
Solving the 106 years old 3k
 Points Problem with the

Clockwise-algorithm

Marco Ripà

sPIqr Society, World Intelligence Network
Rome, Italy

e-mail: marcokrt1984@yahoo.it

Published online: 09 Jul. 2020 Revised: 18 Jul. 2020

Abstract. In this paper, we present the clockwise-algorithm that solves the extension in
𝑘-dimensions of the infamous nine-dot problem, the well known two-dimensional thinking outside
the box puzzle. We describe a general strategy that constructively produces minimum length
covering trails, for any 𝑘 ∈ ℕ − 0 , solving the NP-complete (3	×	3	×⋯	×	3)-points problem
inside a 3	×	3	×⋯	×	3 hypercube. In particular, using our algorithm, we explicitly draw different
covering trails of minimal length ℎ(𝑘) = ./01

2
, for 𝑘 = 3, 4, 5. Furthermore, we conjecture that, for

every 𝑘 ≥ 1, it is possible to solve the 37-points problem with ℎ(𝑘) lines starting from any of the
37 nodes, except from the central one. Finally, we cover 3	×	3	×	3 points with a tree of size 12.
Keywords: Nine dots puzzle, Nine-dot problem, Clockwise-algorithm, Thinking outside the box,
Hypergraph, Lateral thinking, Link-length, Connectivity, Polygonal path, Optimization problem.

2010 Mathematics Subject Classification: Primary 05C85; Secondary 05C57, 68R10.

1 Introduction

The classic nine dots puzzle [9, 12] is the well known thinking outside the box challenge [3, 13],
and it corresponds to the two-dimensional case of the general 37-points problem (assuming 𝑘 = 2)
[2, 5, 10, 15].

The statement of the 37-points problem is as follows:
“Given a finite set of 37 points in ℝ7, we need to visit all of them (at least once) with a polygonal
path that has the minimum number of line segments ℎ(𝑘), and we simply define the aforementioned
line segments as lines. Let 𝐺7 be a 3	×	3	×⋯	×	3 grid in ℕ;7, we are asked to join all the points of
𝐺7 with a minimum (link) length covering trail 𝐶:= 𝐶(𝑘) (𝐶(𝑘) represents any trail consisting of
ℎ(𝑘) lines), without letting one single line of 𝐶 go outside of a 3	×	3	×⋯	×	3 𝑘-dimensional
(hyper-)box (i.e., remaining inside a 4	×	4	×⋯	×	4 grid in ℤ7, which strictly contains 𝐺7, and we
call it box)”.

It is trivial to note that the formulation of our problem is equivalent to asking:
“Which is the minimum number of turns (ℎ(𝑘) − 1) in order to visit (at least once) all the points of
the 𝑘-dimensional grid 𝐺7 = (0, 1, 2)	×	(0, 1, 2)	×⋯	×	(0, 1, 2) with a connected series of line
segments (i.e., a possibly self-crossing polygonal chain allowed to turn at nodes and at Steiner
points)?” [1, 16].

The goal of the present paper is to definitely solve the 37-points problem for any 𝑘 ∈ ℕ − 0 .
We introduce a general algorithm, that we name as the clockwise-algorithm, which produces

optimal covering trails for the 37-points problem. In particular, we show that 𝐶(𝑘) has ℎ(𝑘) = ./01
2

lines, answering to the most spontaneous 106 years old question which arose from the original
Loyd’s puzzle [12].

The aspect of the 37-points problem that most amazed us, when we eventually solved it, is the
central role of Loyd’s expected solution for the 𝑘 = 2 case. In fact, the clockwise-algorithm, able to
solve the main problem in a 𝑘-dimensional space, is the natural generalization of the classic
solution of the nine dots puzzle.

2 Solving the 𝟑𝒌-points problem

The stated 37-points optimization problem, especially for 𝑘 < 4, appears to have concrete
applications in manufacturing, drone routing, cognitive psychology, and integrated circuits (VLSI
design). Many suboptimal bounds have been proved for the NP-complete [4] 37-points problem
under additional constraints (such as limiting the solutions to Hamiltonian paths or considering only
rectilinear spanning paths [2, 6, 10]), but (to the best of our knowledge) the 37C.-points problem
remains unsolved to the present day, and this paper provides its first exact solution so far [14].

2.1 A tight lower bound

Given the 37-points problem as introduced in Section 1, if we remove its constraint on the inside
the box solutions, then we have that a lower bound is provided by Theorem 1.

Theorem 1. ∀𝑘 ∈ ℕ − 0 , ℎ(𝑘) ≥ ./01
2

.

Proof. If 𝑘 = 1, then it is necessary to spend (at least) one line to join the 3 points.
Given 𝑘 = 2, we already know that the nine-dot problem cannot be solved with less than 4 lines

(see [8], assuming 𝑛 = 3).
Let 𝑘 be greater than 2. We invoke the proof of Theorem 1 in [14], substituting 𝑛F = 3.
Thus, equation (4) of [14] can be rewritten as

 ℎG 31, 32, . . . , 37 = ./01
2

, (1)

which is an integer (since 37 − 1 is always even).

Therefore, ℎ(𝑘) ≥ ℎG 31, 32, . . . , 37 = 	 .
/01
2

 for any (strictly positive) natural number 𝑘. £

It is redundant to point out that Theorem 1 provides also a valid lower bound for any
37-points (arbitrary) box-constrained problem. The purpose of Section 2.2 is to show that this
bound matches ℎ(𝑘) for every 𝑘.

2.2 The clockwise-algorithm

In order to introduce the clockwise-algorithm, let we begin from the trivial case 𝑘 = 1. This means
that we have to visit 3 collinear points with a single line, remaining inside a unidimensional box
which is 3 units long.

One solution is shown in Figure 1.

Figure 1. Solving the 3	×	1 puzzle inside the box (3 units of length), starting from one of the line segment
endpoints. The puzzle is solvable with this 𝐶(1) path starting from both the red points.

Considering the spanning path by Figure 1, it is easy to see that we cannot solve the 31-points
problem starting from one point of 𝐺1 if and only if this point is the central one.

Given 𝑘 = 2, we are facing the classic nine dots puzzle considering a 3	×	3 box (9 units of area).
The well-known Hamiltonian path shown in Figure 2 proves that we can solve the problem, without
allowing any line to exit from the box, if we start from any node of 𝐺2 except from the central one
[8].

Figure 2. 𝐶(2) is a path that consists of ℎ(2) = .J01

2
 lines. In order to solve the 3	×	3 puzzle with 4 lines

starting from one node of 𝐺2, it is necessary to avoid to start from the central point of the grid.

Looking carefully at 𝐶(2), as shown in Figure 2, we note that line 1 includes 𝐶(1) if we simply
extend it by one unit backward. Thus, 𝐶(1) and the first line of 𝐶(2) are essentially the same trail,
and so they are considering the clockwise-algorithm. Line 2 can be obtained from line 1 going
backward when we apply a standard rotation of K

L
 radians: we are just spinning around in a

two-dimensional space, forgetting the 3201 − 1 collinear points that will later be covered by the

repetition of 𝐶(1) following a different direction. We are now able to understand what line 3 really
is: it is just a link between the repeated 𝐶(2 − 1) trail backward and the final 𝐶(2 − 1) trail
following the new direction. In general, the aforementioned link corresponds to line
2 · ℎ(𝑘 − 1) + 1 = 3701 of any 𝐶(𝑘) generated by the clockwise-algorithm.

Definition 1. Let 𝐺. be the grid in ℕ;. such that 𝐺. = (0, 1, 2)	×	(0, 1, 2)	×	(0, 1, 2) . We call
“nodes” all the 27 points of 𝐺., as usual. In particular, we indicate the nodes 𝑉1 ≡ 0, 0, 0 ,
𝑉2 ≡ 2, 0, 0 , 𝑉. ≡ 0, 2, 0 , 𝑉L ≡ 0, 0, 2 , 𝑉R ≡ 2, 2, 0 , 𝑉S ≡ 2, 0, 2 , 𝑉T ≡ 0, 2, 2 ,
𝑉U ≡ 2, 2, 2 as “vertices”, we indicate the nodes 𝐹1 ≡ 1, 1, 0 , 𝐹2 ≡ 1, 0, 1 , 𝐹. ≡ 0, 1, 1 ,
𝐹L ≡ 2, 1, 1 , 𝐹R ≡ 1, 2, 1 , 𝐹S ≡ 1, 1, 2 as “face-centers”, we call “center” the node
𝑋. ≡ 1, 1, 1 , and we indicate as “edges” the remaining 12 nodes of 𝐺..

Now, we are ready to describe the generalization of the original Loyd’s covering trail to a higher
number of dimensions. Given 𝑘 = 3, a minimum length covering trail has already been shown in
[14], but this time we need to solve the problem inside a 3	×	3	×	3 box. Our strategy is to follow
the optimal two-dimensional covering trail (see Figure 2) swirling in one more dimension,
according to the 3-steps scheme given by lines 1 to 3 of 𝐶(2), and beginning from a congruent
starting point.

Thus, if we take one vertex of 𝐺., while we rotate in the space at every turn (as observed for
𝑘 = 2), it is possible to repeat twice (forward and backward) the whole 𝐶(2) or, alternatively
(Figure 3), we can follow U

.
 times the scheme provided by its lines 1 to 3. In both cases, at the end of

the process, 3.02 − 1
.
 gyratories have been performed, so we spend the (3.01)-th line to close the

subtour (𝐶(3) can never be a cycle plus we avoided to extend its first line backwards, but we have
already seen that this fact does not really matter), joining 3 − 1 new points. In this way, we reach
the starting vertex again, and the last 3. − 1 unvisited nodes belong only to 𝐺701 = 𝐺2 (choosing
the right direction). Therefore, we can finally paste 𝐶(2) (Figure 2) by extending one unit backward
its first line (the new (2 · ℎ(3 − 1) + 2)-th line) in order to visit all the 32 nodes of 𝐺.01.

Figure 3. 𝐶(3) solves the 3	×	3	×	3 puzzle inside a 3	×	3	×	3 box (27 cubic units of volume), starting from

face-centers or vertices, thanks to the clockwise-algorithm.

Before moving on 𝑘 = 4, we wish to prove that the 3.-points problem is solvable starting from
any node of 𝐺. if we exclude the center of the grid (as we have previously seen for 𝑘 ∈ 1, 2). This
result immediately follows by symmetry when we combine the trails shown in Figures 3&4.

Figure 4. Solving the 3	×	3	×	3 puzzle inside a 3	×	3	×	3 box (27 cubic units of volume), starting from

edges or vertices.

The number of solutions with .
/01
2

 lines increases as 𝑘 grows. Moreover, if we remove the box
constraint, we are able to find new minimal covering trails [14], including those that reproduce (on
a given 3	×	3	subgrid of 𝐺.) the endpoints by Figure 2, as shown in Figure 5.

Figure 5. Solving the 3	×	3	×	3 puzzle inside a 3	×	3	×	4 box (36 cubic units of volume).

Finally, we present the solution of the 3L-points problem. Two examples of minimum length
covering trails generated by the clockwise-algorithm are given.

The method to find 𝐶(4) is basically the same one that we have previously discussed for 𝐺..
So, we utilize the standard pattern shown in Figure 3 as we used 𝐶(2) in order to solve the
3.-points problem. We apply 𝐶(3) forward (while we spin around following the 3-steps gyratory as
shown in Figure 6), then backward (Figure 7), subsequently we return to the starting vertex with
line 27 (the (2 · ℎ(4 − 1) + 1)-th link), and lastly we join the 3. − 1 unvisited nodes with 𝐶(3) by
simply extending backward its first line (corresponding to the 28-th link of	𝐶(4) - see Figure 8).

Figure 6. Lines 1 to 13 of 𝐶(4) following 𝐶(3), as shown in Figure 3.

Figure 7. Lines 14 to 27 of 𝐶(4) following 𝐶(3) backward, the 27-th link to come back to the “starting

point” is also included.

Figure 8. A minimum length covering trail that completely solves the 3	×	3	×	3	×	3 puzzle with 40 lines,
inside a 3	×	3	×	3	×	3 box (hyper-volume 81 units4), thanks to the clockwise-algorithm applied to 𝐶 3

from Figure 3.

The clockwise-algorithm reduces the complexity of the 37-points problem to the complexity of
the 3701-points one. A clear example is shown in Figure 9 .

Figure 9. How the clockwise-algorithm concretely works: it takes a minimum length covering trail 𝐶(3) as
input, and returns 𝐶(4). Lines 1-13 belong to the covering trail 𝐶(3) (shown in the upper-right quadrant),

line 13' follows line 13 and belongs to 𝐶(3) backward. 𝐶(3) backward ends with line 1': it is extended
(by one unit) in order to be connected to the (2 · ℎ(3.) + 1)-th link, and this allows	𝐶(3) to be repeated

one more time (joining the remaining 26 unvisited nodes).

Since the clockwise-algorithm takes 𝐶(𝑘 − 1) as input and returns 𝐶(𝑘) as its output, it can be
applied to any 𝐶(𝑘) in order to produce some 𝐶(𝑘 + 1) consisting of ℎ(𝑘 + 1) = 3 · ℎ(𝑘) + 1
lines. Thus, it is possible to shown by induction on 𝑘 that the 37-points problem can be solved,
inside a 3	×	3	×⋯	×	3 box of hyper-volume 37 unitsk, drawing optimal trails with 3 ∙ ℎ(𝑘 − 1) + 1
lines (Figure 10).

Therefore, ∀𝑘 ∈ ℕ − 0 ,

 ℎ(𝑘 + 1) = 3 ∙ ℎ(𝑘) + 1 = ./\]01
2

. (2)

Figure 10. For any 𝑘 > 1, the 37-points problem can be explicitly solved by the clockwise-algorithm (𝑘 = 5

in our example). A 𝐶(𝑘) with .
/01
2

 lines immediately follows from any valid 𝐶(𝑘 − 1), and this surely
occurs if 𝐶(𝑘 − 1) has one of its endpoints in a vertex of 𝐺701.

3 Covering 𝟑𝒌-points by trees

Definition 2. We call a tree any acyclic connected arrangement of line segments (i.e., edges of the
tree) which covers some of the nodes of 𝐺7, and we denote as 𝑇(𝑘) any tree (drawn in ℝ7) that
covers all the points belonging to the 𝑘-dimensional grid 𝐺7. More specifically, 𝑇(𝑘) represents a
covering tree for 𝐺7 of size 𝑡(𝑘) (i.e., 𝑇(𝑘) has 𝑡(𝑘) edges).

In 2014, Dumitrescu and Tóth [7] shown the existence of an inside the box covering tree for 𝐺7,
∀𝑘 ∈ ℕ − 0 , of size 𝑡a(𝑘) = ℎ(𝑘) = ./01

2
 (e.g., the set of all the endpoints of the 13 edges of

𝑡a(3) ⊂ 𝐺. - see Definition 1). It is not hard to prove that, when we take as a constraint our
3	×	3	×⋯	×	3 box (as usual), the upper bound 𝑡a(𝑘) is not tight for every 𝑘 > 3.

Lemma 1. Let 𝑏𝑜𝑥 be the set of 47 points such that
𝑏𝑜𝑥 ∶= (−1, 0, 1, 2)	×	(−1, 0, 1, 2)	×⋯	×	(−1, 0, 1, 2) ⊂ ℤ7. ∀𝑘 ≥ 4, ∃ a covering tree 𝑇(𝑘) for
𝐺7 whose all its vertices belong to 𝑏𝑜𝑥 ∧ s.t. 𝑇(𝑘) has size 𝑡(𝑘) < ℎ(𝑘).

Proof. We invoke Theorem 1 to remember that ℎ(𝑘) ≥ ./01
2

. It follows that it is sufficient to

provide a general strategy to cover 𝐺7 with a tree consisting of .
/01
2
− 𝑐(𝑘 > 3) edges, for some

𝑐(𝑘 > 3) ≥ 1. The tree in ℝ. shown in Figure 11, that covers 3. − 1 nodes of 𝐺. with its 12 edges,
also provides a valid upper bound for 𝑡(4), since it is sufficient to clone twice the same pattern and
spend one more link to join the remaining three collinear points belonging to each copy of 𝐺.. So,
we add 2 more lines (at most) to connect every duplicated tree (to the other two copies of itself) and
to fix the aforementioned link (which joins the last 3 unvisited nodes of 𝐺L), in order to create a
covering tree of size 39.

Figure 11. An inside the (2	×	2	×	3) box tree with 𝑡a(3) − 1 = 12 edges that covers all the points of 𝐺.

except the black one. The black dotted line represents the direction (𝑤-axis) to fit the remaining three
collinear points of 𝐺L when we replicate three times the same pattern (picture realized with GeoGebra [11]).

Thus, we can generalize the result ∀𝑘 ≥ 4,

 𝑡(𝑘) ≤ 3 · 𝑡(𝑘 − 1) + 1 ≤ 39 · 370L + 3F + 170R
Fl1 . (3)

Hence,

 𝑡(𝑘) ≤ ./mn01
2

+ 13 · 370.. (4)

Therefore, ∀𝑘 ≥ 4, ℎ(𝑘) − 𝑡(𝑘) ≥ 370L ≥ 1. £

We are finally ready to remove the box constraint. Without any restriction to our thinking outside
the box ability, we are free to apply in a clever way the idea introduced by Figure 11, in order to
prove the existence of a covering tree for 𝐺. of size 𝑡(3) = 𝑛2 + 𝑛 (here 𝑛 assumes the odd value 3
- see [7], third section).

Theorem 2. 𝑡(𝑘) < ℎ(𝑘) iff 𝑘 ≥ 3.

Proof. Let 𝑘 = 1; it is trivial to verify that 𝑡(1) = ℎ(1) = 1.
If 𝑘 = 2, then 𝑡(2) = ℎ(2) = 4 (see [8]).
Thus, let 𝑘 = 3. Figure 12 shows the existence of a covering tree of size

 12 = 𝑡(3) < ℎ(3) = 13. (5)

Figure 12. One covering tree with 𝑡(3) = 12 edges. 𝑇(3) covers all the points of 𝐺. (picture realized with

GeoGebra [11]).

If 𝑘 ≥ 4, then Lemma 1 states that 𝑡(𝑘) < ℎ(𝑘). In particular, equation (3) shows that

 𝑡(𝑘) ≤ (3 · 𝑡(3) + 1) · 370L + 3F + 170R
Fl1 . (6)

Hence,

 𝑡(𝑘) ≤ 2R	·	./mo01
2

. (7)

Since we already proved that ℎ(𝑘) = ./01
2

 is optimal,

 ℎ(𝑘) − 𝑡(𝑘) ≥ ./01
2
− 2R	·	./mo01

2
. (8)

Therefore, we conclude that, ∀𝑘 ≥ 3, ℎ(𝑘) − 𝑡(𝑘) ≥ 370. ≥ 1. £

4 Conclusion

Given the 𝑘-dimensional grid 𝐺7, the clockwise-algorithm let us easily draw different covering
trails with .

/01
2

 lines, and all of them remain inside the (3	×	3	×⋯	×	3) box. After the (37 − 1)-th
link, it is possible to switch from the previously applied 𝐶(𝑘 − 1) to another known solution of the
3701-points problem, completing a new optimal trial that has a different endpoint (e.g., we can take
the walk shown in Figure 7 and then apply 𝐶(3) from Figure 9).

Let 𝑋7 ≡ 1, 1, . . . ,1 be the central node of 𝐺7 (see Definition 1 for the case 𝑘 = 3). We
conjecture that, ∀𝑘 ∈ ℕ − 0 , the 37-points problem is solvable (embracing also every outside the
box optimal trail) starting from any node of 𝐺7 − 𝑋7 with a covering trail of length	ℎ(𝑘) = ./01

2
,

while it is not if we include 𝑋7 as an endpoint of 𝐶(𝑘).

References

[1] Aggarwal, A., Coppersmith, D., Khanna, S., Motwani, R., Schieber, B. (1999). The angular-
metric traveling salesman problem. SIAM Journal on Computing 29, 697–711.

[2] Bereg, S., Bose, P., Dumitrescu, A., Hurtado, F., Valtr, P. (2009). Traversing a set of points
with a minimum number of turns. Discrete & Computational Geometry 41(4), 513–532.

[3] Chein, J.M., Weisberg, R.W., Streeter, N.L. et al. (2010). Working memory and insight in
 the nine-dot problem. Memory & Cognition 38, 883–892.

[4] Chitturi, B., Pai, J. (2018). Minimum-Link Rectilinear Covering Tour is NP-hard in R^4.
 arXiv, 1 Oct. 2018, https://arxiv.org/abs/1810.00529

[5] Collins, M.J. (2004). Covering a set of points with a minimum number of turns.
International Journal of Computational Geometry & Applications 14(1-2), 105–114.

[6] Collins, M.J., Moret, M.E. (1998). Improved lower bounds for the link length of rectilinear
spanning paths in grids. Information Processing Letters 68(6), 317–319.

[7] Dumitrescu, A., Tóth, C. (2014). Covering Grids by Trees. 26th Canadian Conference on
 Computational Geometry.

[8] Keszegh, B. (2013). Covering Paths and Trees for Planar Grids. arXiv, 3 Nov. 2013,
https://arxiv.org/abs/1311.0452

[9] Kihn, M. (1995). Outside the Box: The Inside Story. FastCompany.

[10] Kranakis, E., Krizanc, D., Meertens, L. (1994). Link length of rectilinear Hamiltonian tours
in grids. Ars Combinatoria 38, 177–192.

[11] Hohenwarter, M., Borcherds, M., Ancsin, G., Bencze, B., Blossier, M., Elias, J.,
Frank, K., Gal, L., Hofstaetter, A., Jordan, F., Karacsony, B., Konecny, Z., Kovacs, Z.,
Kuellinger, W., Lettner, E., Lizelfelner, S., Parisse, B., Solyom-Gecse, C., Tomaschko, M.
(2018). GeoGebra - Dynamic Mathematics for Everyone - version 6.0.507.0-w,
International GeoGebra Institute, 16 Oct. 2018, https://www.geogebra.org/

[12] Loyd, S. (1914). Cyclopedia of Puzzles. The Lamb Publishing Company, p. 301.

[13] Lung, C.T., Dominowski, R.L. (1985). Effects of strategy instructions and practice on nine-
dot problem solving. Journal of Experimental Psychology: Learning, Memory, and
Cognition 11(4), 804–811.

[14] Ripà, M. (2020). Solving the n_1 ≤ n_2 ≤ n_3 Points Problem for n_3 < 6. ResearchGate,
25 Jun. 2020, https://www.researchgate.net/publication/342331014_
Solving_the_n_1_n_2_n_3_Points_Problem_for_n_3_6

[15] Ripà, M., Remirez, P. (2013). The Nine Dots Puzzle extended to n X n X ... X n Points,
viXra, 5 Sep. 2013, https://vixra.org/pdf/1307.0021v4.pdf

[16] Stein, C., Wagner, D.P. (2001). Approximation algorithms for the minimum bends traveling
salesman problem. In: Aardal K., Gerards B. (eds) Integer Programming and Combinatorial
Optimization. LNCS, vol. 2081, 406–421. Springer, Berlin.

