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Abstract. Using some properties of the prime, we establish an asymtotic for

the sum

∑

k≥2

(

1

2
+ o(1)

)

x
∫

2

πk(t)

t
dt =

x

2
+O

(

x

log x

)

.

1. Introduction and statement

A slight generalization of the prime number theorem is the estimate

πk(x) = (1 + o(1))
x log logk−1 x

(k − 1)! log x

for a fixed k, where πk(x) =
∑

n≤x
Ω(n)=k

1 [1]. Since for the case k = 1, we obtain the

well-known weaker estimate

π(x) = (1 + o(1))
x

log x
,

the prime number theorem [2]. It is generally not known to hold uniformly in k.
However, It is known to hold for all k such that k ≤ log log x. This makes an
attempt to estimate the sum directly

∑

k≥2

(

1

2
+ o(1)

)

x
∫

2

πk(t)

t
dt

a non-trivial task coupled with some convergence issues. However, we can get
around this problem by using an earlier result of the author in a careful manner,
without having to exploit the estimate for πk(x) for a uniform k.

2. Notation

Through out this paper a prime number will either be denoted by p or the
subscripts of p. Any other letter will be clarified. The function Ω(n) :=

∑

p||n

1

counts the number of prime factors of n with multiplicity. The inequality |k(n)| ≤
Mp(n) for sufficiently large values of n will be compactly written as k(n) ≪ p(n)
or k(n) = O(p(n)).
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3. Preliminary results

Lemma 3.1. For all x ≥ 2

π(x) =
θ(x)

log x
+O

(

x

log2 x

)

.

Proof. For a proof see for instance [2]. �

Theorem 3.2. For every positive integer x

∑

n≤x
(2,n)=1

⌊

log( xn )

log 2

⌋

=
x− 1

2
+

(

1 + (−1)x
)

1

4
.

Proof. The plan of attack is to examine the distribution of odd natural numbers
and even numbers. We break the proof of this result into two cases; The case x is
odd and the case x is even. For the case x is odd, we argue as follows: We first
observe that there are as many even numbers as odd numbers less than any given
odd number x. That is, for 1 ≤ m < x, there are (x − 1)/2 such possibilities.
On the other hand, consider the sequence of even numbers less than x, given as
2, 22, . . . , 2b such that 2b < x; clearly there are ⌊ log x

log 2 ⌋ such number of terms in the

sequence. Again consider those of the form 3 · 2, . . . , 3 · 2b such that 3 · 2b < x;

Clearly there are
⌊

log(x/3)
log 2

⌋

such terms in this sequence. We terminate the process

by considering those of the form 2 · j, . . . , 2b · j such that (2, j) = 1 and 2b · j < x;

Clearly there are
⌊

log(x/j)
log 2

⌋

such number of terms in this sequence. The upshot

is that (x − 1)/2 =
∑

j≤x
(2,j)=1

⌊

log(x/j)
log 2

⌋

. We now turn to the case x is even. For

the case x is even, we argue as follows: First we observe that there are x/2 even

numbers less than or equal to x. On the other hand, there are
∑

j≤x
(2,j)=1

⌊

log(x/j)
log 2

⌋

even numbers less than or equal to x. This culminates into the assertion that

(x − 1)/2 + 1
2 =

∑

j≤x
(2,j)=1

⌊

log(x/j)
log 2

⌋

. By combining both cases, the result follows

immediately. �

Remark 3.3. As a consequence of Stirlings formula, we obtain the following useful
estimate.

Corollary 3.1.

∑

n≤x















log

(

x
n

)

log 2















=
x

log 2
− x− log x

log 4
+O(1).
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Proof. Stirling’s formula [3] gives

∑

n≤x

log n = x log x− x+
1

2
log x+ log(

√
2π) +O

(

1

x

)

.(3.1)

Also from Theorem 3.2, we obtain

∑

n≤x

log n = x log x− x log 2− log 2
∑

n≤x















log

(

x
n

)

log 2















+O(1).(3.2)

Comparing equation (3.1) and (3.2), we have

∑

n≤x















log

(

x
n

)

log 2















=
x

log 2
− x− log x

log 4
+O(1),

thereby establishing the estimate. �

As is crucial to our problem, we obtain an exact formula for the prime counting
function π(x) in terms of the number of prime factor counting multiplicity function
and some other elementary functions in the following sequel.

Theorem 3.4. For all positive integers x

π(x) =

(x− 1) log(
√
2) + θ(x) + (log 2)

(

H(x)−G(x) + T (x)

)

+

(

1 + (−1)x
)

log 2
4

log x
,

where

H(x) :=
∑

p≤x

{

log(xp )

log 2

}

, G(x) :=

⌊

log x

log 2

⌋

+
∑

n≤x
Ω(n)=k
k≥2
2 6|n

⌊

log( xn )

log 2

⌋

, T (x) :=

⌊

log(x2 )

log 2

⌋

θ(x) :=
∑

p≤x

log p, and {·}

denotes the fractional part of any real number.

Proof. We use Theorem 3.2 to establish an explicit formula for the prime count-

ing function. Theorem 3.2 gives (x− 1)/2 =
∑

n≤x
(2,n)=1

⌊

log(x/n)

log 2

⌋

− (1 + (−1)x)1/4,

which can then be recast as

(x− 1)/2 =
∑

p≤x

⌊

log(x/p)

log 2

⌋

−
⌊

log(x/2)

log 2

⌋

+

⌊

log x

log 2

⌋

+
∑

n≤x
Ω(n)=k
k≥2
2 6|n

⌊

log(x/n)

log 2

⌋

−
(

1 + (−1)x
)

/4,
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where p runs over the primes. It follows by futher simplification that

(x− 1)/2 =
1

log 2

(

log x
∑

p≤x

1−
∑

p≤x

log p

)

−
∑

p≤x

{

log(x/p)

log 2

}

+

⌊

log x

log 2

⌋

−
⌊

log(x/2)

log 2

⌋

+
∑

n≤x
Ω(n)=k
k≥2
2 6|n

⌊

log(x/n)

log 2

⌋

−
(

1 + (−1)x
)

/4.

It follows that

(x− 1) log
√
2 = π(x) log x− θ(x)− (log 2)

(

H(x)−G(x) + T (x)

)

−
(

1 + (−1)x
)

/4,

where

H(x) :=
∑

p≤x

{

log(xp )

log 2

}

, G(x) :=

⌊

log x

log 2

⌋

+
∑

n≤x
Ω(n)=k
k≥2
2 6|n

⌊

log( xn )

log 2

⌋

, T (x) :=

⌊

log(x2 )

log 2

⌋

,

and θ(x) :=
∑

p≤x

log p,

and the result follows immediately. �

Remark 3.5. Using Theorem 3.4, we relate the prime counting function to the sum
we seek to estimate in the following sequel.

4. Main result

Theorem 4.1. For all positive integers x ≥ 2

π(x) = Θ(x) +O

(

1

log x

)

,

where

Θ(x) =
θ(x)

log x
+

x

2 log x
− 1

4
− 1

log x

∑

k≥2

(

1

2
+ o(1)

)

x
∫

2

πk(t)

t
dt.

Proof. By Theorem 3.4, we can write

π(x) =

(

log 2

2

)

x

log x
+

θ(x)

log x
+

log 2

log x

(

H(x)−G(x) + T (x)

)

+O

(

1

log x

)

,

where

H(x) :=
∑

p≤x

{

log(xp )

log 2

}

, G(x) :=

⌊

log x

log 2

⌋

+
∑

n≤x
Ω(n)=k
k≥2
2 6|n

⌊

log( xn )

log 2

⌋

, T (x) :=

⌊

log(x2 )

log 2

⌋

.
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Now, we estimate the term H(x)−G(x) + T (x). Clearly we can write

−G(x) + T (x) = −
∑

n≤x
Ω(n)=k
k≥2
2 6|n

⌊

log( xn )

log 2

⌋

+O(1)

= −
∑

n≤x
Ω(n)=k
k≥2

gcd(2,n)=1

log( xn )

log 2
+

∑

n≤x
Ω(n)=k
k≥2

gcd(2,n)=1

{

log( xn )

log 2

}

+O(1)

= − log x

log 2

∑

k≥2

(

1

2
+ o(1)

)

∑

n≤x
Ω(n)=k

1 +
log x

log 2

∑

k≥2

(

1

2
+ o(1)

)

∑

n≤x
Ω(n)=k

1

− 1

log 2

∑

k≥2

(

1

2
+ o(1)

)

x
∫

2

πk(t)

t
dt+

∑

n≤x
Ω(n)=k
k≥2

gcd(2,n)=1

{

log( xn )

log 2

}

+O(1)

= − 1

log 2

∑

k≥2

(

1

2
+ o(1)

)

x
∫

2

πk(t)

t
dt+

∑

n≤x
Ω(n)=k
k≥2

gcd(2,n)=1

{

log( xn )

log 2

}

+O(1).

It follows that

H(x)−G(x) + T (x) =
∑

n≤x
(2,n)=1















log

(

x
n

)

log 2















− 1

log 2

∑

k≥2

(

1

2
+ o(1)

)

x
∫

2

πk(t)

t
dt+O(1)

=
x

log 4
− x

2
− log x

log 16
− 1

log 2

∑

k≥2

(

1

2
+ o(1)

)

x
∫

2

πk(t)

t
dt+O(1)

where we have used Corollary 3.1 and the proof is complete. �

Corollary 4.1. The estimate

∑

k≥2

(

1

2
+ o(1)

)

x
∫

2

πk(t)

t
dt =

x

2
+O

(

x

log x

)

holds.

Proof. By Theorem 4.1, we can write

1

log x

∑

k≥2

(

1

2
+ o(1)

)

x
∫

2

πk(t)

t
dt =

θ(x)

log x
− π(x) +

x

2 log x
− 1

4
+O

(

1

log x

)

.
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Using Lemma 3.1, we can write

1

log x

∑

k≥2

(

1

2
+ o(1)

)

x
∫

2

πk(t)

t
dt =

x

2 log x
+O

(

x

log2 x

)

and the result follows immediately. �

5. Final remarks

The estimate

∑

k≥2

(

1

2
+ o(1)

)

x
∫

2

πk(t)

t
dt =

x

2
+O

(

x

log x

)

established, we hope, might be usefull in other related problems. We also note that
standard heuristics reveals the error term to the above problem should be ≪ √

x.
Thus we state as a conjecture

Conjecture 5.1.

∑

k≥2

(

1

2
+ o(1)

)

x
∫

2

πk(t)

t
dt =

x

2
+O(

√
x).

1.
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