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ABSTRACT. A function 𝜐(𝑠) is derived that shares all the non-trivial zeros of 
Riemann’s zeta function 𝜁(𝑠), and a novel representation of 𝜁(𝑠) is presented 
that relates the two.  From this the zeros of 𝜁(𝑠) may be grouped according to 
two types: 𝜐(𝑠) = 0 and 𝜐(𝑠) ≠ 0.  A direct algebraic proof of the Riemann 
hypothesis is obtained by setting both zeta functions to zero and solving for two 
general solutions for all the non-trivial zeros.   

 
Introduction. It is well known by B. Riemann’s functional equation that any non-trivial zeros of 
the zeta function 𝜁(𝑠) that do not have a real part one half must exist within the critical strip 
0 < ℜ(𝑠) < 1 at the vertices of rectangles, symmetric across the critical line ℜ(𝑠) = 1/2 and 
symmetric across the real axis. [1][2][3] This implies that for any two hypothetical non-trivial zeros 
𝜌௛ and 1 − 𝜌̅௛ symmetric across the critical line from one another, where 𝜌̅௛ is the complex 
conjugate of 𝜌௛, หℜ൫𝜌௛൯ − 1/2ห = หℜ൫1 − 𝜌̅௛൯ − 1/2ห and ℑ൫𝜌௛൯ = ℑ(1 − 𝜌̅௛), which this 
paper will refer to as “Riemann’s symmetric vertices property”. 
 

 
 

Graphic definition of Riemann’s symmetric vertices property (not to scale). 
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In his paper [3] Riemann writes that the “symmetrical form” [2]  

 

Γ ቀ
𝑠

2
ቁ 𝜋ି

௦
ଶ 𝜁(𝑠) =  Γ ൬

1 − 𝑠

2
൰ 𝜋ି

ଵି௦
ଶ

  𝜁(1 − 𝑠), 

 
of his functional equation 
 
 
 𝜁(𝑠) = 2௦𝜋௦ିଵ sin ቀ

𝜋𝑠

2
ቁ Γ(1 − 𝑠)𝜁(1 − 𝑠) (1) 

 
induced him to introduce the integral Γ(𝑠/2)  in place of Γ(𝑠) in order to define the 𝜉 function as 
 

𝜉(𝑠) =
𝑠

2
 (𝑠 − 1) 𝜋ି

௦
ଶ Γ ቀ

𝑠

2
ቁ  𝜁(𝑠). 

 
This is an entire function that satisfies 
 

𝜉(𝑠) = 𝜉(1 − 𝑠), 
 
which reveals the symmetry between 𝜉(𝑠) and 𝜉(1 − 𝑠).  

Because 𝜁(𝑠) is a multiplicative factor of 𝜉(𝑠), and because 𝑠 and 1 − 𝑠 are reflections of each 
other through the real point one half, by definition of 𝜉(𝑠) all non-trivial zeros of the Riemann 
zeta function must comply with Riemann’s symmetric vertices property. [1][2][3]. This definition 
may be stated as  
 

𝐷: 
 

ฬℜ൫𝜌௛൯ −
1

2
ฬ = ฬℜ൫1 − 𝜌̅௛൯ −

1

2
ฬ ∧ ℑ൫𝜌௛൯ = ℑ൫1 − 𝜌̅௛൯

⟸ ∃ 𝜌௛  

∧ 1 − 𝜌̅௛ ൬ℜ൫𝜌௛൯ ≠
1

2
∧ ℜ൫1 − 𝜌̅௛൯

≠
1

2
, 𝜌௛  ∧ 1 − 𝜌̅௛൰ , ൫𝜌௛  ∧ 1 − 𝜌̅௛൯ ∈ 𝜌௡, 

 

 
which states that Riemann’s symmetric vertices property is necessary for there to exist any non-
trivial zeros 𝜌௡ off the critical line. And this paper proposes that one can prove the non-existence 
of any hypothetical zeros off the critical line algebraically (that the Riemann hypothesis is true) by 
putting the Riemann zeta function in the form 
 

𝑎 + 2 𝑏 𝜐 𝜔 + 𝑐 𝜔ଶ = 𝜁(𝑠), 
 
and solving for the general solution of 𝜁(𝑠)’s zeros directly. 
 
Motivation for this form. Given 

 
𝑎 + 𝑏 + 𝑐 = 0, 

 
there are only two types of solutions: 
 
Type 1. Two terms negate each other and the third is zero, which has the geometric 
representation of a line (“Type 1 linear solution”), 
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and 

 
Type 2. Two terms negate the third, which has the geometric representation of a plane (“Type 2 
planar solution”). 
 
This holds true for this paper’s novel form as well.  Given 𝑎, 𝑏, 𝑐 having no roots, 
 

𝑎 + 2 𝑏 𝜐 𝜔 + 𝑐 𝜔ଶ  = 0, 
 
implies 
 

𝜐 =
−𝑎 − 𝑐 𝜔ଶ

2 𝑏 𝜔 
, 

where the Type 1 linear solution is 
 

𝑎 = −𝑐 𝜔ଶ, 𝜐 = 0,  
 
and the Type 2 planar solution is 
 

𝜐 =
−𝑎 − 𝑐 𝜔2

2 𝑏 𝜔
, 𝜐 ≠ 0. 

 
These two solutions may be considered grouped simply by 𝜐 = 0 or 𝜐 ≠ 0 and stated as 
 

∀ 𝑎 + 2 𝑏 𝜐 𝜔 + 𝑐 𝜔ଶ

= 0 ൫∃ 𝜐 = 0 (𝜐 = 0, 𝑎 + 2 𝑏 𝜐 𝜔 + 𝑐 𝜔ଶ = 0) ∨  ∃ 𝜐

≠ 0 (𝜐 ≠ 0, 𝑎 + 2 𝑏 𝜐 𝜔 + 𝑐 𝜔ଶ = 0)൯. 

Furthermore, 𝜐 need not be analytic (however it may be defined), as these solutions are purely 
algebraic. It is from this form then that the following claim may now be made. 
 
Claim. Given only these two types of zeros of the Riemann zeta function 
 

∀ 𝜁(𝑠) = 0 ൭∃ 𝜐(𝑠) =
−𝑎௦ − 𝑐௦ 𝜔௦

ଶ

2 𝑏௦ 𝜔௦
ቆ𝜐(𝑠) =

−𝑎௦ − 𝑐௦ 𝜔௦
ଶ

2 𝑏௦ 𝜔௦
, 𝜁(𝑠) = 0ቇ൱, 

 
grouped according to whether or not 𝜐(𝑠) equals zero 
  

∀ 𝜁(𝑠) = 0 ൫∃ 𝜐(𝑠) = 0 (𝜐(𝑠) = 0, 𝜁(𝑠) = 0) ∨  ∃ 𝜐(𝑠) ≠ 0 (𝜐(𝑠) ≠ 0, 𝜁(𝑠) = 0)൯, 

if the first type 𝜐(𝑠) = 0 contains all the critical zeros 

ℜ(𝑠) =
1

2
∧ 𝜁(𝑠) = 0 ⟺ 𝜐(𝑠) = 0 ∧ 𝜁(𝑠) = 0, 

and the second type 𝜐(𝑠) ≠ 0 does not comply with Riemann’s symmetric vertices property 
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ฬℜ൫𝜌௛൯ −
1

2
ฬ = ฬℜ൫1 − 𝜌̅௛൯ −

1

2
ฬ ∧ ℑ൫𝜌௛൯ = ℑ൫1 − 𝜌̅௛൯ ∀ 𝜐(𝑠) ≠ 0 ∧ 𝜁(𝑠) = 0,  

then the Riemann hypothesis is necessarily true 

∀ 𝜌௡  ቆ∃ ℜ(𝑠) =
1

2
 ൬ℜ(𝑠) =

1

2
, 𝜌௡൰ቇ. 

 
See the appendix for an outline of this proof. 
 
Proof of the Claim. Begin by bringing all of the irrational properties of Riemann’s functional 
equation (1), including 𝜁(1 − 𝑠 ), into a single function 𝜐(𝑠) so that 𝜐(𝑠) relates to 𝜁(𝑠) only by 
rational functions.  First multiply both sides of (1) by (𝑠 − 1)ଷ, subtract one, then multiply by 𝑖.  
This gives 
 

𝑖(𝜁(𝑠)(𝑠 − 1)ଷ − 1)  = 𝑖 ቀ2௦𝜋௦ ି ଵ(𝑠 − 1)ଷ sin ቀ
𝜋𝑠

2
ቁ Γ(1 − 𝑠)𝜁(1 − 𝑠) −  1ቁ. 

 

Then add −2 Im(𝑠) to both sides and multiply by sin൫arg(𝑠)൯.   
 

ℑ(𝑠)൫𝑖((𝑠 −  1)ଷ𝜁(𝑠) −  1) −  2 ℑ(𝑠)൯

|𝑠|

= sin൫arg(𝑠)൯ ቆ−2 Im(𝑠)

+  𝑖 ቀ2௦𝜋௦ ି ଵ(𝑠 − 1)ଷ sin ቀ
𝜋𝑠

2
ቁ Γ(1 − 𝑠)𝜁(1 − 𝑠) −  1ቁቇ. 

 
The |𝑠| in the denominator suggests that neither side of the equation may meet the conditions 
necessary for complex differentiation going forward.   Again, because this is an algebraic proof, 
there will be no need to apply the Cauchy-Riemann equations for the above or anything that 

follows.  Therefore, continue by adding 2 Im(𝑠) (2 Im(𝑠) +  𝑖) cos൫arg(𝑠)൯ to both sides, and 

dividing both sides by sin൫arg(𝑠)൯ 𝑠̅ 
 

𝑖 ቀ(𝑠∗)ଶ + (𝑠 −  1)ଶ൫(𝑠 −  1)𝜁(𝑠) −  1൯ቁ

𝑠̅
  

=
1

sin൫arg(𝑠)൯ 𝑠̅
൭sin൫arg(𝑠)൯ ቆ−2 Im(𝑠)

+  𝑖 ቀ2௦𝜋௦ ି ଵ(𝑠 − 1)ଷ sin ቀ
𝜋𝑠

2
ቁ Γ(1 − 𝑠)𝜁(1 − 𝑠) −  1ቁቇ

+  2 Im(𝑠)(2 Im(𝑠) +  𝑖)cos൫arg(𝑠)൯൱ 

 
Divide both sides by 2(𝑠 − 1) and let the right hand side be 𝜐(𝑠), such that 
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𝑖 ቀ(𝑠̅)ଶ +  (𝑠 −  1)ଶ൫(𝑠 −  1)𝜁(𝑠) −  1൯ቁ

2 (𝑠 −  1) 𝑠̅
= 𝜐(𝑠), 𝑠 ≠ 0. (2) 

 
Solve back for the Riemann zeta function from (2).   
 

𝜁(𝑠) =
(𝑠 –  1)ଶ − 2 𝑖 (𝑠 –  1) 𝜐(𝑠) 𝑠̅ − (𝑠̅)ଶ

(𝑠 –  1)ଷ
, 𝑠 ≠ 0. 

 
Now expand the right hand side to 

 

𝜁(𝑠) =
1

𝑠 − 1
−

2 𝑖 𝜐(𝑠) 𝑠̅

(𝑠 − 1)ଶ
−

(𝑠̅)ଶ

(𝑠 − 1)ଷ
, 𝑠 ≠ 0 

 
in order to define the rational functions in the terms above.  Add the second two terms on the 
right hand side to both sides and let the right hand side be 𝑎௦, such that 

 

𝜁(𝑠) +
2 𝑖 𝜐(𝑠) 𝑠̅

(𝑠 − 1)ଶ
+

(𝑠̅)ଶ

(𝑠 − 1)ଷ
=

1

𝑠 − 1

= 𝑎௦

. 

 
Divide both sides by 1 − 𝑠 and let the right hand side be 𝑏௦, such that 
 

𝜁(𝑠)

1 − 𝑠
+

2 𝑖 𝜐(𝑠) 𝑠̅

(1 − 𝑠)(𝑠 − 1)ଶ
+

(𝑠̅)ଶ

(1 − 𝑠)(𝑠 − 1)ଷ
=

𝑎௦

1 − 𝑠

−𝑎௦ 𝜁(𝑠)  − 𝑎௦

2 𝑖 𝜐(𝑠) 𝑠̅ 

(𝑠 − 1)ଶ
− 𝑎௦

(𝑠̅)ଶ 

(𝑠 − 1)ଷ
= −

1

(𝑠 − 1)ଶ

= 𝑏௦

. 

 
Divide both sides once more by 1 − 𝑠 and let the right hand side be 𝑐௦, such that 
 

−𝑎௦

𝜁(𝑠) 

1 − 𝑠 
− 𝑎௦

2 𝑖 𝜐(𝑠) 𝑠̅ 

(1 − 𝑠)(𝑠 − 1)ଶ
− 𝑎௦

(𝑠̅)ଶ 

(1 − 𝑠)(𝑠 − 1)ଷ
=

𝑏௦

1 − 𝑠

−𝑏௦ 𝜁(𝑠)  − 𝑏௦

2 𝑖 𝜐(𝑠) 𝑠̅ 

(𝑠 − 1)ଶ
− 𝑏௦

(𝑠̅)ଶ 

(𝑠 − 1)ଷ
=

1

(𝑠 − 1)ଷ

= 𝑐௦

. 

 
Multiply both sides by 𝑖 (𝑠 −  1)ଷ𝑠̅ and let the right hand side be 𝜔௦, such that 
 

−𝑖 (𝑠 −  1)ଷ 𝑠̅ 𝜁(𝑠) 𝑏௦ + 2 𝑏௦ (𝑠 −  1) 𝜐(𝑠) (𝑠̅)ଶ − 𝑖 𝑏௦ (𝑠̅)ଷ = 𝑖 (𝑠 −  1)ଷ𝑠̅ 𝑐௦

𝑖
𝜁(𝑠) 𝑠̅

𝑎௦
− 2 𝑏௦ (1 −  𝑠) 𝜐(𝑠) (𝑠̅)ଶ − 𝑖 𝑐௦ (1 −  𝑠)(𝑠̅)ଷ = 𝑖 𝑠̅

= 𝜔௦

. 
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Because 
 

𝑖
𝜁(𝑠) 𝑠̅

𝑎௦
− 2 𝑏௦ (1 −  𝑠) 𝜐(𝑠) (𝑠̅)ଶ − 𝑖 𝑐௦ (1 −  𝑠)(𝑠̅)ଷ =

𝜔௦

𝑎௦
   𝜁(𝑠)  + 2 𝑎௦ 𝜐(𝑠) 𝜔௦

ଶ + 𝑏௦𝜔௦
ଷ, 

 
solving for 𝜁(𝑠) from  
 

𝜔௦

𝑎௦
   𝜁(𝑠)  + 2 𝑎௦ 𝜐(𝑠) 𝜔௦

ଶ + 𝑏௦𝜔௦
ଷ = 𝜔௦ 

 
gives the desired form  
 

𝑃ଵ: 
𝜁(𝑠) =   −𝑎௦ (2 𝑎௦ 𝜔௦ 𝜐(𝑠)  +  𝑏௦ 𝜔௦

ଶ −  1) 

= 𝑎௦ + 2 𝑏௦ 𝜔௦ 𝜐(𝑠)  + 𝑐௦ 𝜔௦
ଶ 

.  

 
Because 𝑎௦ , 𝑏௦ and 𝑐௦ are multiplicative inverses of (𝑠 − 1) to some power, and zero has no 

reciprocal, 𝑎௦ , 𝑏௦ and 𝑐௦ have no roots.  And because (𝑠 −  1)𝜁(𝑠) −  1 = −1, 𝜁(𝑠) = 0 in the 
numerator of (2), (2) reduces to 
  

 
 

𝜐(𝑠) =
−𝑎௦ − 𝑐௦𝜔௦

ଶ

2 𝑏௦ 𝜔௦

=
𝑖 ((𝑠∗)ଶ −  (𝑠 −  1)ଶ)

2 (𝑠 −  1) 𝑠̅

 (3) 

 
for all the zeros (trivial and non-trivial) of 𝜁(𝑠), which can be stated as 
 

𝑃ଶ: ∀ 𝜁(𝑠) = 0 ൭∃ 𝜐(𝑠) =
−𝑎௦ − 𝑐௦ 𝜔௦

ଶ

2 𝑏௦ 𝜔௦
ቆ𝜐(𝑠) =

−𝑎௦ − 𝑐௦ 𝜔௦
ଶ

2 𝑏௦ 𝜔௦
, 𝜁(𝑠) = 0ቇ൱.  

 
𝑃1 is not only an alternative form of (1), but also contains just two types of solutions for 𝜁(𝑠) =

0 that may be grouped according to the zeros of 𝜐(𝑠) 
 

𝑃ଷ: 
∀ 𝜁(𝑠) = 0 ൫∃ 𝜐(𝑠) = 0 (𝜐(𝑠) = 0, 𝜁(𝑠) = 0) ∨ ∃ 𝜐(𝑠)

≠ 0 (𝜐(𝑠) ≠ 0, 𝜁(𝑠) = 0)൯, 
 

 
which are 1) the linear solution and 2) the planar solution.  Solve first for the first type 𝜐(𝑠) = 0. 
 

0 =
−𝑎௦ − 𝑐௦ 𝜔௦

ଶ

2 𝑏௦ 𝜔௦ 

=
𝑖 ((𝑠̅)ଶ −  (𝑠 −  1)ଶ)

2 (𝑠 −  1) 𝑠̅

=
𝑖 ൫1 −  2 𝑖 ℑ(𝑠)൯(2 ℜ(𝑠) −  1)

2 (𝑠 −  1) 𝑠̅
⟹ ℜ(𝑠) =

1

2
: 𝑎௦ = −𝑐௦ 𝜔௦

ଶ

. 
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Because 2 ℜ(𝑠) −  1 = 0 implies ℜ(𝑠) = 1/2, and no other part of (3) could equal zero by the 
definitions of complex arithmetic, the Type 1 solution  𝜐(𝑠) = 0 is linear on the critical line.       
 
 
 ℜ(𝑠) =

1

2
, 𝜐(𝑠) = 0, (4) 

 
which can be stated as 
 

𝑃ସ: ∀ 𝜐(𝑠) = 0 ∧ 𝜁(𝑠) = 0  ቆ∃ ℜ(𝑠) =
1

2
൬ℜ(𝑠) =

1

2
, 𝜐(𝑠) = 0 ∧ 𝜁(𝑠) = 0  ൰ቇ.  

 

Solve next for the real part of 𝑠 from the Type 2 planar solution 

 
 𝜐(𝑠) =

−𝑎௦ − 𝑐௦ 𝜔௦
ଶ

2 𝑏௦ 𝜔௦
, 𝜐(𝑠) ≠ 0, (5) 

 
given the quadratic formula applied to (5).  One gets  
 
 
 ℜ(𝑠) =

±ඥ−(2 ℑ(𝑠) +  𝑖)ଶ(𝜐(𝑠)ଶ −  1) +  2 ℑ(𝑠)  +  𝜐(𝑠)  +  𝑖

2 𝜐(𝑠)
 , 𝜐(𝑠) ≠ 0, (6) 

 
where all the zeros other than ℜ(𝑠) = 1/2, 𝜐(𝑠) = 0 consist of pairs across the critical line from 
each other, which in terms of the hypothetical non-trivial zeros may be stated as 
 

𝑃ହ: ∀ 𝜐൫𝜌௛൯ ≠ 0 ቀ∃ 𝜌௛ ∧ 1 − 𝜌̅௛൫𝜌௛ ∧ 1 − 𝜌̅௛, 𝜐൫𝜌௛൯ ≠ 0൯ቁ.  

 
The trivial zeros are applicable to (6) as positive solutions, but because any counterpart to these 
could not exist symmetrically across the critical line inside the critical strip, much less on the real 
line, their negative solution counterparts are extraneous.   

Upon examination of the square root in (6), because 
 

−(2 ℑ(𝑠) +  𝑖)ଶ(𝜁ఘ(𝑠)ଶ −  1) = (𝜐(𝑠)ଶ −  1)(𝑠̅ −  𝑠 +  1)ଶ, 
 
one can also express (6) as  
 

ℜ(𝑠) =
±ඥ(𝜐(𝑠)ଶ −  1)(𝑠̅ −  𝑠 +  1)ଶ +  2 ℑ(𝑠) +  𝜐(𝑠) +  𝑖

2 𝜐(𝑠)
, 

 
which also provides a pair of 𝜐(𝑠)’s, given by 
 

𝜐(𝑠) =
±ඥ(2 Im(𝑠) +  𝑖)ଶ |1 −  2 Re(𝑠)| + (𝑠̅ +  s −  1)(2 Im(𝑠) +  𝑖)

4 (|(𝑠)ଶ| −  𝑠̅)
. 

 
This gives a total of four possible hypothetical zeros (two sets of pairs) across the real and critical 
lines from each other, as were graphically defined at the beginning of this paper, and as implied by 
(1).  Now one can ask the question, given any hypothetical non-trivial zero 𝜌௛ off the critical line, 
is it possible for any 1 − 𝜌̅௛ to be symmetric to 𝜌௛ across the critical line?  That is; for any ℜ(𝜌௛) ≠ 1/2, is 
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it possible given the two solutions in (6) to have a ℜ(1 − 𝜌̅௛) ≠ 1/2 equidistant to 𝜌௛ from the critical line, 
considering what has been presented so far? 

This is elementary to verify.  Because 
 

𝑟 = ඥ(𝑣 − 𝑥)ଶ + (𝑤 − 𝑦)ଶ  
 
gives the distance 𝑟 between any two points 𝑣 + 𝑖 𝑤 and 𝑥 +  𝑖 𝑦 on the complex plane, the 
distance 𝑟௖௥ from any point 𝑠 to the nearest point 1/2 + 𝑖 ℑ(s)  on the critical line is given by  
 

𝑟௖௥ = ฬℜ(𝑠) −
1

2
ฬ . 

 
One can then check if symmetry between the positive and negative solutions of (6) is 
mathematically possible. Setting the two distances equal to each other 
 

ฬℜ൫𝜌௛൯ −
1

2
ฬ = ฬℜ൫1 − 𝜌̅௛൯ −

1

2
ฬ, 

 
where 𝜌௛ is either the positive or negative solution to (6) and 1 − 𝜌̅௛ is either the positive or 
negative as well, one gets 
 

 
 

อ
±ඥ−(2 ℑ(𝜌௛)  +  𝑖)ଶ(𝜐(𝜌௛)ଶ −  1) +  2 ℑ൫𝜌௛൯ +  𝜐൫𝜌௛൯ +  𝑖

2 𝜐(𝜌௛)
−

1

2
อ

= อ
±ඥ−(2 ℑ(𝜌௛)  +  𝑖)ଶ(𝜐(1 − 𝜌̅௛)ଶ −  1) +  2 ℑ൫𝜌௛൯ +  𝜐൫1 − 𝜌̅௛൯ +  𝑖

2 𝜐(1 − 𝜌̅௛)
−

1

2
อ ,

𝜌௛ = 1 − 𝜌̅௛    ∨    𝜐൫𝜌௛൯ = ±1   ∨     𝜐൫1 − 𝜌̅௛൯ = ±1 

(7) 

 
The imaginary part of 𝜌௛ is on both sides of the equation because Riemann’s symmetric vertices 
property not only requires หℜ൫𝜌௛൯ − 1/2ห = หℜ൫1 − 𝜌̅௛൯ − 1/2ห, but also ℑ൫𝜌௛൯ = ℑ(1 − 𝜌̅௛).  
Now one can evaluate the solutions of (7).  The value inside the square root reduces to zero for 
𝜐(𝑠) = ±1, but because 
 

𝑖 ((𝑠̅)ଶ − (𝑠 −  1)ଶ)

2 (𝑠 −  1) 𝑠̅
= ±1 ⟹ 𝑠 ± 𝑖 𝑠̅ = 1 

 
from (5) is false, this solution is extraneous.  The only other possible solution 𝜌௛ = 1 − 𝜌̅௛ in (7) 
is meaningless, as the only arguments that could apply would be the critical zeros, which would 
give 𝜐൫𝜌௛൯ = 0 for ℜ൫𝜌௛൯ = 1/2, leaving (7) undefined, which can be written as 
 

𝑃଺: ∀ 𝜐൫𝜌௛൯ ≠ 0 ቆ∄ ℜ൫𝜌௛൯ =
1

2
൬ℜ൫𝜌௛൯ =

1

2
, 𝜐൫𝜌௛൯ ≠ 0 ൰ቇ,  

 
and as such 

𝑃଻: ℜ(𝑠) =
1

2
∧ 𝜁(𝑠) = 0 ⟺ 𝜐(𝑠) = 0 ∧ 𝜁(𝑠) = 0,  

 
and 
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𝑃 : ฬℜ൫𝜌௛൯ −
1

2
ฬ ≠ ฬℜ(1 − 𝜌̅) −

1

2
ฬ ∀ 𝜐൫𝜌௛൯ ≠ 0.  

 
The Type 2 planar solution (6) does not comply with Riemann’s symmetric vertices property, and 
the negative solution also becomes extraneous with the positive only applying to the trivial zeros.  
Because all non-trivial zeros must comply with Riemann’s symmetric vertices property in 𝐷, no 
non-trivial zeros exist as Type 2 planar solutions 
 
𝑃ଽ: ∀ 𝜌 ൫∄ 𝜐(𝑠) ≠ 0 (𝜐(𝑠) ≠ 0, 𝜌)൯  .  
 
And because there are only two types of solutions for 𝜁(𝑠) = 0 (which follows from 𝑃ଷ), all the 
non-trivial zeros of the Riemann zeta function must be restricted to the Type 1 linear solution 
 
𝑃ଵ଴: ∀ 𝜌 ൫∃ 𝜐(𝜌) = 0 (𝜐(𝜌) = 0, 𝜌)൯.  
 
Since the Type 1 solution is the real part of 𝑠 equal to one half, all the non-trivial zeros of the 
Riemann zeta function have a real part one half 
 

∀ 𝜌 ቆ∃ ℜ(𝜌) =
1

2
 ൬ℜ(𝜌) =

1

2
, 𝜌൰ቇ, 

 
and the Riemann hypothesis is correct. ∎ 
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Appendix. This proof follows the direct form 𝑃ଵ ∧ … ∧ 𝑃௡ ⇒ 𝑄 and depends on the following 

definition of Riemann’s symmetric vertices property: หℜ൫𝜌ℎ൯ − 1/2ห = ቚℜ ቀ1 − 𝜌ഥℎ
ቁ − 1/2ቚ ∧ ℑ൫𝜌ℎ൯ =

ℑ ቀ1 − 𝜌ഥℎ
ቁ ⟸ ∃ 𝜌ℎ ∧ 1 − 𝜌ഥℎ

ቀℜ൫𝜌ℎ൯ ≠
ଵ

ଶ
∧ ℜ ቀ1 − 𝜌ഥℎ

ቁ ≠
ଵ

ଶ
, 𝜌ℎ ∧ 1 − 𝜌ഥℎ

ቁ , ቀ𝜌ℎ ∧ 1 − 𝜌ഥℎ
ቁ ∈ 𝜌

𝑛
. 

 

𝜁(𝑠) = 𝑎௦ + 2 𝑏௦ 𝜐(𝑠) 𝜔௦  + 𝑐௦𝜔௦
ଶ: 𝑎௦ =

ଵ

௦ିଵ
, 𝑏௦ = −

ଵ

(௦ିଵ)మ , 𝑐௦ =
ଵ

(௦ିଵ)య , 𝜔௦ = 𝑖 𝑠̅  𝑃ଵ 

 ⟹ ∀ 𝜁(𝑠) = 0 ൭∃ 𝜐(𝑠) =
−𝑎௦ − 𝑐௦ 𝜔௦

ଶ

2 𝑏௦ 𝜔௦

ቆ𝜐(𝑠) =
−𝑎௦ − 𝑐௦ 𝜔௦

ଶ

2 𝑏௦ 𝜔௦

, 𝜁(𝑠) = 0ቇ൱ 𝑃ଶ 

 ⟹ ∀ 𝜁(𝑠) = 0 ൫∃ 𝜐(𝑠) = 0 (𝜐(𝑠) = 0, 𝜁(𝑠) = 0) ∨ ∃ 𝜐(𝑠) ≠ 0 (𝜐(𝑠) ≠ 0, 𝜁(𝑠) = 0)൯  𝑃ଷ 

 ⟹ ∀ 𝜐(𝑠) = 0 ∧ 𝜁(𝑠) = 0  ቆ∃ ℜ(𝑠) =
1

2
൬ℜ(𝑠) =

1

2
, 𝜁ఘ(𝑠) = 0 ∧ 𝜁(𝑠) = 0  ൰ቇ 𝑃ସ 
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 ⟹ ∀ 𝜐(𝜌௛) ≠ 0 ቀ∃ 𝜌௛ ∧ 1 − 𝜌̅௛(𝜌௛ ∧ 1 − 𝜌̅௛, 𝜁ఘ(𝜌௛) ≠ 0)ቁ 𝑃ହ 

 ⟹ ∀ 𝜐(𝜌௛) ≠ 0 ቆ∄ ℜ(𝜌௛) =
1

2
൬ℜ(𝜌௛) =

1

2
, 𝜐(𝜌௛) ≠ 0 ൰ቇ 𝑃଺ 

 ⟹ ℜ(𝑠) =
1

2
∧ 𝜁(𝑠) = 0 ⟺ 𝜐(𝑠) = 0 ∧ 𝜁(𝑠) = 0 𝑃଻ 

ฬℜ(𝜌) −
1

2
ฬ ≠ ฬℜ(1 − 𝜌̅) −

1

2
ฬ ∀ 𝜐(1 − 𝜌̅) ≠ 0   𝑃  

 ⟹ ∀ 𝜌 ൫∄ 𝜐(𝑠) ≠ 0 (𝜐(𝑠) ≠ 0, 𝜌)൯   𝑃ଽ 

 ⟹ ∀ 𝜌 ൫∃ 𝜐(𝜌) = 0 (𝜐(𝜌) = 0, 𝜌)൯   𝑃ଵ଴ 

 ⟹ ∀ 𝜌 ൬∃ ℜ(𝜌) =
ଵ

ଶ
 ቀℜ(𝜌) =

ଵ

ଶ
, 𝜌ቁ൰   ∎ 

    
    

𝑃ଵ  Because of the definitions of algebra, trigonometry and complex arithmetic   

𝑃ଶ  Because of the implication of 𝑃ଵ and because anything multiplied by zero is 
zero 

 

𝑃ଷ  Because of the implication of 𝑃ଶ and because zero has no reciprocal  

𝑃ସ  Because of the implication of 𝑃ଷ and the definitions of complex arithmetic  

𝑃ହ  Because of the implication of 𝑃ଷ and the definition of the quadratic 
formula 

 

𝑃଺  Because of the implication of 𝑃ହ and the definitions of complex arithmetic  

𝑃଻  Because of the reverse implication of 𝑃ସ and 𝑃଺  

𝑃   Because of the implication of 𝑃ହ and the definitions of complex arithmetic  

𝑃ଽ  Because of the implication of 𝑃  and the definition of Riemann’s 
symmetric vertices property 

 

𝑃ଵ଴  Because of the implication of 𝑃ଷ and  𝑃ଽ  

𝑄  Because of the implication of 𝑃ଵ଴  

    

 


