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ABSTRACT 

 This work quantitatively deals with the fundamental issue of the origin of particles. By focusing initially on the 

relation between mass and magnetic moments for baryons, we then show that a wealth of experimental data, including the 

form of the observed flux profiles of cosmic rays protons can be consistently analyzed together if one takes as the starting 

point of the model that these particles condense from a vacuum, in the form of loops of charge. This brings back the long 

standing  issue of whether particles should strictly be treated theoretically as point-like objects, or otherwise might have an 

intrinsic motion formally accounted for, which might be related to an effective finite size. Such issue arises in the socalled 

zitterbewegung solution of the point-like particle´s Dirac equation, which introduces the intrinsic motion of a “point” electron 

in the center of mass frame. The present treatment also applies the Dirac equation, and we obtain regularized loop-like 

solutions for the fields representing embryonic baryons. The fundamental “proton state” is taken as a substrate, as proposed 

by Barut many years ago. A loop can be regarded as a particle “embryo” and is a sizeable ( wavepacket) rather than a point-

like object, tenths of a femtometer big when detached from the vacuum parent state. Such vacuum state is predicted as  2.7 

GeV above the proton rest mass, which is consistent with the average protons energy in the energy profile of interstellar 

cosmic rays. According to statistical mechanics, this characterizes U0 =3.71 GeV as the environment equilibrium 

energy in which protons were formed. Other features of such energy profile can readily be understood from the 

present analysis. 
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INTRODUCTION 

The present paper contains the main results of investigations which have directly addressed the long standing 

problem of describing the genesis of particles. In particular, the issue of the origin of mass is considered[1,2]. 

Extensive use of ideas previously advanced by Barut, Post, and Jehle [3-5], has been made. For short, the starting 

point in this treatment, following Evert Post and Herbert Jehle, is that magnetic moments are fundamental 

properties of  leptons and baryons, and that the presence of magnetic moments in particles can be modelled by 

the introduction of an intrinsic closed electrical current loop of finite ( rather than point-like) size.  It might be 

argued that such hypothesis should be incompatible with QED and that electrons behave experimentally as point-

like objects. However, as shown later, the present treatment may be regarded as describing the earliest stages of a 

particle condensation process, in which electromagnetic energy is concentrated in the form of rest mass. The 

current-loop model refers specifically to this embryonic stage, and no internal structure ( probably with a more 

complex topology) for baryons is explicitly introduced.  A multiply connected current path arises, whose 

possible topological forms were the object of intense discussions by Jehle and Post, but in the absence of more 

concrete evidence a simple circular loop path is adopted in this treatment. The confinement of magnetic flux 

within such paths was initially assumed as occurring in numbers of flux quanta determined by the magnetic 

moments in  magneton units, a property easily derived from Barut´s semiclassical spinning particle-model, but 

such assumption is later adjusted to better fit data.  

In paper [1] we have shown that it is possible to describe the masses m of all the baryons of the octet and 

decuplet in terms of a single formula, involving the magnetic moments  and corresponding numbers of 

confined flux quanta n. One might otherwise use this relation to define n from the experimental masses and 

moments[2]: 

n = (2 f c
2
/e

3
 )  m. 
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Figure1:  Plot of n against the magnetic moment for the baryons octet ( points) from the definition n = (2 c
2
/e

3
 ) 

 m. The diagonal line is the classical prediction of one flux quantum per nuclear magneton (n.m.). Nucleons are 

on the line. The data display  undulations, and a tendency to reach for the steps ( traced line as guide)[2]. 

 

where ffor spin ½ and  ≈ 1/√3 for spin 3/2, and  is the fine-structure constant ( one immediately recovers the 

often-mentioned inverse relation of mass with the constant , since n and  are approximately proportional to 

each other). The treatment that results into this equation is essentially heuristic, but precise enough for instance 

to highlight the dependence of mass upon the square-root of the spin angular momentum, as reported  in the 

literature (note that the phenomenological factor f that corrects for spin is related to kinetic energies rather than 

to magnetic constributions)( cf. Figure 1 of ref.[1]). This made clear that mass is a property which is essentially 

determined by magneto-kinetic energies at the early stage of creation of a baryon, not requiring further inputs 

from other kinds of interactions at shorter range that might dominate at later stages( one may wonder that what 

we call strong interactions would result from local changes of topology inside the particle, beyond the initial 

loop stage, which would produce the extreme strength of a proton- and of the electron).  

In paper [2], whose main results are reproduced in the following section, we took much further the treatment 

presented in [1]. A key parameter in this analysis is the number of flux quanta n arrested inside a current loop.  

In particular, we obtain in [2] a very revealing result which has previously been reported mainly through 

Condensed Matter physics investigations, which is that the energy of currents ( here regarded as a particle’s rest 

mass)  is a periodic function of the confined magnetic flux in multiply connected structures. Consistently with 

these results from Condensed Matter systems, the periodic behavior of baryons masses ( and confined flux )with 

the magnetic moments( see Figure 1) can be regarded as a demonstration that the initial hypotheses of the 

present investigations are sound. That is, indeed mass is a manifestation of  magnetodynamic energies ( related 

to currents) confined in a multiply connected region. Such hypothesis is therefore consistent with experimental 

data. With this evidence in hand the next step clearly was to advance beyond the initial phenomenological-

heuristic argumentation and propose a field-theoretical treatment that would describe the observed mass –energy 

relations for actual particles.  

Such kind of treatment has previously been applied for fermion fields flowing around a closed loop containg 

magnetic flux( see refs in [2]).  Starting from a Lagrangian suitable to these baryon fields( assumed as built upon 

a proton field “substrate”, following Barut), we then obtain an energy spectrum for the possible current-carrying 

states around a closed path.  To simulate the perturbations coming from the vacuum background which will be 

added to the proton state, a sum over the states in the energy spectrum of kinetic energies for the loop/fermion is 

necessary. An Epstein-Riemann zeta-function regularization procedure previously adopted for the Casimir Effect 

problem  is applied to eliminate divergences when the sum upon the energy spectrum states is carried out, and 

the periodic behavior of the baryons masses with magnetic flux is quantitatively reproduced with no further 
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forms of energies required besides the magnetodynamic terms. A new result of this treatment [2], is the 

prediction of a parent state at U0 = 3.7 GeV, which should be identified with the vacuum, which fluctuation 

instabilities would give origin to baryons. The present work goes beyond ref. [2] in the search for evidence for 

the existence of this state. The calculated value of U0 immediately indicates that protons (of rest mass 0.94 GeV ) 

should become unstable if accelerated to kinetic energies beyond 2.7 GeV if their structure were not strong 

enough and capable to radiate excess energy. We found out that a very good way to investigate this point is 

through the analysis of the spectra of protons in cosmic rays, whose energy flux profile  peaks at 2.7 GeV kinetic 

energy( Figure 3 below) for reasons we will discuss. 

In the following sections we firstly present the field-theoretic model introduced in [2], alongside the comparison 

with experimental data for mass and magnetic moments for baryons. In the Analysis section we  test the 

hypothesis of the existence of an energy level for vacuum by examining data collected for protons in cosmic 

rays. We then present the Conclusions. 

 

FIELD-THEORETICAL MODEL FOR GENERATION OF BARYONS 
 

For the developments that led to this field-theoretic treatment we make reference also to the Annales paper[1]( 

see also references therein and in ref.[2]).  Let´s consider a fermion field confined to a circular path of length L, 

enclosing an amount of self induced magnetic flux in a potential AWe need to show that such a field 

corresponds to a state detached from a higher state associated with a sea of excitations in equilibrium, and 

therefore might be used to represent a “quasiparticle”. The relativistic Lagrangian for such a fermion can be 

modelled through the dressing of a proton of mass mp ( as once proposed by A. Barut) in view of the presence of 

magnetodynamic terms[2]: 

                   
  
                                                                                   

where the  are Dirac matrices.  This Lagrangian can readily be transformed into a Hamiltonian form. For A a 

constant around the ring path, the spectrum of possible energies for a confined fermion are obtained as: 

 k=  c{(pk – eA/c)
2
+ mp

2
c

2
}

1/2
                                                                 ( ) 

which comes straight from the orthonormalized definition of the Dirac matrices and diagonalization of the 

Hamiltonian. We now definitely impose a circular closed path. If one takes the Bohr-Sommerfeld quantization 

conditons, the momentum pk ( for integer k)  is quantized in discrete values 2 k/L. We start from this 

assumption  but the true boundary conditions to close the wave loop might impose corrections to this rule in the 

form of a phase factor( a phase factor is introduced in the fit to the data below). The potential A can be replaced 

by /L . Such charge motion is affected, for instance, by vacuum polarization and the effects on the kinetic 

energy are accounted for in a way similar to that used in the analysis of the Casimir Effect, by summing over all 

possible integer values of k in eq.(2) [2]. This summation diverges. According to the theory of functions of a 

complex variable the removal of such divergences requires that the analytic continuation of the terms be taken, 

which reveals the diverging parts which are thus considered as contributions from the infinite vacuum reservoir. 

A successful technique for this purpose begins with the rewriting of eq.(2) in terms of Epstein-Riemann Zeta 

functions[2], including the summation over k from minus to plus infinity integers, and making a regularization 

(Reg) transformation. Here M ) is the flux-dependent dressed mass of a baryon, and s → 1: 

                                                  M c
2
 =  U0 + Reg k  c{(pk – e/Lc)

2
+ mp

2
c

2
}

-s /2
                                           ( ) 

where we have allowed for the existence of a finite energy U0 to represent an hypothetical state from which the 

individual baryons would condense, since they would correspond to lower energy states.  Such particles should 

be characterized as states of energy Mc
2
 lower than U0.  It is convenient to define from L a paramer with units of 

mass m0= 2 /cL, which will be used to define a scale in the fit to the data. We notice that m0 is related to the 

parameter L in the same way field-theories regard mass as created from broken symmetries of fields, establishing 

a range for an otherwise boundless field distribution( e.g., as happens with the London penetration depth at the 
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establishment of a superconductor state, that is related to an electromagnetic field “mass” by a similar 

expression). For convenience, we define the ratios  m’= mp/ m0  and u0= U0 /mpc
2
 . For comparison with the data 

analysis in our previous work[1], we must introduce also the number of flux quanta n ( integer or not) associated 

to , such that n = 0. In terms of these parameters one may write (3) in the form: 

                                   M(n )/mp =  u0 + (1/m’ )Reg k  {(k – n)
2
+ m’

2
}

-s /2
                                                ()  

In the analysis of data the experimental values of M/mp for baryons will be plotted against n. The sum in the right 

side of (4) is a particular case of an Epstein Zeta function Z(s), and becomes a Riemann Zeta function, since the 

summation is over one parameter k only. The summation diverges but it can be analytically continued over the 

complex plane, since the Epstein Zeta function displays the so-called reflection property. It has been shown that 

after the application of reflection the resulting sum is already regularized, with the divergences eliminated. The 

reflection formula is[2]: 

  
 
    

 

 
       

   
   

   

 
                                                               

This replaces the diverging Z(s) straight away by the regularized Z(1 s), which converges( since (1/2)= 2√ 

we see that the regularized sums are negative, like in the Casimir Effect solution).  

For the sake of clarity we describe step by step the regularization of eq.(4)  to become eq.(6) ( note that s → 1, 

and the “reflected” exponent - (1 - s)/2  replaces –s/2 of (4) ).  In the first passage from the left below, the entire 

summation argument is replaced by the Mellin integral which results into it. This creates a convenient 

exponential function to be integrated later. In the second passage the Poisson summation formula is used, in 

which the summed exponential function is replaced by its Fourier Transform ( note that the same notation k is 

used for the index to be summed in the Fourier Transformed quantity). The objective is  to replace the k
2
t in the 

initial exponential by k
2
/t. In this way, when the integration over t is carried out a modified Bessel function K is 

obtained. In the final line the k=0 term in the sum is separately worked out and appears as the first term between 

brackets. The remaining summation in k therefore does not include 0 ( “/0” as shown). The influence of the 

parameter n is, as we wanted to prove, to introduce a periodicity depending on the amount of  flux confined by 

the current ring, and the regularized energy is therefore periodic in n.   Therefore, Z ( 1s ) is given as: 

                                         k  {(k – n)
2
+ m´

2
}
 (1 s)/2
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for s → 1. From eq. (5), the “Reg” summation in (4) is replaced by    
    

     
 

 
     

   

 
       , and the 

exponential produces a cosine term. 

Since (1/2)= 2√ we see that the regularized sum is negative, corresponding to energies lower than U0. In the 

fitting to the data we will admit that both m’ and u0 are adjustable parameters.  

Figure 2 below shows the data for all baryons in Tables I and II of ref.[2],  and the plot of mass in eq.(4) 

regularized by eq.(6),  for u0 = 3.96 and m’= 0.347 ( corresponding to m0= 2.88 mp and U0= 3710 MeV).  The 

energy 3710 MeV would represent the vacuum state from which the baryons would evolve.  
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Figure 2: Comparison of baryons masses calculated from eq. (6) (line) as a function of confined flux n , with 

data points from Tables 1 and 2 of ref.[2] for octet ( open circles) and decuplet particles ( mt used[2], stars). 

Nucleons are on the basis of the figure. The points come from the heuristivc/phenomenological equation                      

n = (2 c
2
/e

3
 )  m). The fit produces U0= 3710 MeV as the vacuum parent level.  

 

 

ANALYSIS 

This model produced an entirely new result, which is the proposal of a parent vacuum state at 3.71 GeV. Flux 

profiles of cosmic rays ( CR) protons display important features [6] that seem related to the existence of a 

threshold energy, corresponding to the difference between 3.71 GeV and the proton´s rest energy of 0.94 GeV, 

that is, an energy difference of about 2.77 GeV, which we will round out to 3 GeV. Let´s first of all consider 

how protons of CR gain such huge amount of energy. At some point in their history protons were subject to 

immense electromagnetic forces, which their structure resisted without decay. The inner structure of protons ( 

perhaps not in the original topological form of the embryonic loops we considered for calculation purposes, as 

discussed earlier) is most likely formed by the coherent entanglement of at least three major constituents, each of 

them with 1/3 of the proton rest mass[5]. It is an ensemble of objects strongly connected together and might be 

characterized thorough its elastic behavior. Before dealing with the proton case, it is worthwhile to appeal to a 

simplifyed analogy, and apply the same concept to pairs of electrons below the normal/superconductor transtion, 

which are correlated through phonons( in a “mass/spring-like” way). The pairs get stabilized by a gap of energy 

relative to the Fermi level, and the transition temperatutre Tc can be related to the gap energy :  kTc≈ .  From 

the application of the virial theorem to elastic structures,  will correspond also to the time-averaged kinetic 

energy as well as the elastic energy Ee = ½ m
2
x

2
. We can show this analogy is applicable in this case by taking 

a typical ( infrared range) phonon frequency  of 10
13

 rad/s( which plays the role of spring constant), a 

coherence distance x of 10
-9

 m( the spring deformation range), and the electron mass 9x10
-31

 kg. This produces a 

Tc of about 3 K, which is typical of several metals.  

In a similar way, excited by external forces a three-dimensional elastic structure will vibrate at their natural 

frequencies. The proton might be represented by a three-dimensional quantum harmonic oscillator with three 

masses. We shall take 3 GeV as the ground state energy of such isolated oscillator, since this number gives 

according to our theory the maximum kinetic or potential energies, and plays the role of the gap in the electrons-

pairs case.  This assumption will produce the natural frequency from the formula: 3/2  GeV ( we 

neglect corrections in the harmonic oscillator formulas due to ultra-relativistic conditions, as well as any other 

deformation modes like torsion, e.g.).  One obtains  = 3 × 10
24

 rad/sec. , an extremely high figure, within the 

gamma-rays range of the EM spectrum.  



6 
 

At this point it is worthwhile to examine some available experimental data, well gathered in ref.[6]. Figure 3 

shows the energy flux profile of protons as detected from interstellar outer space by a space probe[6]. The 

symmetry of this figure clearly gives the average energy per proton of about 2.7 GeV. Tsallis and 

collaborators[7] carried out the integration of a related set of data to obtain an averaged energy of about 2.88 

GeV, with the comment “Any connection of this value with other cosmological or astrophysical quantities is of 

course very welcome”. Statistical mechanics has several famous similar cases. For instance, in the Maxwell 

kinetic theory of velocities distribution in a gas, the average energy of a molecule matches the energy provided 

by the environment under equilibrium conditions, which is measured in terms of the absolute temperature as     

3/2 kT.  According to the theory in [2], in the case of the proton, equilibrium is reached against a vacuum at 3.7 

GeV, which is 2.7 GeV higher in energy than the proton´s rest energy. Therefore, the average energy of the CR 

protons, similar to the classical gas case, displays an averaged energy consistent with an equilibrium reached 

against the environment, in this case 2.7 GeV. It must be stressed that such equilibrium does not follow the 

classical formalism of Gibbs-Maxwell statistics, and requires relativistic effects to be included[7,8]. 

Another important feature is how to justify the concentration of protons below 3 GeV. To address this point the 

data are replotted in Figure 4 in a different way, to highlight the actual number density of protons in each energy 

interval. In Figure 4 the area below the curve is proportional to the number flux of protons detected up to a 

certain value of logarithmic kinetic energy, in units of number of protons per sq. meter per st. radian and per 

second. Beyond 90% of detected CR protons are below the 3 GeV kinetic energy threshold. As shown in the 

figure the greatest density of protons is observed at 0.6 GeV kinetic energy. This is a very relevant result as 

discussed now.  

Taking ahead our picture of the proton as a harmonic oscillator we should inquire on why statistically the 

equilibrium collection of oscillators/protons should concentrate at 0.6 GeV kinetic energies, which is 

substantially below the 3 GeV that would represent a threshold of stability for a single proton. The answer 

probably is that the proton structure settles at lower energy to reach a relaxed elastic regime of vibrations. Very 

high energy protons would profusely radiate ( as observed for instance in synchrotron accellerators) until 

reaching a stable state in the elastic regime. In fact, one may test this explanation  by calculating the amplitude of 

vibrations of the structure and comparing this with the size of a proton. Such amplitude  is obtained by equating 

a representative elastic energy of a three-mass oscillating system to the measured 0.6 GeV( from the virial 

theorem such system-averaged potential energy should match the averaged kinetic energy) : (3/2) (m/3) 
2
 

2 
= 

0.6 GeV, with  the natural frequency 3x10
24

, and m the proton mass. One obtains = 0.11 fm, which might be 

smaller due to relativistic corrections to mass.  

 

 

 

 

 

 

Figure 3: Interstellar energy-flux profile of protons in CR, which peak at,  and have an average energy oft 2.7 

GeV kinetic energy[6]. 
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Figure 4: The previous figure is replotted to clearly show the concentration of protons below 3 GeV kinetic 

energies. The density peaks at 0.6 GeV, with protons reaching a relaxed configuration after radiating their excess 

energy. 

The diameter of a proton determined by scattering experiments is ≈ 1.8 fm. This should be taken as the 

greatest possible spacing between constituents in a “relaxed” proton structure. Therefore, the vibration 

amplitude  is 6.3 % of such spacing. Criteria have been developed to evaluate whether the deformation of 

interatomic spacing in a substance might provoke a change of state. The range of deformation between 5 and 

10% of the inter-constituent spacing ( in the present case) is usually recognized as within a typical limit for a 

structure to remain stable. This indicates that the release of excessive energy ( rather than decay or a change 

of state back into vacuum)  leads most of the population of CR protons to an energy range within their elastic 

regime of vibrations, as compared to the threshold of about 3 GeV which theoretically indicates complete 

loss of stability. This is consistent with the shape and peak positions of the observed flux profiles. The 

process of energy release is through EM radiation.  

 

CONCLUSIONS 

This work is a development upon our previous publications [1,2]. In these previous papers the concept that 

the mass of baryons comes from the relation between magnetic moment and confined flux in a 

multiconnected current distribution was described, initially in a heuristic/phenomenological way based upon 

experimental data for baryons. This produced a very useful relation in which the confined number of flux 

quanta, mass, and moment were gattered in a single expression. In ref [2] a solution for the Dirac equations 

was developed  in the form of a loop of fields, associated with the confinement of flux. The purpose was to 

compare the masses obtained from the two methods as a function of confined flux. Based upon previous 

experience with Condensed Matter closed current systems, one expected a periodic behavior of mass as a 

function of flux, which was actually obtained. The field-theoretical treatment produced the additional 

information that for the whole treatment to be internally consistent a “parent” state for baryons should exist 

at 3710 MeV , which we associated with the EM vacuum.  What we have done in the present paper has been 

to analyze data for protons in Cosmic Rays in search for evidence for such latter prediction of the model. 

Even without detailed analysis, energy- and number profiles of protons in Cosmic Rays are characterized by 

a steep drop beyond approximately 3 to 4 GeV kinetic energies. We considered some of the possible 

consequences of a parent state existing at 3.7 Gev. One of them would be the prediction of some sort of 
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break-up or decay taking place at energies in the range 2- 4 GeV. In fact all baryons with exception of the 

proton ( and the neutron also) have mean lives in the range 10
-24

 to 10
-10

 sec.  Statistically speaking, as the 

rest masses of baryons and mesons increase towards 3 GeV, the shorter the mean lives are(baryons mean 

lives decrease exponentially with the ratio m/3710, in which m is the particle rest mass given in Mev/c
2
, and 

for same mass mesons are orders of magnitude less stable than baryons; these are experimental facts). That 

is, for these hadrons their internal structure is not as resilient as the proton´s and they decay as the “parent” 

state energy is approached. In view of the fact that protons do not decay, these stable particles must display 

another  mechanism to release energy. This is actually the principle of operation of  proton-synchrotron 

accelerators. Protons are actually accellerated to the range between 3 to 6 GeV and the resulting radiation is 

used in several applications. Coming back to the analysis of Cosmic Rays, we considered in detail a plot of 

the energy flux profile of interstellar protons available in ref. [6]( Figure 3). An average energy of 2.7 GeV is 

obtained from this Figure, which supports the concept that protons get under equilibrium against a vacuum 

environment 2.7 GeV above their rest energies( that is, the calculated[2] 3.7 GeV). By dividing the flux data 

by the corresponding values of kinetic energy one obtains a revealing plot of the distribution in energy of the 

number density of protons, which peaks at 0.6 GeV( Figure 4). Beyond  90% of the protons release energy to 

settle below 3 GeV. In view of the composite structure of the proton, a range of elastic behavior is expected. 

The accumulation of particles below 3 GeV and peaking at 0.6 Gev indicates that this would represent the 

achievement of some stable elastic state. We finished the paper by showing that at 0.6 GeV the range of 

internal vibrations inside the proton structure should just return to the elastic regime.  

In the Introduction we tried to make a distinction between the kind of particle which this model might be 

applicable to,  and the actual protons. Jehle[5] associated each kind of quark to a topologically different 

“loopform” as he called it. We here considered only circular loops of current. One might wonder that such 

loops would evolve into more complex entangled structures, which would provide the observed strength of 

protons. Another point that deserves consideration is how the present treatment might be related to more 

sophisticated field theories proposed in the 1980s and 90s(for instance, [9,10]). At that time there were 

consistent attempts to unify the treatment of quarks and leptons. A quark mass formula related to the one 

proposed by Barut[3] for leptons was suggested[9]. Both these formulas contain a quantum number n , and in 

the case of Barut´s,  equivalent to the n in this present treatment. It must be pointed out that in [9] n is 

associated with the number of self-interacting bubble diagrams in a perturbation expansion. Of course as n 

drops towards 1 one gets into the static regime, with no corrections due to dynamic correlation effects. This 

indicates the possible reason why a treatment as simple as the present one has been able to describe mass 

with a considerable precision. Mass appears as an essentially “effective” or “mean” property in structural 

terms, or in other words, a property that depends very little upon detailed consideration of correlation effects 

between individual constituents( and for that matter, the regularization process utilized in this treatment in 

fact leaves aside any details of interactions, concentrating essentially on the elimination of the diverging 

parts of an expansion). 
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