Decays of the Hagen-Hurley bosons: possible
compositeness of the W boson

Andrzej Okninski

Chair of Mathematics and Physics, Politechnika Swigtokrzyska,
Al. 1000-lecia PP 7, 25-314 Kielce, Poland

July 7, 2020

Abstract

We continue our study of the Hagen-Hurley equations describing spin
1 bosons. Recently, we have demonstrated that it is possible to describe
the decay of a Hagen-Hurley boson into a lepton and a neutrino. However,
it was necessary to assume that the spin of the boson is in the 06 1 space.
We have suggested that this Hagen-Hurley boson can be identified with
the W boson mediating weak interactions. The mixed beta decays have
been explained by a mechanism of spin 1 and spin 0 mixing of the virtual
W boson. In this work, we study the top quark decay involving the real
W boson. We substantiate the view that the real W boson is a mixture
of spin 1 and spin 0 states.
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1 Introduction

The intermediate vector bosons, W+ as well as Z°, are extremely short-lived
particles with a half-life of about 3 x 1072% s, see [l] for decay widths. This
property is justifiable in all these cases when W bosons are virtual particles.
On the other hand, it is quite surprising that the real W, as it appears in
the top quark decay, is such an ephemeral particle. Decays of the W bosons,
especially in the case of mixed beta decay, also lead to some interpretational
difficulties [2,8]. Moreover, the possibility of composite W and Z bosons has
been suggested, see [@, 5], and references therein.

Recently, we have addressed some of these problems describing decays of the
virtual W boson within the Hagen-Hurley formalism [6-10]. More precisely, we
have assumed that the spin of the virtual W is partly undefined — belonging to
the 0 @ 1 space [2,3]. However, in the top quark decay, the W boson is real. In
the present work, we investigate further the possibility, put forward in [8], that
the real W boson can be a mixture of spin 1 and spin 0 states. Accordingly,
compositeness of the W boson is suggested and the problem of experimental
verification is addressed in the last Section.



2 The Hagen-Hurley equations

In what follows, tensor indices are denoted with Greek letters, u = 0,1,2,3.
The metric tensor is assumed as g"¥ = diag(1,—1, -1, —1), and we always sum
over repeated indices. Four-momentum operators are defined in natural units
(c=1,h=1)as P* = i% while non-operator four-vectors are denoted as p*,
x#, etc. For elements of the spinor calculus, see [[1-14].

The spin 1 Hagen-Hurley equations can be written in spinor formalism as
IXRIBRIGIR

P,Blop =mnac, nac =nca } (1)
PCnac = —mCup ’

P%CAD =mXpp: Xpp = Xpi } ’ @
P xpp = —mCap

where spin 1 conditions follow from the symmetry of the spinors: n4c = nca and
Xpp = Xpp- Solutions of, for example, Eqs. (B) are of form (5 = (4,5 77,
XBD = )A(BDe*ip'“’, where (45, Xgp are constant spinors and
P'pu=m?. (3)

Equations (I), (2) can also be written in tensor formalism with 7 x 7 matrices
B* (0,10

B P*U =mU. (4)
Eq. (8) describes a particle with definite mass if S# matrices obey the commu-
tation relations [9, 10, 7-19]:

ZA,M,U BABMBV = Z/\,H,V gAMBV’ (5)

and the sum is over all permutations of A, u, v.
It was noticed in Ref. [Z1] that S# matrices can be realized in the form:

B = 2 (" ® s+ Lixa @%) (©

It turns out that such * obey simpler but more restrictive commutation rela-
tions [20, P

BrABIBY + BT BB = g B + g B, (7)

for which Eq. (B) yields the Duffin-Kemmer-Petiau (DKP) theory of spin 0 and

1 mesons, see [20-22]. This reducible 16-dimensional representation (B) of g

matrices (denoted as 16) can be decomposed as 16 = 10 ® 5 @ 1. Explicit

formulas for the corresponding 10 x 10 (spin 1 case) and 5 x 5 (spin 0) matrices

are given in [4, 00, PT], while the one-dimensional representation 1 is trivial,
ie. all ¥ = 0. In the case of more general Eqs. (B) there are also other
representations of S* matrices, see [0,00] for a review. For example, there are

two representations 7 for which the corresponding 7 x 7 matrices S* yield the
Hagen-Hurley equations for spin 1 bosons [6-8]. We have demonstrated that the
Hagen-Hurley equations can be obtained by splitting the 10 x 10 spin 1 DKP
equations [4].



3 Rearrangement of the Hagen-Hurley equations

We shall now rewrite the Hagen-Hurley equations (2). Substituting expressions
for P,B and PCB into Eqgs. (B), cf. [I4], we obtain a system of eight equations:

— (P1 + iPz) Xii — (P Ps) X21 = —m(i
(P 4+ P%) xij + (P! —iP?) xsi = —my (8a)
- (P iPQ) Gi — ( P’ C21 = mxiq ’
(P°+P3) ¢ + (P! +2P2 Gi = mxs
— (P + ZPQ) Xiz — ( P3) Xoz = —MCpp
P+ PB) Xis + (P —1 2) Xz = —mGy (8b)
(Pl - sz) Cs — ( Ps) G = mMXis ’
(PO+P3)C1Q+(P1+ZP2)<22 = MXy

where the equations are arranged into two subsets (Ba), (BH). Note that each of
these subsets is the Dirac equation with the same set of v* matrices [Z3]. Al-
ternatively, equations (B) can be written as one Dirac equation with generalized
matrix solution ({45, X¢& D)T where T stands for transposition [2,23]. Moreover,
the condition x5 = Xjp entails that the spin equals one. Indeed, it follows
from the fourth equation in (), the third equation in (BB), and xpzp = Xpp
that:

(PO+ P3) (i + (P +1iP?) Goq + (P —iP?) (s + (PO — P3) (5 = o)
=PABC,,=0.

The spinor equation PABCAB = 0 is equivalent to P#(, = 0, i.e. to the spin 1
condition, see definitions of the spinors (, 5, p°" in Section 3 in [I4].

4 Reduction of the Hagen-Hurley equations and
decay of bosons

The coupled Dirac equations (B) are non-standard because they are concerned
with higher-order spinors rather than spinors {4, 1. Equations (8) can be
decoupled and cast into a standard form by the following substitution:

Xpp (@) = np@)ap(z), (10a)
Cap (@) = Ca(x)ag (), (10b)

where a4 () is the Weyl spinor, describing massless neutrinos, while 7y (z),
&4 (x) are the Dirac spinors. Although neutrinos are massive [24], their masses
are tiny; therefore, this approximation should not lead to significant errors.
Note that now xj; # x»si and, accordingly, the spin is not determined —
more exactly, the spin is in the 0 @ 1 space. Accordingly, we consider not real
but virtual (off-shell) bosons [25] (note, however, that in the case of top quark



decay, discussed in Section B, the W boson is real). The substitution () was
inspired by the method of fusion of de Broglie [T, 28] (see also [Z7] where a
similar formula was used in the s = 0 case). After the substitution of (I) into
Egs. (B) we obtain two equations:

— (P +iP?)may - (PO = PYymay = —méay
PO+ PP mja,+ (P —iP?)psay = —méay (11)
— (P —iP?) 1oy — (P° = PP)&ay = mmjay (7
(P°+P3) &1, + (P14 iP?) &ay = mnyoy

where A = 1,2, and, after substituting solution of the Weyl equation

PABa, =0, (12)

o () =d e " ktk, = 0, we get a single Dirac equation for spinors &4 (z),
ng (2):

- 131+i132) - (130—153 n = —m&

PO+ 153) ni + (I:’l —iP%)n, = —mé& (13)
- plfip2>§17(poip3 & = mnj 7

PO+ }53) &+ (151 +iP2) & = mn;

with rescaled momentum operators P* = PH 4 kM = ia% + k*.
I

Indeed, the first term in the first of equations (I), for example, can be
written as:
7OLA (P1+7:P2)771 - (P1+ip2)OéA =
—ay (P +iP?)ny —ny (k' +ik?) ay = (14)
-0, (}31 + 2'}32) 7§

and thus, Eqs. (I) reduce to a single Dirac equation (IC3) for spinors €4 (),
ng (x) since components ¢ (x), as (z) cancel out.

Summing up, the Hagen-Hurley equations have been reduced to the Weyl
equation (I[2) and the Dirac equation ([3) with rescaled momentum operators
P# = P# 4 k# [2]. This transformation has been carried out at the cost of
relaxing the condition that spin s of the Hagen-Hurley boson equals one. Indeed,
we had to assume that s € 0 @ 1. Note that there is an invertible operator
transforming spin 0 into spin 1 states [3], and it seems that mixing of spin 0
and spin 1 states is possible.

Equations (I[2), (I3) describe a pair of spin % particles, one massless and
another massive, with total spin s = 0 or s = 1. The transformation of Eqs. (B)
into equations (I2), (3) corresponds to a decay of a virtual W~ boson into a
lepton and antineutrino, for example [2]:

W~ —s e+ 7. (15)

Note that the W boson appears exclusively as an intermediate particle in
weak decays. In the products of decay, there must also be at least a third particle



that accounts for energy, momentum, and angular momentum conservation. An
example is furnished by the case of a mixed beta decay [ZR]:

p() +[e(]) e (1)] Gamow-Teller transition
n(t) — { D ET; + %e ET; Ve (iH Fermi transition (16)
where products of the W~ boson decay (see [{]) are shown in square brackets
and (1) denotes spin % — this seems to correspond well to the proposed transition
from Eq. (8) to Egs. (I2), (I3). To describe the decay, we had to accept spin 1
and spin 0 mixing, see the beginning of this Section and Refs. [2,8]. However,
this agrees well with decay products of the W™ meson with spins coupling to
s = 1 (Gamow-Teller transition) or s = 0 (Fermi transition) with the spin
change absorbed by a spin-flip of the proton.

5 Kinematics of decay of the real Hagen-Hurley
bosons

Assume now that the Hagen-Hurley boson is a real (on-shell) particle and inter-
pret Eq. (I3) involving a fixed four-momentum k* of the Weyl particle. Solution
of this equation is of form ¥ = (&, &2,7, nQ)T = WU e "7 where U is a constant

bispinor, and thus:
(g + ku) (¢ + k*) = qug® + 2q, k" + k k* = m?2, (17)

where m is a mass of the Hagen-Hurley boson. It should be kept in mind that
in the case of unstable particles, the mass is not sharply defined. Note that
due to p,p" = m?2, cf. Eq. (8), we get conservation of the four-momentum, i.e.
q" + k* = p*. In particular, we get the momentum conservation:

2
TP+ [E| +27 - F =17 (18)
Moreover, we have
aa' = () 171 =m? (19)
2
Rkt = (K)" =[] =0, (20)

where m is a well-defined mass of the lepton, while a neutrino — the Weyl particle
— is massless. We thus have

it +2 (K - 7 ?) = m?. (21)

We expect, of course, that m < m. Indeed, this inequality follows from Eq.

(23) if we choose the following solutions of Eqs. (), (20): ¢° = +4/ 17 +m2,

%
kO =+ ‘ k |, respectively. Finally, we obtain:




q0k0—7-?:\/|?|2+m2 ‘?‘—\7\‘?’cos¢>0, (22)

and hence m < m.

We shall analyse the consequences of condition (E1), bearing at mind that,
while k# and m are fixed, the mass m is not well defined with the mass inde-
terminacy |Am| < %I’ where I' is the decay width. Moreover, assume also that

|7 is fixed, while L variable. Therefore, Eqs. (E1), (E2) lead to two main

cases:
2 ~ 2
- mey —m
\7|2+m2—|—|7| |cos<p(1)| — é())?‘, COS (1) <0, (23)
m2 _m2
|7|2 + m? — |7| COS(p(Q) = ;(T?" COS(p(Q) > 07 (24)
and thus

%
miyy = my = 2| 7| ’ k ‘ (—cospq) +cospz) > 0. (25)

Equation (E3) can also be written as

7%
Am =mey —mg) = | i | (— €os (1) + cos <p(2)) >0 (26)
where m =

1
than 5.

% (m(l) + m(g)). The mass difference m 1) —m(z) should be smaller

6 Discussion and conclusions

Consider the important channel of the top quark decay, t — b+W ™ (= IT + v;).
Since the mass of the top quark is larger than the mass of the W boson plus the
mass of the bottom quark b, this decay should involve a real, on-shell, boson
W. We assume that the Hagen-Hurley equations (), (2) describe the W boson
and thus analyse consequences of results described in Section B.

To this end, we recall some properties of beta decay predicted by the Stan-
dard Model. Namely, in the case of Gamow-Teller transition, spins of lepton
and neutrino are parallel, and their momenta are anti-aligned, 7k <0, while
in the case of Fermi transition spins are anti-parallel, and momenta are aligned,
7 x> 0, see [79-31] and references therein.

Let us further assume that decay of the spin 1 W7 boson, formed in the
top quark decay, can be described as in Section @, with the b quark accounting
for the conservation of energy, momentum, and angular momentum. It follows
from Section @ that the Hagen-Hurley boson can decay into a lepton and a
neutrino, if we assume that its spin is partly undefined — it is in the 0@ 1 space.
It is important that we have demonstrated the possibility of spin 0 and spin



1 mixing [3]. Moreover, this view is supported by the existence of mixed beta
decays, where the W boson is a virtual particle. We thus expect that our theory
can indeed describe the decay of the real W boson — a product of the top quark
decay. However, since the W boson is highly unstable, its decay width I' is quite
large since I' = 1/7, where 7 is the mean lifetime [0]. Hence, the mass of the
W is not sharply defined. We can now make several predictions concerning this
decay.

1. The real W boson is described by the Hagen-Hurley equations and due
to mechanism of decay (which requires that its spin belongs to the 0 @ 1
space [2]) due to mixing of spin 0 and spin 1 states [B]) decays as a linear
combination of these. In the top quark decay (this is the only case when

the W boson is real) both channels

tM=b)+W M) —=b()+ M) w (1) Gamow-Teller
tM) = oM+ W )=o) +[(1)wn{)] Fermi

should be observed [3], where (1), (1), (o) denote spin 1, % and 0, respec-
tively. Note that spins of the top quark and a lepton are correlated [32].
Conservation of the total momentum is secured by the b quark, carrying
the missing momentum.

(27)

While the Fermi-type decay of the t quark is hypothetical, it can be ex-
perimentally tested, see the end of Discussion in [3].

2. In the case of Gamow-Teller decay (22), we have ¢ - % < 0 (momenta of a
lepton and a neutrino anti-aligned, parallel spins) while in the hypothetical
Fermi-type decay (Z3) ¢ - k > 0 (aligned momenta of a lepton and a
neutrino, anti-parallel spins). It follows from Section B that these two
decays occur with different masses of the W boson (m(;) in the case of
Gamow-Teller mechanism, ms) in the Fermi case), the mass difference
given by Eq. (£8).

3. The mass difference, Am, provides energy Am c? (in standard units) for
the reconstruction [l (1) v ()] — [L (1) vi (1]

4. Tt seems that the W boson decays in a state with partly undefined mass
and spin. The mass indeterminacy stems from the fact that the W is
a resonance with decay width I'. The spin mixing, if confirmed, would
be a signature of a mild Lorentz symmetry breaking or a non-elementary
character of the W boson, which would be a complex state I (1) v; (1).

Summing up, it seems that the W bosons, if described by the Hagen-Hurley
equations (I) or (B), are composite, as suggested by Suzuki [4,5]. An interesting
substructure was proposed by Harrari [33] and Shupe [34], see also [B5] for an
early review of composite models. Two spin—% preons, T (With charge % e) and
V' (charge 0) with SU(3) color, and SU(3) hyper color are used to construct
quarks and leptons of the first generation, as well as gauge bosons [83]. Namely,



u= (TTV), d = (TVV), et = (TTT), v, = (VVV), while the W+ boson
is (TTTVVV). The model was generalized to higher generations, see [BG].
Therefore, the W~ can indeed be considered a composite of the lepton and
antineutrino, cf. item 4 above.

Incidentally, it follows that the model of Harari and Shupe also describes
other channels of the W boson decay, for example, W+ — u + d, since the W
can also be considered a composite of the quark u and the antiquark d.

The possibility of experimental verification of these predictions was pointed
out in Ref. [B]. More precisely, the detection of the Fermi channel in the top
quark decay 24 would confirm the non-elementary nature of the W boson.
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