
A solution to the black hole information paradoxTom Fuchstomfuchs@gmail.comI show that  the  Schwarzschild  metric’s  prediction of  black holes  violates  theequivalence principle. I show that Rindler horizons, which are used to supportthe idea of black holes, work differently according to special relativity than isgenerally  accepted  today.  I  derive  new  equations  for  escape  velocity  andgravitational  time  dilation.  I  show  a  problem  in  the  derivation  of  theSchwarzschild  metric,  and  solve  it  to  derive  a  new metric  for  Schwarzschildgeometry.  The  new metric  doesn’t  predict  black  holes,  yet  is  experimentallyconfirmed, including by the famous picture that’s reportedly of a black hole.
1 The Schwarzschild metric violates the equivalence principleA formal statement of the Einstein equivalence principle (EP) isIn any and every locally Lorentz (inertial) frame, the laws of special relativitymust hold.Experiment #1: A free-falling ball is at rest in a local inertial frame (LIF) that straddles theevent  horizon of  supermassive  static  black  hole.  The  ball  is  just  below the  event  horizon,directly below a rocket that hovers just above the event horizon.See the  equations of special relativity (SR) at  The Relativistic Rocket, for a rocket having aconstant proper acceleration a > 0. These equations show that the ball can reach the rocket inprinciple, in the elapsed time given by (1)This equation gives the time taken by a decelerating rocket to reach a free-falling destination(like a galaxy or the ball) at relative rest, as measured in the destination’s frame (a LIF thatcontains  the  rocket),  where  d is  the  initial  distance  between  them  as  measured  in  thedestination’s frame. The speed of light is c. Their initial velocity toward each other is given by(2)The initial distance d between the ball and the rocket can be arbitrarily small, hence they canreach each other in an arbitrarily small time t.The Schwarzschild metric predicts that the ball can’t pass outward through the event horizon toreach the rocket.  Because  the metric’s  prediction disagrees  with SR's  in a LIF,  the  metricviolates the EP.
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2The EP is violated when the ball must fall further below the rocket. All inertial frames areequivalent in SR. In an inertial frame, the velocity  v of any object (whether or not it’s free-falling) can be any value in the interval −c < v < c in principle. So the rocket and the ball canbe moving toward each other initially. An argument that the ball can’t reach the rocket mustdetermine the same in an inertial frame in an idealized, gravity-free universe, or else it dependson an EP violation.The rocket’s Rindler horizon, a plane from below which signals can’t reach the rocket, is at thedistance  c2/a below  the  rocket.  (See  The  Relativistic  Rocket,  section  “Below  the  rocket,something strange is happening.”) The acceleration  a that a rocket needs to hover ever moreclosely above an event horizon of a black hole approaches infinity, so that c2/a approaches zero.This  prediction  is  used  to  support  the  idea  of  black  holes.  The  thinking  is  that,  in  thehypothetical limit where a rocket hovers at the event horizon, its Rindler horizon would be rightat the event horizon too, so that the EP is obeyed in a LIF that straddles an event horizon.But SR predicts that the ball can reach the rocket despite any Rindler horizon. See the “generalformula” at The Relativistic Rocket: (3)This equation gives the aging of  a rocket’s crew during a trip that covers a distance  d asmeasured in the LIF in which they blasted off,  at  an acceleration  a that’s reversed at themidpoint so that the rocket brakes to arrive at its destination at relative rest. For example, thisequation predicts that a rocket can blast off from Earth, accelerate and decelerate at 1  g toarrive at the Andromeda galaxy, d = 2 million light years away from Earth, while its crew agesjust T ≈ 28 years. (Use c = 1 ly/yr and a = 1.03 ly/yr2 ≈ g.) Notice that Andromeda reachesthe rocket that’s decelerating toward it, starting from the midpoint that’s 1 million light yearsaway as measured in Andromeda’s frame, even though the rocket’s Rindler horizon is  c2/a =0.97 ly below the rocket. The equation from the site for the acceleration or deceleration half ofthe rocket’s trip is (4)Compare (4) to (3). See that (3) just doubles the time T that’s returned by (4) for either half ofthe trip. So the simpler (4) shows that a free-falling object (like Andromeda or the ball) canreach a rocket having any acceleration  a, starting from any distance  d below the rocket. Forexample, (4) returns T ≈ 14 years for the deceleration half of the trip to Andromeda. Or use (1)for the time t as measured in the free-falling object’s frame.The distance c2/a between a rocket and its Rindler horizon applies only in the rocket’s frame.When the ball in experiment #1 will reach the rocket, then the initial distance  d is lengthcontracted in the rocket’s frame to d/γ < c2/a (where γ is the gamma factor), so that the ball isinitially above the rocket’s Rindler horizon and hence able to reach the rocket, the same as howAndromeda reaches any rocket that decelerates to it.
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3The Einstein field equations (EFE) depend on the EP. The Schwarzschild metric derives fromthe EFE, which means the EP takes precedence over the metric. When the metric violates theEP, the EP remains presumably valid and the metric is invalidated within the context of theEFE. Therefore, the Schwarzschild metric is invalid, and moreover, a metric for Schwarzschildgeometry that obeys the EP can’t predict black holes.
2 A new equation for escape velocityEquations for a falling body gives the  velocity of a free-falling object that  was dropped in auniform gravitational field (ignoring air resistance) as (5)where a is the acceleration of gravity and t is the elapsed time.The EP shows that The Relativistic Rocket’s (2) supplants (5):

Figure 1: Ball falling to the floor in an accelerating rocket (left) and on Earth (right). ByPbroks13     / Markus Poessel (Mapos)  , CC     BY-SA 3.0  , via Wikimedia Commons.According  to the  EP,  SR’s  laws  hold  in both  scenarios  in  Fig.  1.  The  Relativistic  Rocketequations describe the ball’s motion  relative to the rocket. Then  those  equations describe theball’s motion relative to the room on Earth as well, where a is the acceleration of gravity. Thetime t in (2) is measured in the ball’s LIF, in which the rocket (or room) blasted off when theball was dropped.The equation for escape velocity in general relativity (GR) is (6)Escape velocity is also the velocity of an object that was dropped from an infinite distance. Forthe first small segment of the object’s fall, in which the acceleration of gravity a is constant, (5)approximates GR’s escape velocity (6), and The Relativistic Rocket’s (2) approximates the new
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4escape velocity. So, substituting the two terms at in (2) with GR’s escape velocity gives the newescape velocity. That is, (7)where vnew is the new escape velocity, and vold is GR’s escape velocity (6). This is the same asdividing vold by the gamma factor, since (8)from The Relativistic Rocket. The new equation for escape velocity, derived from (6) and (7), is(9)This equation returns a value < c for a radial coordinate r > 0. So black holes aren’t predicted.GR’s escape velocity (6) better approximates the new escape velocity (9) as gravity weakens.
3 A new gravitational time dilation factorImagine nested spherical shells concentric to a massive body. An observer drops from an infinitedistance,  falling  freely  toward  the  massive  body  while  measuring,  as  a  fraction  x of  theobserver’s own rate of time, the rate of clocks at each shell as they pass right by.  Each shellpasses at the escape velocity ve there. Inputting that velocity into the reciprocal of the gammafactor gets the value x for that shell. The escape velocity at an infinite distance is zero, so x = 1there. The observer remains stationary relative to the falling space, so the observer’s own rate oftime remains the rate of time at an infinite distance. Then the gravitational time dilation factor,the rate of time at a radial coordinate r, as a fraction of the rate of time at an infinite distance,is given by the pseudo equation (10)This equation is verified by deriving GR’s gravitational time dilation factor from it, using GR’sescape velocity (6):

(11)
The new gravitational time dilation factor, derived using the pseudo equation (10) and the newescape velocity (9), is (12)
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4 A new metric for Schwarzschild geometryThere’s a problem in the derivation of the Schwarzschild metric, at the step (13)in the section “Using the weak-field approximation to find K and S”.  GR’s gravitational timedilation factor (11) is in (13) as (14)But (14) is invalid. Eqs. (10) and (11) show that (15)where ve is GR’s escape velocity (6). This velocity isn’t relativistic because it can be >= c. Thegamma factor equation requires a relativistic velocity, which is always < c. So the gravitationaltime  dilation  factor  that  derives  from  (14)  only  approximates  the  valid  factor.  Theapproximation worsens as gravity strengthens and the value for ve strays further from the validvalue, until finally the EP is unmistakably violated at ve = c. Thus (13) reads like (16)We can solve this problem without changing the EFE. The right side of (13) can be changedsuch that its gravitational time dilation factor can be valid. To do this, we first change (14) to(17)and solve for w, the square of the gravitational time dilation factor. This converts GR’s escapevelocity (6), that’s embedded in (14), to the new escape velocity (9). This is done by effectivelydividing GR’s escape velocity by the gamma factor; see the comment for (8). (Alternatively, thisis done by changing Newton’s −GM/r2, that’s in the diagram in   the derivation  , to the farawayobserver’s measurement for it.) The  new escape velocity (9)  is  used  to build the gravitationaltime dilation factor. Solving for w gives (18)See that the new gravitational time dilation factor that derives from (18): (19)matches (12), as expected. The new escape velocity (9) derives by solving (15) for ve.
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6Next we incorporate w into (13), while changing the ≈ symbol to = since its gravitational timedilation factor can now be valid. (20)Note that now (21)and compare this to (16) that we had before.Completing the derivation: (22)and (23)Hence (24)and (25)So, the new metric for Schwarzschild geometry is (26)
5 Experimental confirmation of the new metricThe only change made to the Schwarzschild metric was to the term for escape velocity that’sbuilt into it. The old  escape velocity (6) better approximates  the new escape velocity (9) asgravity weakens.  So,  the  Schwarzschild metric  better  approximates  the  new metric  (26)  asgravity weakens.For the Schwarzschild precession in the orbit of the star S2 around Sgr A*, both metrics predict12.1′ per orbit, in agreement with observations. When the Schwarzschild metric predicts 12.100′per orbit for S2’s Schwarzschild precession, the new metric predicts 12.095′ per orbit.For the Schwarzschild precession of Mercury, both metrics predict 42.9799″ per Julian century,in agreement with observations.
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Figure 2: Direct image of a supermassive black hole(?) at the core of Messier 87.  ViaWikimedia Commons.The new metric (26) allows an object of any mass M to have a surface at any radial coordinater >  0.  The  new  gravitational  time  dilation  factor  (12)  goes  to  zero  as  r goes  to  zero.Gravitational redshift indicates gravitational time dilation, so a star can look black when viewedfrom afar. This explains the object in Fig. 2, without invoking a black hole.
Text is available under the Creative Commons Attribution-ShareAlike License 4.0.
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