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Abstract: A new theorem is demonstrated. There is a class of biquaternions for which
the power of the biquaternions at the order n is so that R""=0and R"=0.This
theorem is of interest not only in the mathematical tool of the biquaternion field but
it is of particular interest also in the applications of biquaternion algebra in quantum
mechanics.
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Introduction

Clifford's preliminary pattern of biquaternions contains an outline of a calculus
devised for the analytical treatment of his theory. Clifford's field was to extend
Hamilton's quaternion calculus where Hamilton's biquaternion was a quantity as
guaternion with complex coefficients [1]. Presently, Clifford and Hamilton algebra
have become a very fertile ground for physics. Clifford’s algebra has become a useful
language for physics because it maximally exploits geometric properties and

symmetries. It is known to physicists mainly as the algebras of Pauli spin matrices and



of Dirac gamma matrices, but its utility goes far beyond the applications to quantum
theory and spin for which these matrix forms were introduced.

We retain that the most interesting property of the biquaternions is their non
commutativity that of course finds a direct correspondence in noncommutativity of
linear operators in quantum mechanics. As P.M. Dirac said:

| saw that non commutation was really the dominant characteristics of Heisenberg's
new theory. It was really more important than Heisenberg's idea of building up the
theory in terms of quantities closely connected with experimental results. So | was led
to concentrate on the idea of non commutatitivity and to see how the ordinary
dynamics which people has been using until then should be modified to include it [2].
The biquaternions have their peculiar nature of being non commutativity and for this
reason they must be profoundly studied in their mathematical algebraic structure and
in the light of application to quantum physics.

The aim of the present paper is to demonstrate a new basic theorem on
biquaternions. It is of extreme interest in the field itself of biquaternions, thus in the
mathematical body, but also, as we shall see, in the field of application of the

biquaternions to physics and, in particular, to quantum mechanics.

Generalities on Biquaternions

According to our previous results, let us develop some basic features of the algebra

of the bigquaternions on the basis of our precedent literature [3-16].

Let us introduce four basic elements epand e; (i = 1, 2, 3) that we call the basic unities

of the biquaternions.

We have to make two basic assumptions:

— the first assumption is that it exists the scalar square of each element ep and e; as
eoeo=1, eei=ki, eze;=ks eszes3=ks (1)

with k; (i = 1, 2, 3) real numbers and k;# 0;



— the second assumption is their anticommutativity:
eieg=epei=e; eej=-ee; i=123 j=1,23;, i#j (2)
Let us deduce the algebra of the biquaternions : write the multiplication of the basic
unities e; in the following manner[4]
eie;=aie;+ axe;+as e;
e;es= e+ [hex+ [z e;s (3)
ese;=yiei1+ y,e,+ )3 €3

and let us impose left and right alternation

e;eie;=(eje;) ey eierer=e;j(esey);
ererez =(eze;) es erez ez =e;(ezes); (4)
€3€3€;1 = (83 63) €1, €316 = €3 (61 el),'

By using the (3) and the (4), we obtain that
o= =h=ph=n=p=0;
o3 #0; P #0; 7 #0; (5)
ki =- Y2 a3, k= - ,31 as, ks =- ,31]/2
If we select k; = + 1, we finally obtain that
ere1=ee;=eze3=1; e = €€, (6)
eie;=-eye;=ies; e;es=-ezer=iey eze;=-ej;ez3=ie,
We have how characterized the four basic elements, ep and e;, of this algebra.
For any given complex number z,=x,+iy, (£=0, 1, 2, 3), we have a biquaternion
Z= Zﬂ Zu€u (7)
with the iperconjugate biquaternion Z* given as it follows
Z*=2p-21€1-22€5-2Z3 €3
The complex conjugate Z* is given as
Z*= Z# z.e, (8)

and the conjugate Z is given as

Z=17,-12,6 —172,6,— 7,8,



The norm of the biquaternion Zis
N(Z) =Z2Z*=2Z*Z = 2} - 727 -7 - 7} (9)
and the inverse of Z is

Z1=[N@2))z (10)
and N(2) #0. It follows that we have not inverse when N(Z) = 0.

Given two biquaternions A and B we have that

N(AB) = N(A) N(B) (11)
while a biquaternion zero divisor has Z #0 and N(Z) = 0.
We have also that e* =¢,, and

vz 1l+ie 1/2_l—iei _
(&) :W’ (-e) _W'

Given the biquaternion Z, biquaternion transformations are given by

i=0,1,2 3 (12)

LBT(U, A)

Z’=UZU*+A (13)
where we may consider U and A biquaternions having unitary norm
N(U)=1, NA)=+1
General LBT may be written as Z’=UZB+A. A = 0 gives Linear Homogeneous
Biguaternion Transformations, LHBT and LBT form a group. This is the group of the
Biquaternion Linear Transformations.
This is the algebra of the biquaternions.
We have now the problem to fix a correspondence with the algebra of matrices. For
n= 2 an isomorphic representation of biquaternions having basic unities e; (i=1, 2, 3)

is obtained by Pauli matrices. We have that

O R

with the generic biquaternion Z having matrix representation

Z:(zo+23 zl—izz) (15)

Z,+12, 7,-1,

and N(2) = det.(2).



This is the basic representation of the biquaternions at the order n = 2.
We may see that in (6) the multiplication of the basic unitieseje;j (i=1, 2, 3;j=1, 2, 3;
i #]j)is determined according to the cyclic permutation (i, j, k) of (1, 2, 3). We will
extend this basic rule to the cases n =4, 8, ... . At the moment, let us remain still at
the case n=2 and let us continue to explore some other basic features of the
biquaternions. We have established that in the case n =2, e;are represented by Pauli’s
matrices. We have also admitted in (1) and (6) that e’ = + 1. e’ = 1 is the first important
result that characterizes the extraordinary properties of the biquaternions.
We have the following statement.
Since e/ = 1, the basic unities e; (i = 1, 2, 3) of the biquaternions are expression of an
intrinsic indetermination that such hypercomplex numbers may exhibit.
This is the first time that indetermination is connected with a proper number field in
mathematics; consequently, we have to express in detail how such statement is
realized.
Since e’ = 1, we have that the basic unities e; may assume only two possible numerical
values, or + 1 or -1.
It follows that we have mean values such that
-1 <<ep><+1 (16)
Such mean values <e;> determine two probabilities, p(+1) and p(-1), that such basic
unities have respectively the value + 1 or the value -1 . We have in fact that
<e>=(-1) p(-1) + (+1) p(+1); i=1,2,3 (17)
with
p(+1) +p(-1) =1
We derive that

<e >
2

1
p(+1)=- +

and i=1,23 (18)



1 <e>
p(-1) =2 - —

We have obtained the first indication that the biquaternions must be conceived as a

number field expressing an intrinsic indetermination.
Let us go on explaining in more detail the reason for such intrinsic indetermination in
biquaternions.
Let us consider the biquaternion
Z=X1€1+ Xy €2+ X3 €3 (19)
with x; (i = 1, 2, 3) three real numbers such that
K= (x2+x2+x2 )1/2 (20)
We have that
ZZ=(x1e1+ X2 e+ X3€3) (X1 €1+ X2 €+ X3 €3) = K? (21)
and thus Z may assume only two numerical values, or + K or - K. With regard to the
mean value of Z, we have that
-K<<Z><+K
or (22)
-K<x;<ep>+x<ex>+x3<e><+K
The mean value of Z must be between - K and + K. The (22) must hold for any real
numbers x; (i = 1, 2, 3) and thus also for x; = < e; >. In this case we obtain that K? <K,
K<1, K?<1, and
<e;>’+<e>’+<e3>?<1 (23)
The (23) represents an important result for the algebra of the biquaternions. It
indicates the impossibility for the basic unities e; (i = 1, 2, 3) of the biquaternions to
assume a unique and definite numerical value simultaneously. Here it is the origin of
the intrinsic indetermination of the biquaternions.
Consider the case in which < e;> = 1. On the basis of (17) and (18), we have that e;

assumes the numerical value + 1 with p(+1) = 1, p(-1) = 0. In this case we have from



the (23) that < e,> =< e3> =0, and this implies, on the basis of the (18), that both e,
and e; cannot have a definite numerical value, or +1 or -1. Similarly, it follows for
e; >=-1. If, instead, < e, > is either +1 or -1, it follows that < e; >= < e3;>= 0 and e; and
es; cannot assume a definite value; finally, if < e3> is either +1 or -1, it follows that
<e;>=<ey>=0, and e;, e; cannot assume a definite numerical value.
We may say that such basic unities only conserve the role of mathematical objects
responding to the basic features of the algebra of the biquaternions while their
possibility to assume a definite numerical value remains to be only of potential kind.
Let us examine the biquaternion algebra at the orders n=48,.......
For the n=2, we use basic unities e; (i = 1, 2, 3; n = 2) with the permutation (i, j, k) of
(1, 2, 3). When we consider the order n=4, we must have a basic set of unities Ep; (/i
=1, 2, 3), and the basic set of unities E;o(i = 1, 2, 3). For one basic unities , we must
have, in fact, Eos, Eoz, Eos, With multiplication rule given by cyclic permutation of (1, 2,
3). For the other basic unity, we must have Ejq, Ezy, E3p with the same multiplication
rule and cyclic permutation. In addition, we must have also that Ep;Ejo = EjoEpi (i = 1,
2,3;j=1, 2, 3) in order to assure that such basic unities may assume definite values
together, each independently from the other. In this case they can be taken in
consideration together. Owing to this basic requirement, we cannot use unities e; at
the order n = 2 since it may be easily shown that any unity commuting with basic
unities e; (i=1, 2, 3; n =2) may be only a scalar quantity .Thus we require basic unities,
and correspondingly, basic matrices, Ep;and Ejp at least at order n=4.
They are introduced in the following manner

Eoi=11®e;; Eio=e;®I2 (24)
The notation ® denotes direct product of matrices, and /' is the ith 2x2 unit matrix.
Thus, following the previous steps of the order n=2, in the case of n=4 we have two

distinct sets of biquaternion basic unities, Eg; and E;o, with



EZ=1; E2=1 i=1,2 3; (25)
EoiEoj=1iEok; EioEjo=iEkoj=1,2,3 i#j
and
EioEoj=EojEio (26)
with (i, j, k) cyclic permutation of (1, 2, 3).
In matrix notation we have the following scheme
Eoi=11®e;; Eio=e; ®I2 (27)
where the notation ® denotes direct product of matrices, and / ' is the ith 2x2 unit
matrix
Let us examine now the following result
(I'®e) (e ®1%) =Epi Ejo=Ej; (28)
It is obtained according to our basic rule on cyclic permutation required for basic
unities of biquaternions. We have that Ey;Ejp = E;; with i = 1, 2, 3 and j=1, 2, 3, with
Ef =1, EijExm # ExmEij, and Ejj Exm = Ep g Where p results from the cyclic permutation
(i, k, p) of (1, 2, 3) and g results from the cyclic permutation (j, m, q) of (1, 2, 3).
In Conclusion : in the case n = 4 we have two distinct basic matrices Eyp;, Eio and, in
addition, basic sets of unities (E;ij, Eip , Eom) With (j, p, m) basic permutation of (1, 2,
3). Similarly, we may realize other basic sets of biquaternion unities using
(Ejis Epiy Emo).
This is the biquaternion approach to consider biquaternions at the order n=4. In the
case n=8 we have the possibility to introduce three sets of biquaternion basic unities.
We will have Epoj, Epio, and Eipo, i=1,2 3and
Epoi=1'®I11 ® g;; Epin=1°® e ®1?; Eipo=e®I>*®I|3
and
(1'®1T®e) (1°?®e®I?) (ei®I>®I3) = Xe; Pe;=
=Eooi Eoio Eioo=Eii (29)

Still we have that
Eooi Eoio=Evio Eivo; EooiEioo=EiooEooi; EoioEioo =EiooEoio (30)



In the case n = 8 we have three distinct basic unities and, in addition, we have other
basic unities, as example (E;j«, Eiji, Eij; ). Other cases are obviously possible.
Generally speaking, fixed the order n of the biquaternion basic unities, we will have
that
Ii=4,
Dom= Apm®@el™™V @ 10™I@, ..., 1" (31)
Domir= Apm®e{™V @10 ... ®1"
In=6,019Q...... 1"
with
Ap=eP ®e?®...Qel" =
(e, ®19®...1")(........ J(19®1?. . 01"Re); m=1,...,n-1
according to the n-possible dispositions of e; and 1%, 12 ..., I " in the distinct direct
products.
Basic unities are determined by the number of dispositions possible for e;and / .
In this manner we have established that biquaternions exist at different orders n = 2,

4,8, ... We may now give the explicit expressions of Eyj, Ejp, and E;; in matrix form:

01 00 0 -i 0 O 1 0 0 O
. 1 00O £ i 0 0 O E 0 -1 0 O 39
10 0 0 1) 2|0 0 O —i|” ®Jo 0 1 o0} (32)
0 010 0O 0 i O 0O 0 0 -1
0 010 00 -1 O 1 0 O 0
£ 0 0 01 e 00 0 -—i e 01 O 0 33
w1 0 0 0 % 0O O o|”* |00 -1 0} ( )
0100 01 O 0 00 0 -1
0 0 01 0O 0 0 -1 1 0 0 O
0010 0O 01 O 0 -1 0 O
E11 ’ Ezz_ ;E33: ’
0100 0 10 O 0 0 10
1 0 0O -1 00 O 0 0 0 1




0 0 -i 0 0 1 O 0 0 0 -i
c J00oio oo o0-1 000
2790 -i o 0|"™J12 0 00 " J0oi o0 o'
i 0 0 O 0 -1 0 O i 0 0 O
01 0 O 0 -1 0 0 -1 0 O
e _l 0 0 O £ 0 0 1 e i 0 0 O
90 0 0 -1|" B 0o o ®1]o 0 o0
00 -1 O 0 -1 0 O 0 0 -1 0O
We have two different basic unities
(Eoo Eoi), (Eoo Eio) (34)
with
Ep=1; Eq =E5=1; EoiEoj=1iEok;
Eio Ejo=1iExo, EoiEjo=EjoEopi.
In the first case a biquaternion is given to be
Z=ZoE00+21E01 +22E02 +23E03 (35)
while in the second case we have that
Q=2zpEpo+21E10 +22E;0 +23E30 (36)

The (35) and the (36) reconduce ourselves to all the basic statements that we just
discussed in the previous section for biquaternions at order n = 2. All the basic
features of biquaternions that we enunciated in the case n = 2 still remain valid also
in the case n =4 and in the following orders n =8, ... of biquaternions.
In particular, we continue to have that
<Ep;>%+<Ep,>°+<Ey3>?<1
and (37)
<Ep>°+<E,p0>2+<E;p>°<1
In this manner also the general indeterminacy principle of the biquaternions remains

valid and their probability expressions.



The New Theorem

There is a class of biquaternions for which the power of the biquaternions at the order
nis so that R"* =0and R" =0.

Proof.
As class of these biquaternions let us select the following two biquaternions at the

order n=2:
(i) i, i,

R = a(7el+ﬁez ; S= 7 —E ) (38)
where ais an arbitrary scalar.
We have that

R°=1; R1=R; R?2=0;

§$%=1; Ssi=5; $?=0
Consider the same class of biquaternions at the order n=4.
We have the following two biquaternions
For n =4 we have that

e, e e e e e e, e
R = 1 QL2 2l 222 | 2422 3 g ® 222
a{f{% (2 2 HMTKZ 2 ] (2 "2 Hﬂrh (2 2 m
(39)
5= 6, ] e, g6 i€ o, e
aH%@(z j}f{( 2) [2 2ﬂ”§h®(2+ zm
where goand q; are the following biquaternions
1 1
Qo= E(1+ 63); q: = E(l—eg)

We have

V3441 V143 V2
R= a{[ * j(Em iEp)+ ( j(al Eo)+ (Euti By |E21+E22)}

(40)

|:(\/§+\/1J(E01 i Eg,) +(\/1;\/§j(E31 +iEy) +\/4§(E11 —IE, +iE, - EZZ)}



At the ordern =4, we have R°=1, R* =R, and it results

R - a{ﬁﬁﬁe—;-%jcgqo}ﬁ\@{[e—zl—%j@qlﬂ (41)
and
R = iz (32 o212 (42
Finally
(43)
{ofucls-af3-5)el3-) Arely-4)]| o

We have also that %=1, §$1=S, and
52- {ﬁﬁﬂ%ﬂ%}@q(}}fzﬁ{(%ﬂ%]@qlﬂ (44)

5= aﬁﬁ@ﬁ%+%}®(%+%ﬂ (45)
§4=5835=0 (46)

Generally speaking, we may say that at any fixed order n we have this general
property of these R, S biquaternions. Fixed the order n and calculated the
corresponding biquaternions expressing R and S, we have that

R"S"=0 and RS 20 (47)

AN APPLICATION OF THE THEOREM TO THE CASE OF THE HARMONIC OSCILLATOR
IN QUANTUM MECHANICS.
Generally speaking, in quantum mechanics some physical quantities are expressed in
the following manner

A=f(Nab,..) (48)

where g, b, ... may be constants, while N may assume only discrete values 0, 1, 2, ....



Let us calculate the case n = 2 of an harmonic oscillator. As we know, we have

H=—P2 + 2 mw?(?
2m 2

and
_1(ﬂ)1/2 P = men
Q=sl—) eu =7 (2mw ey
and
i i
R=Q-——P; S=Q+-——"P
H=1m RS+ rwe, RS-SR=-2" ¢, (49)
2 2 mw

Where P and Q are biquaternions representing the momentum and the position

respectively. N is given in the following manner

Mo
N=—RS
2h

with

HS=1m o? SR—Z—he3 +1ha)e35
2 Mo 2

On the other hand, we have that

2H—h2a)e3js

= % RHS- " Ress=

0=R252=R(RS)S=R(
Mo Mo

Mo

me?) mo M

=RS (ZHj-iRSeg-z—hRegs

Finally we obtain that

RS[ZH_ 7 e3—2hj=0

mw’ mo M

since e3 S = S. Considering <e3>=1, e3 =+ 1, we obtain that

E=ha)+%ha) ;, H->E (50)

Considering instead <es>=-1, e3 — - 1, we have that

1

E==>
2

ho (51)



as it is required for the case of the quantized harmonic oscillator considering only n =
0, 1.

In the same manner one shows that the general results is

1
E=n ha)+§ha) (52)

and thus
E=h o(N+2%) (53)

owing to the (47) in the case at order n.

CONCLUSIONS

In this manner we have given a direct proof of the universal character of the
biquaternions. We have evidenced that the theorem enters directly in the (49) that
expresses the quantized energy levels of an harmonic oscillator. In this manner we
have also confirmed the correctness of employing biquaternion algebra in the analysis
of quantum systems. Our proof has enabled us to calculate the quantized values that
the oscillator energy can have and it has given a definitive demonstration that
biquaternions are necessary to express the intrinsic quantization that quantum
systems exhibit.

We have to add still another comment.

Finally, let us observe the importance of the property R ™S ™ =0 and

R "S " =0. It has a general validity in the bigquaternion algebra as mathematical tool
and it may be used in general different cases to show also quantization of other
guantum systems, as example in the theory of angular momentum or in the energy
levels of the hydrogen atom.
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