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ABSTRACT. This paper presents a short and direct proof of the 
Riemann hypothesis, based on the previous longer [2]. A zeta 
function 𝜁ఘ(𝑠) is defined that shares all the non-trivial zeros of 
the Riemann zeta function 𝜁(𝑠), but none of the trivial.  Proof is 
obtained by relating the two by an abstract oscillator equation, 
setting both to zero and solving for the general solution directly.  
The Riemann hypothesis is proven by a single claim.  

 
1. Introduction 

It is well known by B. Riemann’s functional equation 
 

𝜁(𝑠) = 2௦𝜋௦ିଵ sin ቀ
𝜋𝑠

2
ቁ Γ(1 − 𝑠)𝜁(1 − 𝑠) 

 
that any non-trivial zeros of the zeta function 𝜁(𝑠) that do not have a real part 
one half must exist within the critical strip 0 < ℜ(𝑠) < 1, at the vertices of 
rectangles, symmetric across the critical line ℜ(𝑠) = 1/2 and symmetric across 
the real axis. [1][3]  
 

 
Abstract representation of the hypothetical non-trivial zeros (not to scale). 

 
The equation relates 𝜁(𝑠) to 𝜁(1 − 𝑠), which is a reflection through the point 
𝑠 = 1/2, and this paper proposes that one can prove the asymmetry of any 
hypothetical zeros across the critical line (that they do not exist and the Riemann 
hypothesis is true), using a representation of 𝜁(𝑠) that this paper refers to as the 
“Riemann oscillator”   
 

𝑎௦ + 2𝜁ఘ(𝑠)𝑏௦ + 𝜔଴
ଶ𝑐௦ = 𝜁(𝑠), 
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critically determined by 𝜁ఘ(𝑠). 

As described in detail in [2], the above is a special case.  The general case is only 
different in the second term 
 

𝑎௦ + 2𝜔଴𝜁ఘଶ(𝑠)𝑏௦ + 𝜔଴
ଶ𝑐௦ = 𝜁(𝑠). 

 
For more background on harmonic oscillators and how the above definitions are 
constructed, see [2].   

Consider the following simplification in order to better illustrate the motivation 
behind this Riemann oscillator.  Given  

 
𝑎 + 𝑏 + 𝑐 = 0, 

 
there are only two types of solutions.   
 
Type 1. Two terms negate each other and the third is zero, which has the 
geometric representation of a line (“linear solution”). 

 
Type 2. Two terms negate the third, which has the geometric representation of a 
plane (“planar solution”). 
 
All of the above holds true as well for 
 

𝑎 + 𝑏 𝜁 + 𝑐 = 0. 
 
Assuming 𝑎, 𝑏 and 𝑐 have no roots, the linear solution is 
 

𝑎 = −𝑐, 𝜁 = 0 
 
and the planar solution is 
 

𝜁 =
−𝑎 − 𝑐

𝑏
, 𝜁 ≠ 0. 

 
Similarly given 𝑎௦ , 𝑏௦ and 𝑐௦ of the Riemann oscillator having no roots, the linear 
solution is  
 

𝑎௦ = −𝜔଴
ଶ𝑐௦ 

 
and the planar solution is 
 

𝜁ఘ(𝑠) =
−𝑎௦ − 𝜔଴

ଶ𝑐௦

2𝑏௦
, 𝜁ఘ(𝑠) ≠ 0. 

 
Setting the Riemann oscillator equal to zero one is able to solve for the two types 
of Riemann zeta function zeros directly, which for the defined oscillator would 
either prove or deny the hypothesis.  The linear type would be all the critical zeros 
and the planar type would contain both the trivial zeros and any hypothetical non-
trivial zeros off the critical line.  Proof of the hypothesis then follows by relating 
𝜁ఘ(𝑠) to 𝜁(𝑠) by means of the Riemann oscillator.  By setting both 𝜁ఘ(𝑠)  and 
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𝜁(𝑠)  to zero and solving for a general solution proof is obtained if the 
hypothetical zeros off the critical line are not mathematically possible and ℜ(𝑠) =
1/2, 𝜁(𝑠) = 0, 𝜁ఘ(𝑠) = 0 .   
 
Claim. Given an asymmetric Type 2 solution for the zeros of 
 

𝑎௦ + 2 𝜁ఘ(𝑠)𝑏௦ + 𝜔଴
ଶ𝑐௦    =  𝜁(𝑠), 

 
when 𝜁(𝑠) = 0 and 𝜁ఘ(𝑠) = 0 there exists the unique solution for all the non-
trivial zeros of the Riemann zeta function. 
 

𝜁ఘ(𝑠) 2 𝑏௦ = −𝑎௦  −  𝑐௦ 𝜔ଶ +  𝜁(𝑠)  = 0 ⟺ ℜ(𝑠) =
1

2
, 𝜁(𝑠) = 0, 

 
where all the real parts of the non-trivial zeros of the Riemann zeta function have 
a real part equal to one half.   
 
Proof outline. 

 
1) Define the Riemann oscillator. 
2) All the zeros 𝜁(𝑠)  = 0 exist of just two types: the Type 1 linear and the 

Type 2 planar solutions. 
3) The Type 1 linear solution is ℜ(𝑠) = 1/2. 
4) The Type 2 planar solution exists in pairs 𝑠ଵ and 𝑠ଶ. 
5) Given ℑ(𝑠ଵ) = ℑ(𝑠ଶ) (hypothetical zeros symmetric across the real axis 

would necessarily share a common imaginary part), all the distances of 
the planar solution pairs are asymmetric across the critical line; |ℜ(𝑠ଵ) −
1/2|  ≠  |ℜ(𝑠ଶ) − 1/2|. 

6) Therefore no non-trivial zeros are given by the planar solution. 
7) Therefore all the non-trivial zeros have a ℜ(𝑠) = 1/2. 

 
If all this is understood, then one can prove the Riemann hypothesis in this way.  
 
Proof of the Claim. Let 
 

𝑎௦ ≡
1

𝑠 − 1
, 

 

𝑏௦ ≡ −
1

(𝑠 − 1)ଶ
, 

 

𝑐௦ ≡
1

(𝑠 − 1)ଷ
, 

 
𝜔଴ ≡ 𝑖 𝑠∗, 

 
where 𝑖 is the imaginary number, 𝑠∗ is the complex conjugate of 𝑠, and  
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𝜁ఘ(𝑠) ≡

−2 (𝑠∗)ଶ − (𝑠 −  1)ଷ

4 (𝑠 −  1)

− 𝑖
1

2
(𝑠 −  1)ଶ   න

(1 −  𝑖 𝑡)௦ −  (1 +  𝑖 𝑡)௦

(𝑡ଶ +  1)௦ (𝑒ଶగ ௧  −  1)
𝑑𝑡

ஶ

଴

 , 
(1) 

 
which converges for all 𝑠 except 𝑠 = 1, and is the Abel-Plana continuation of  
 

−
(2 𝑠 −  1)

2 (𝑠 −  1)𝑠
− ෍  (−1)௦

(𝑠 − 1)ଶ

2𝑠

 (𝑛 − 1)௦

 (1 − 𝑛ଶ)௦

ஶ

௡ୀ଴

. 

 
Multiply 2𝑏௦ by (1), then add this to 𝑎௦ plus 𝜔଴

ଶ𝑐௦ and one gets the Riemann zeta 
function 
 
 𝑎௦ + 2𝜁ఘ(𝑠)𝑏௦ + 𝜔଴

ଶ𝑐௦ = 𝜁(𝑠). (2) 
 
(2) is the Riemann oscillator critically determined by 𝜁ఘ(𝑠).  Now define 𝜁ఘଶ(𝑠), 
as 𝜁ఘ(𝑠) divided by 𝜔଴,  
 

 
𝜁ఘଶ(𝑠) ≡ 𝑖

2 (𝑠∗)ଶ + (𝑠 −  1)ଷ

4 (𝑠 −  1)𝑠∗

−
(𝑠 −  1)ଶ

2𝑠∗
  න

(1 −  𝑖 𝑡)௦ −  (1 +  𝑖 𝑡)௦

(𝑡ଶ +  1)௦ (𝑒ଶగ ௧  −  1)
𝑑𝑡

ஶ

଴

 , 
(3) 

 
such that 
 

𝜔଴ 𝜁ఘଶ(𝑠) = 𝜁ఘ(𝑠), 𝑠 ≠ 0,  
 
as (3) is undefined at 𝑠 = 0.  This gives the Riemann oscillator critically 
determined by 𝜁ఘଶ(𝑠), which is 
 
 𝑎௦ + 2𝜔଴𝜁ఘଶ(𝑠)𝑏௦ + 𝜔଴

ଶ𝑐௦ = 𝜁(𝑠), 𝑠 ≠ 0. (4) 
 
In this way 𝜁ఘ(𝑠) and 𝜁ఘଶ(𝑠) share all the same zeros, and the first and third 
terms of the special and general cases of the Riemann oscillator are equal at the 
zeros of 𝜁ఘ(𝑠) and 𝜁ఘଶ(𝑠).  For a more elaborate construction of the above 
definitions, see [2].   

Upon examination of 𝜁ఘ(𝑠) from (1), one finds it does not share any of the 
trivial zeros of the Riemann zeta function 
 

𝜁ఘ(−2𝑛 ) = −
5

6
, −

9

10
, −

13

14
, −

17

18
, −

21

22
, … =

1

4 𝑛 +  2
−  1 ≠ 0, 𝑛 ∈ ℕ, 

 
and therefore neither does 𝜁ఘଶ(𝑠) from (3), as they share the same zeros. 

Considering first the Riemann oscillator in (4) that 𝜁ఘଶ(𝑠) critically determines, 
solve for 𝜁ఘଶ(𝑠).  One gets 

 
 
 −

𝑖 ൫(𝑠 −  1)ଶ൫1 − (𝑠 −  1)𝜁(𝑠)൯ −  (𝑠∗)ଶ൯

2 (𝑠 −  1)𝑠∗
= 𝜁ఘଶ(𝑠). (5) 
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Because ൫1 −  (𝑠 −  1)𝜁(𝑠)൯ = 1, 𝜁(𝑠) = 0 in the numerator, (5) reduces to 
  
 
 𝜁ఘଶ(𝑠) = −

𝑖 ((𝑠 −  1)ଶ −  (𝑠∗)ଶ)

2 (𝑠 −  1)𝑠∗
 (6) 

 
for all the zeros (trivial and non-trivial) of the Riemann zeta function.  As 
proposed, (6) consists of two types.  The Type 1 linear solution is 
 

𝑎௦ = −𝜔଴
ଶ𝑐௦, 𝜁ఘଶ(𝑠) = 0. 

 
Because 
 

−
𝑖 ((𝑠 −  1)ଶ −  (𝑠∗)ଶ)

2 (𝑠 −  1)𝑠∗
= 0 ⟺ ℜ(𝑠) =

1

2
, 

 
one gets 
 
 
 ℜ(𝑠) =

1

2
, 𝜁ఘଶ(𝑠) = 0. (7) 

 
The Type 2 planar solution is  
 

𝜁ఘଶ(𝑠) =
−𝑎௦ − 𝜔଴

ଶ𝑐௦

2 𝜔଴𝑏௦
, 𝜁ఘଶ(𝑠) ≠ 0, 

 
whereby solving for the real part of 𝑠 gives  
 

 
 

ℜ(𝑠)

=
±ඥ−(2 ℑ(𝑠) +  𝑖)ଶ(𝜁ఘଶ(𝑠)ଶ −  1) +  2 ℑ(𝑠)  +  𝜁ఘଶ(𝑠) +  𝑖

2 𝜁ఘଶ(𝑠)
 ,

𝜁ఘଶ(𝑠) ≠ 0, 

(8) 

 
such that (8) provides a pair of ℜ(𝑠)′𝑠 across the critical line from each other.   

Upon examination of the square root, because 
 

−(2 ℑ(𝑠) +  𝑖)ଶ(𝜁ఘଶ(𝑠)ଶ −  1) = (𝜁ఘଶ(𝑠)ଶ −  1)(𝑠∗ −  𝑠 +  1)ଶ, 
 
one can also express (8) as  
 

ℜ(𝑠) =
±ඥ(𝜁ఘଶ(𝑠)ଶ −  1)(𝑠∗ −  𝑠 +  1)ଶ +  2 ℑ(𝑠)  +  𝜁ఘଶ(𝑠)  +  𝑖

2 𝜁ఘଶ(𝑠)
, 

 
which also provides a pair of 𝜁ఘଶ(𝑠)’s 
 

 
 

𝜁ఘଶ(𝑠)

=
±ඥ(2 Im(𝑠) +  𝑖)ଶ |1 −  2 Re(𝑠)| + (s∗ +  s −  1)(2 Im(𝑠) +  𝑖)

4 (|(𝑠)ଶ| − 𝑠∗)
 

(9) 
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that correspond to a total of four possible hypothetical zeros (two sets of pairs) 
across the real and critical lines from each other, as were graphically defined at the 
beginning of this paper.  

Now one can ask, given any hypothetical non-trivial zero 𝑠ଵ off the critical line, is it 
possible for any 𝑠ଶ to be symmetric to 𝑠ଵ across the critical line?  That is; for any ℜ(𝑠ଵ) ≠
1/2, is it possible given the two solutions in (8) to have a ℜ(𝑠ଶ) ≠ 1/2 equidistant from the 
critical line? If it is mathematically impossible, then the Riemann hypothesis is 
necessarily true, as the Type 1 zeros are the only other possibility, given by (7). 
Now one can prove the Riemann hypothesis.  Because 

 

𝑟 = ඥ(𝑣 − 𝑥)ଶ + (𝑤 − 𝑦)ଶ  
 
gives the distance between any two points 𝑣 + 𝑖 𝑤 and 𝑥 +  𝑖 𝑦 on the complex 
plane, the distance 𝑟௖௥ from any point 𝑠 to the nearest point 1/2 + 𝑖 ℑ(s)  on the 
critical line is given by  
 

𝑟௖௥ = ฬℜ(𝑠) −
1

2
ฬ . 

 
One can verify if symmetry between the positive and negative solutions of (8) is 
possible or impossible. Setting the two distances equal to each other 
 

ฬℜ(𝑠ଵ) −
1

2
ฬ = ฬℜ(𝑠ଶ) −

1

2
ฬ, 

 
where 𝑠ଵ is either the positive or negative solution to (8) and 𝑠ଶ is either the 
positive or negative as well, one gets 
 

 
 

อ
±ඥ−(2 ℑ(𝑠ଵ)  +  𝑖)ଶ(𝜁ఘଶ(𝑠ଵ)ଶ −  1) +  2 ℑ(𝑠ଵ)  +  𝜁ఘଶ(𝑠ଵ)  +  𝑖

2 𝜁ఘଶ(𝑠ଵ)

−
1

2
อ

= อ
±ඥ−(2 ℑ(𝑠ଵ)  +  𝑖)ଶ(𝜁ఘଶ(𝑠ଶ)ଶ −  1) +  2 ℑ(𝑠ଵ)  +  𝜁ఘଶ(𝑠ଶ)  +  𝑖

2 𝜁ఘଶ(𝑠ଶ)

−
1

2
อ , 𝑠ଵ = 𝑠ଶ ∨ 𝜁ఘଶ(𝑠ଵ) = ±1 ∨ 𝜁ఘଶ(𝑠ଶ) = ±1 

(10) 

 
Because the only solutions to (10) are extraneous, given any hypothetical non-
trivial zero sଵ off the critical line, it is not possible for any sଶ to be symmetric to 
sଵ across the critical line.  That is; for any ℜ(sଵ) ≠ 1/2, it is not possible given 
the two solutions in (8) to have a ℜ(sଶ) ≠ 1/2 equidistant from the critical line.  
The value inside the square root reduces to zero for 𝜁ఘଶ(𝑠) = ±1, leaving 
|𝑖| = |𝑖|, but for 𝜁ఘଶ(𝑠) = ±1 no solutions exist for (6). These solutions are also 
outside the critical strip. The only other possible solution 𝑠ଵ = 𝑠ଶ is meaningless, 
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as the only argument that would make sense would be the critical zeros.  
However, 𝜁ఘଶ(𝑠) = 0 for ℜ(𝑠) = 1/2 leaves (10) undefined.  The answer then is 
 

ฬℜ(𝑠ଵ) −
1

2
ฬ ≠ ฬℜ(𝑠ଶ) −

1

2
ฬ , 𝜁ఘଶ(𝑠) ≠ 0. 

 
Therefore, no non-trivial zeros exist off the critical line at the vertices of 
rectangles symmetric across both the real and critical line.  Their existence is 
mathematically impossible.  The negative solution to (8) is therefore also 
extraneous and the positive solution only applies to the trivial zeros.  This should 
be obvious upon examination of the above.   

Because 𝜔଴ 𝜁ఘଶ(𝑠) = 𝜁ఘ(𝑠), 𝑠 ≠ 0, where the two zeta functions share all the 
same zeros, all of the above holds true for 𝜁ఘ(𝑠) as well, as the two oscillator 
representations of the Riemann zeta function are identical when 𝜁ఘଶ(𝑠) =
0, 𝜁ఘ(𝑠) = 0. Therefore, letting also 𝜁ఘ(𝑠) = 0, 𝜁(𝑠) = 0 one gets the general 
solution for the real part of all the non-trivial zeros of the Riemann zeta function, 
which proves the claim of this paper.  Given an asymmetric Type 2 solution for 
the zeros of 
 

𝑎௦ + 2 𝜁ఘ(𝑠)𝑏௦ + 𝜔଴
ଶ𝑐௦    =  𝜁(𝑠), 

 
when 𝜁(𝑠) = 0 and 𝜁ఘ(𝑠) = 0 there exists the unique solution for all the non-
trivial zeros of the Riemann zeta function. 
 

𝜁ఘ(𝑠) 2 𝑏௦ = −𝑎௦  −  𝑐௦ 𝜔ଶ +  𝜁(𝑠)  = 0 ⟺ ℜ(𝑠) =
1

2
, 𝜁(𝑠) = 0, 

 
where all the real parts of the non-trivial zeros of the Riemann zeta function have 
a real part equal to one half.   

No non-trivial zeros could exist in the critical strip except those on the critical 
line, those provided by the Type 1 line solution, as the Type 2 solutions are 
asymmetric across the critical line.  There are no other types of solutions for the 
Riemann oscillator.  Since the Riemann oscillator is equivalent to the Riemann 
zeta function for all 𝑠, there are no other types of solutions for the Riemann zeta 
function.  The Riemann hypothesis is therefore correct. ∎ 
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