed. O

Now we are devoted to proving the existence of periodic solution in (1.4), which is the main
result of this section.

3.2. Proof of the Theorem 1.1(existence).

Proof. Let (oz,ue, E-) be the time periodic solution of the regularized problem (2.4). By the
proof of Proposition 3.1, it holds that

T
sup_ 1(0e, ue, Be)l[Fpms2 +/ (loelFrmee + lluelFpmea + | EellFmee)dt < CR?, (3.22)
0<t< 0

where the constant C is independent of . Moreover, integrating (3.20) from ¢ to ¢ + ¢ ,then
integrating it from 0 to 1" to obtain

T
/ (V™2 (00, tey o)t + 8|22 — V™2 (0, e, Be)()]|22)dt < O,
0

where C' is independent of . Moreover, we will show that 0. € C“?(Q x (0,T)). Precisely,
applying the fact oo € L>(0,T; H™2(Q)) with m > [2] + 1, we have o.(z,t) € C*(Q2) for any
a € (0,1) for any t. Obviously, we only need to prove that there exists 8 € (0,1) such that
o-(x,t) € C8[0, T], namely,
loc(2,11) — 0=(x, t2)| < Clty — b’

for any t1,t9 € (0,7), x € Q.

Take a ball B, of radius r centered at =, with r = [t; — t2|", ¢ = ﬁ Utilizing the (2.18)
and the Poincaré inequality, we have

2 9o, (y,t
/ |U€(yat1) *05(y7t2)|dy :/ ’/ Ea(i/)dﬂdy
7 - tl

([,

S C‘tl — t2|%7“%.

=

Oo. (y7 t)

ot

2 2 L
dydt) ’tl — t2‘57‘§

By mean value theorem, there exists £ € By such that

1—ne

02(F,t1) — 0o(F,t2)| < Olts — ta|2r™ 5 < Oty —to| 2
This together with the fact 0. € C*(2) gives
|O'5($,t1) - U€($7t2)| < ’UE(xvtl) - UE(j7t1)| + |0-€(j7t1) - GE('iatQN + |U€(j>t2) - UE(xatQ)‘

(1—mne)

SOty —to| +[tr —t2| 2 7)

< C‘tl — t2’(2;+”).

Taking 8 = we have

o
2a+n?
|oc (21, t1) = 0c(2, 1) < C|lw1 — ma|* + [t1 — t2]%),
where C is independent of €. By the same argument, we have

us € CUVPHQ % (0,T)), E. € C**P2(Q % (0,T)),
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for some ay, a2, 51, P2 € (0,1). By virtue of (3.22) and the Arzela-Ascoli Theorem, there exists
a subsequence of (o, u., E.), such that

(0e,ue, E2) — (0,u, E) uniformly,
(0c, ue, Br) N (o,u, E) in L>(0,T; H™?),
ue — win L2(0,T; H™3),

(0c,E:) = (0, E) in L*(0,T; H™ ),

ue — u in L2(0,T; H™?).

Thus, (o,u,E) € © NT'g is a time-periodic solution (1.4). The existence of Theorem 1.1 is
complete. O

3.3. The uniqueness of periodic solutions. In this section, we are devoted to investigating
the uniqueness of time-periodic solutions. Let (o1, u1, E1), (02,u2, E2) € © NT'g be the time-
periodic solution of (1.4). Let 0 = 01 — 02, u = u; — ug, £ = E; — Es, then (o, u, F) satisfies
the following equations

ot + pdivu = —ou; — oau,
1% pH+ A _ ) 1 1 .

uy — —Au — ——Vdivu + ypVo — divE = | — — = (LAuy + (u+ N)Vdivuy)
P p pror ptox) o

+ ﬁ+102 - %) (pAu + (p + A)Vdive) — (u- V)ug — (uz - V)u + (PT(M - %) Vo

+ (Pl Ppﬁif;l’l)) Vos + (ET - V)E, + (EY - V)E,

\Ey — Vu + (u . V)El + <UQ . V)E = VuFE; + VusE.
(3.23)
with periodic boundary condition. Now can apply the energy method as the subsection 3.1 to

prove the uniqueness. By applying V! to (3.23), and multiplying the resulting equations by
AVl VmHly and V™ TLE respectively, summing up, then integrating over Q yields

1d A\
33 IR & [ 4 9P+ (‘_‘|vm+2u|2 + “Twmﬂdw?) da
2dt g 5 -
= _’Y/ VdeiV(Uul)VmHde—fy/ V" gouV ™ o da
Q Q
+/ v <( ! - ! > (nAug + (p+ )\)Vdivul)> vty de
Q p+ o1 p+ 09
1 1
+/ v <<_ - _> (nAu + (p+ A)Vdivu)) V™t luds —/ V(- Vg ) V™ uda
Q pt+oz p 0
P(p Pl(p
- /((U2 V) V" udz +/ vl (< Ep) - Sp—i_ Ul)) VJ) V™ lyde
@ Q p p+oi
P/ = P/ _
Q p+ o2 p+o1

- / v (ET VY E) V™ uds + / Vv (BT - V)E)V" udx
Q Q

- / V" (y - VE)YV" Edx
Q

— VY (VuE) VT Eda + / V' (Vua E)V Eda. (3.24)
Q
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Noticing that (o1, u1, E1), (02,us, E2) € © NIk, using the same method in subsection 3.2 to

supplement the dissipation term fOT |o[|3;m+1dt and fOT |E||3;ms1dt, then letting R is suitably

small, we obtain
1d

s [ IVl [V 4 VB 4+ CRVM YV + CRV V"V E) da
Q

FA [V + [V + [V B < 0.
Q
Integrating the above inequality from 0 to 7', then choosing small R, we obtain

T
/ (oGO Fmsr + IV 20l ) [Tz + VLB, ) Fme )t < 0,
0
which means that ¢ = u = F = 0 a.e. in Q. The proof of uniqueness is complete.
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