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Abstract

A relativistic composition of gravitational redshift can be implemented
using the Volterra product integral. Using this composition as a model,
expressions are developed for gravitational potential energy, escape veloc-
ity, and a metric. Each of these expressions alleviates a perceived defect
in its conventional counterpart. Unlike current theory, relativistic gravita-
tional potential energy would be limited to rest energy (Machian), escape
velocity resulting from the composition would be limited to the speed of
light, and the associated metric would be singularity-free. These ideal
properties warrant investigation, at a foundational level, into relativistic
compositions based on product integration.

Gravitational Redshift and the Volterra Product Integral

General relativity predicts Lorentzian form for gravitational time dilation and
redshift, but these are found to have exponential form when composed primi-
tively from the Einstein equivalence principle.

The total redshift, when it is influenced by more than one factor such as Doppler
shift, gravitational shift and Hubble shift, can be found from the product [1],

1 + ztotal = (1 + zDoppler) (1 + zGravity) (1 + zHubble) (1)

When the redshifts are small, the total redshift can be approximated by the
sum of the redshifts, but the multiplicative relativistic composition must be
maintained for full accuracy.

Consider a sequence of N frames moving along a line, where the velocity of
frame n with respect to frame n − 1 is vn, and where v0 is a reference frame
which may be presumed stationary. The relativistic redshift, z, of frame N with
respect to the base frame can be expressed as a product of redshifts, zn,

1 + z = (1 + z1) (1 + z2) . . . (1 + zN ), 1 + zn =

√
1 + vn/c

1− vn/c
(2)

The Volterra product integral is a continuous version of the above product. It
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takes a function, chops it into infinitesimal elements, adds one to each infinites-
imal element to form a factor, then multiplies these factors to form a product.
The continuous product of factors, 1 + f(x), over the interval [a, b], given a
function f(x) = x for example, can be written as a product integral,

b∏
a

(
1 + f(x) dx

)
≡ exp

(∫ b

a

f(x) dx
)

= exp
(b2 − a2

2

)
(3)

where
∏

stands for product integration. Functionally, the product integral
is simply an ordinary integral which is then exponentiated. Conceptually, in-
tegration is like calculating simple interest, while product integration is like
compound interest.

Consider the gravitational redshift at a radial distance, R, from an ideal solid
sphere of mass, M . Given a test particle of mass m, the classical element
of potential energy due to an infinitesimal spherical shell of matter is du =
−F (r) dr where F (r) is the force of gravity between a shell of radius r and the
test particle at R. By the Einstein equivalence principle, redshift due to the
shell is given by dz = −du/mc2, where the rest energy is taken to be constant.
The total redshift, z̃, can be composed relativistically as the product integral of
dz,

1 + z̃ =
∏
r

(
1 + dz

)
= exp

(∫
r

dz
)

= exp
(GM
Rc2

)
(4)

where the integral is taken over all the shells, following the classical derivation of
potential energy. The composite redshift due to a mass M , at a radial distance
r, is then given by (5b), not the conventional relativistic (5a).

(a) GR : z =
(

1− 2GM

rc2

)−1/2

− 1 (b) Mach : z̃ = exp
(GM
rc2

)
− 1 (5)

Relativistic Gravitational Potential Energy

The corresponding relativistic gravitational potential energy can be obtained
similarly, but must have opposite sign in the exponent to be consistent with the
composition of relativistic gravitational redshift.

Following the composition of gravitational redshift, relativistic gravitational po-
tential energy is found to be

Ẽ(r) = mc2
∏

(1 + du/mc2) = mc2
∏

(1− dz) = mc2 exp
(−GM

rc2

)
(6)

Simply attempting to form Ẽ(r) as
∏

(1 + du) would be improper. In (6),
partitioning of du = −mc2 dz between mc2 outside the product integral, and
the dimensionless −dz inside, can be seen as a requirement that the product
integral must be dimensionless in order to avoid exponentiated units.

Unlike Newtonian potential energy which is negative, relativistic gravitational
potential energy is positive. Relativistic gravitational potential energy is an

2



exponential map of the classical potential energy normalized by rest energy. In
the absence of a gravitational field, relativistic gravitational potential energy
is equal to rest energy. Gravitational potential energy is taken from that rest
energy, and thus has a finite limit.

Classical potential energy is the first order term in a power series expansion:

Ẽ(r) = mc2
[

1− GM

rc2
+

1

2

(
GM

rc2

)2

− . . .
]

(7)

Classical potential energy, U , is an approximation, U ≈ Ũ .

(a) GR : U =
−GMm

r
(b) Mach : Ũ = mc2

[
exp
(−GM

rc2

)
− 1

]
(8)

Mach’s principle [2] posits that rest energy of an object can be viewed as gravita-
tional potential energy due to the elevation of that object from distant matter.
Hence, the term Machian will be used to describe any quantities relating to
gravity resulting from these compositions, but it is particularly appropriate in
reference to relativistic gravitational potential energy.

Scale Factor

It is convenient to adopt a more compact notation. Based on gauge theoretic
dimensional variability as outlined in Appendix A, a dimensionless scale factor
for energy in general relativity, and in the Machian composition, can be given
respectively by

(a) GR : σ(r) =

(
1− 2GM

rc2

)1/2

(b) Mach : σ̃(r) = exp

(
−GM
rc2

)
(9)

Second order terms in their power series, e.g. (7), have opposite sign, present-
ing a possibility for decisive testing. Newtonian potential energy, U , can be
expressed as U = mc2 log σ̃, which is the functional inverse of the exponen-
tial map from classical to Machian gravitational potential energy, Ẽ = mc2 σ̃.
Appendix B shows that Newtonian gravitational force is consistent with radial
length contraction, naturally linking classical to modern gravitation.

Machian Escape Velocity from Potential Energy

Machian escape velocity can be derived from the condition that kinetic energy
balances potential energy. Relativistic gravitational potential energy gives a
radial escape velocity limited to the speed of light, as might be expected from
a relativistic theory, whereas this condition is violated in both classical theory
and general relativity. This can be demonstrated using a similar technique for
both general relativity and the Machian composition.

Consider the relativistic energy, (p2c2 + m2c4)1/2 = γ mc2, of a moving object
of mass m, velocity v, relativistic momentum p = γ mv, and Lorentz factor
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γ = (1 − v2/c2)−1/2. In a gravitational field, this energy falls to σ̃ γ mc2. The

condition for escape is σ̃ γ mc2 = Ẽ(∞), or

(a) GR : σ γ = 1 (b) Mach : σ̃ γ = 1 (10)

Solving (10b) for velocity, the Machian scale factor gives the escape velocity
(11b) which is limited to c. Solving equation (10a) with the general relativity
scale factor, assuming E = mc2 σ, would give the radial escape velocity as (11a)
which is the same as Newtonian escape speed.

(a) GR : vesc(r) = (2GM/r)1/2 (b) Mach : ṽesc(r) = c(1− σ̃2)1/2 (11)

See Appendix C for an alternative derivation as the composition of Machian
escape velocity from gravitational acceleration.

Machian Metric

For Machian gravitational potential and its associated escape velocity, the co-
ordinate system of Gullstrand and Painlevé [3] gives the metric in geometrized
units (c = G = 1) as

ds2 = −dτ2 + (dr + β̃dτ)2 + r2(dθ2 + sin2θdφ2) (12)

where τ is proper time in the frame of an object in free fall, initially at rest at
infinity. These coordinates are determined by escape velocity, β̃ = (1− σ̃2)1/2.

Since β̃ is less than the speed of light for any non-zero radius, there is no absolute
event horizon. In static Schwarzschild coordinates, instead of gtt = −σ2 that
term becomes gtt = −σ̃2, and the resulting metric equation is then given by

ds2 = −σ̃2dt2 + σ̃−2dr2 + r2(dθ2 + sin2θdφ2) (13)

where t is proper time in the frame of a motionless object. The Machian metric
is the same as a limiting case of the Brans-Dicke metric.

Conclusion

Brans-Dicke theory [4] was formulated with the Machian idea that G should not
be treated as a constant, but rather as a field that varies with the density of
surrounding matter. However, inertial and gravitational mass in Brans-Dicke
theory would differ slightly, by a presently undetectable amount.

Brans-Dicke includes an explicit term to enforce Machian relations, while the
relativistic composition of gravitational potential energy is implicitly Machian.
Therefore, instead of pursuing Brans-Dicke, it seems reasonable to attempt to
reformulate the general theory of relativity so that there is a correspondence to
Machian potential energy instead of classical gravitational potential energy.
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Appendix A

Dimensional Variability in General Relativity

Bowler [5] has shown that general relativity is a gauge theory in which the funda-
mental dimensions of length, time and mass vary radially with the dimensionless
scale factor respectively as L = Loσ, T = Toσ

−1 and M = Moσ
−3. As shown in

Table 1, which demonstrates the variability of some physical quantities, energy
becomes

E(r) = Eo σ(r) (14)

in the presence of a gravitational field at radius, r, compared to the original
energy, Eo, sufficiently far from the field where σ(∞) = 1. The radial variability
corresponds to the escape example under consideration.

Table 1: Dimensional Variability in General Relativity

Radial Transverse

Length: L Lo σ Lo

Time: T To σ
−1 To σ

−1

Energy: E Eo σ Eo σ
Momentum: p po σ

−1 po

Mass: M Mo σ
−3 Mo σ

−1

Velocity: v vo σ
2 vo σ

Acceleration: a ao σ
3 ao σ

2

Force: f fo fo σ
Power: P Po σ

2 Po σ
2

Newton: G Go σ
8 Go σ

3

Planck: h ho ho

−GM/rc2: Φ Φo Φo

The table is a straightforward dimensional analysis having no context. For
example, energy could refer to potential energy, or the energy of a photon in a
gravitational field.

Energy contraction or time dilation could explain Pound-Rebka results. The
Shapiro time delay experiment is consistent with the table’s radial variability of
velocity (of light) in a gravitational field.

Planck’s constant and products of complementary pairs like Energy×Time or
Momentum×Length have no scale factor, nor does the measure of gravitational
field strength, Φ.

The difference between radial and transverse scale factors for mass is a bit
puzzling, but not relevant to energy balance in the radial escape example.

Perhaps the most curious thing in the table is the radial scale factor to the
eighth power for Newton’s G.
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Appendix B

Radial length contraction from a dual formulation

The calculation of Machian gravitational potential energy using the product
integral for the free fall example can be rewritten as

Ẽ(R) = mc2 σ̃(R) = mc2 exp

(
−1

mc2

∫ R

∞
F (r) dr

)
(15)

But, from the identity
∫

eu(du/dx)dx = eu, there is also the identity∫
exp

(
−GM
rc2

)
GM

r2c2
dr = σ̃(r) (16)

Eq. (15) can then be expressed in the form of a definite integral of the gravita-
tional force, F (r) = −GMm/r2, as

Ẽ(R) = −
∫ R

0

F (r) σ̃(r) dr (17)

Eq. (16) also leads to another definite integral,

−
∫ R

∞
F (r) σ̃(r) dr = Ẽ(R)−mc2 (18)

which is approximately equal to the Newtonian potential energy.

Since a radial force, because of its dimensions, is independent of the scale factor,
σ̃(r) can be associated with the element of radius, dr, in (17) and (18).

Thus, the potential energy function calculated by the redshift rule can be inter-
preted as a spatial integration of the Newtonian gravitational force from a point
mass in which the element of radial distance is contracted by the exponential
scale factor.

In other words, Newtonian gravitational force is consistent with radial length
contraction by virtue of the mathematical identity leading to (16), a relation that
is unique to Machian gravitation. This dual formulation for energy indicates
a natural link to modern gravitation in which the concept of Newtonian force
would have renewed relevance.

6



Appendix C

Machian Escape Velocity as Relativistic Composition

In the above presentation, Machian escape velocity was determined by a balance
between potential and kinetic energies. Alternatively, Machian escape velocity
can be composed relativistically from the point of view of an observer in a
stationary frame viewing events in a gravitationally accelerated frame [6]. There
are related assumptions.

Gravitational force will be applied in the rest frame where measurements are
made. Also, time dilation and length contraction due to free fall velocity of an
object in a gravitational field are assumed not to be involved, in accord with
Gullstrand-Painlevé coordinates and the river model of gravity.

A relativistic velocity can be composed by considering time as intervals of ∆t.
Let g∆t be the change in velocity that would be brought about in one time
interval by an acceleration, g = −GM/r2, expected from the force of gravity
under classical Galilean assumptions. Taking g as constant over the interval, a
relativistic velocity for interval n can be composed approximately as

vn =
vn−1 + g∆t

1 + vn−1 g∆t/c2
(19)

and the distance traveled can be approximated similarly as

rn = rn−1 + vn∆t (20)

Given appropriate initial values, the resulting velocity corresponds to Machian
escape velocity associated with relativistic potential energy calculated using the
product integral. To verify that this composition of velocity produces Machian
escape velocity, the recursion (19) can be rearranged to give an acceleration

a = lim
∆t→0

vn − vn−1

∆t
= g γ−2 (21)

which is the same as the time derivative of Machian escape velocity (11b).

I.e., given ṽesc = c (1 − σ̃2)1/2, and recalling that γ−1 = σ̃ for escape, the
acceleration (21) can be found from

a =
dṽesc

dt
=

dṽesc

dσ̃

dσ̃

dr

dr

dt
(22)

where these derivatives are given by

dṽesc

dσ̃
=

−c σ̃
(1− σ̃2)1/2

dσ̃

dr
=

GM σ̃

r2c2
dr

dt
= ṽesc (23)
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. A simple noisy vector model is shown to be in accord with Robert McEachern’s
hypothesis that Bell correlations are associated with processes which can provide
only one bit of information per sample. Unlike Richard Gill’s treatment of
Pearle’s Hidden-Variable Model (arXiv:1505.04431), this classical model does
not quite approach the expectation of quantum mechanics as the number of
trials is increased. However, the noisy vector model has the advantage of an
obvious separation of signal from noise used to measure information. It has yet
to be shown if the Gill-Pearle model satisfies the one-bit criterion.
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(2017) http://vixra.org/abs/1701.0621

. Simulating Bell correlations by Monte Carlo methods can be time-consuming
due to the large number of trials required to produce reliable statistics. For a
noisy vector model, formulating the vector threshold crossing in terms of geo-
metric probability can eliminate the need for trials, with inferred probabilities
replacing statistical frequencies.
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