
A solution to the black hole information paradoxTom Fuchstomfuchs@gmail.comI  show that,  contrary  to generally  accepted  thinking  about  Rindler  horizons,special relativity allows a free-falling object to reach a rocket having any constantproper acceleration, starting from any distance below the rocket as measured inthe free-falling object’s frame. I show that general relativity thereby violates itsequivalence principle re black holes, and explain how these facts hold true despiteRindler  horizons.  To  fix  the  violation  and  solve  the  black  hole  informationparadox, a new metric for Schwarzschild geometry is derived, that doesn’t predictblack holes and is confirmed by observations.
1 A problem with black holesThe Relativistic Rocket (RR) equations of special relativity (SR) apply to both accelerating anddecelerating rockets. For instance, they describe either half of a trip between Earth and the starVega, where the rocket accelerates and decelerates at 1 g (1 Earth gravity) to arrive at Vega atlow speed.An RR equation for the velocity v of a rocket, in a local inertial frame (LIF) in which the rocketblasted off from rest (e.g. the Earth-Vega frame), is (1)where a is the rocket’s constant proper acceleration > 0, t is the time in the LIF, and c is thespeed of light.An RR equation for the time t is (2)where d is the distance covered by the rocket in the LIF.The RR site notes that we can “run the film backwards” to reason that the above equationsmust still apply to a decelerating rocket, which means they work in reverse, like this: In the LIFof a free-falling object, when a rocket decelerates toward the object with the initial velocity vgiven by (1), where the time t is given by (2) for the initial distance d between them, then theyreach each other at relative rest, such as the rocket arriving at Vega. (They come to momentaryrelative rest when the rocket’s engines remain running.) Thus SR allows a free-falling object toreach a rocket having any acceleration  a, starting from any distance  d below the rocket asmeasured in the free-falling object’s LIF. For example, a rocket can in principle decelerate fromthe Earth-Vega midpoint to Vega at 1015 g, or any higher acceleration a.

https://math.ucr.edu/home/baez/physics/Relativity/SR/Rocket/rocket.html


2Therefore  SR  allows  a  free-falling  ball  that’s  just  below  the  event  horizon  of  a  staticsupermassive black hole, and below a rocket hovering above the event horizon and well withinthe ball’s LIF, to reach the rocket. Which is to say they can reach each other in principle.General relativity (GR) predicts they can’t reach each other even in principle, in violation of itsequivalence principle (EP) that says SR’s laws must hold in any and every LIF.SR’s (1) and (2) predict that the ball can reach the hovering rocket in principle, for any inputsfor the rocket’s acceleration a and the initial distance d between them in the ball’s LIF, just asthey predict that Vega can reach a rocket that decelerates at any acceleration a from the Earth-Vega midpoint to Vega. There are no special or preferred inertial frames in SR, so the rocket’sinitial velocity v in the ball’s LIF can in principle be any value in the interval -c < v < c, orelse the EP is violated. Since the EP requires that the ball be able to reach the hovering rocketin principle, black holes can’t validly exist in Schwarzschild geometry along with the EP.
2 What about Rindler horizons?SR allows the ball to reach the hovering rocket despite any Rindler horizon. Let the rocket thattravels from Earth to Vega accelerate and decelerate at a = 1.03 ly/yr2 ≈ 1 g. At the start of itsbraking phase its Rindler horizon is c2/a = 0.97 ly below it in its frame, in Vega’s direction. Therocket-Vega distance d = 12.5 ly in the Earth-Vega frame (half of the Earth-Vega distance inthat frame) is length contracted in its frame to d/γ = 0.90 ly (where γ is the gamma factor),such that Vega is above its Rindler horizon and able to reach it. SR likewise predicts that theball  is  initially  above  the  hovering  rocket’s  Rindler  horizon when  the  ball  and the  rocketapproach each other fast enough initially. For instance, SR predicts thatwhen the hovering rocket’s acceleration a = 1.03 × 1015 ly/yr2 (~1015 g),and the ball’s initial distance d below the rocket in the ball’s LIF = 1 light-microsecond(~300 m),and, as calculated using SR’s (1) and (2), the rocket’s initial velocity v toward the ball (i.e. the rocket decelerates toward the ball) in the ball’s LIF = 0.99956c,
then, as calculated using (2), they reach each other at relative rest in time t in the ball’s LIF, = 1.03 μs,and the rocket’s Rindler horizon is c2/a below the rocket in its frame, = 9.19 m,and the ball’s initial distance d/γ below the rocket in the rocket’s frame = 8.91 m,so, since the initial distance d/γ < c2/a, the ball is initially above the rocket’s Rindler horizon.When the rocket’s initial velocity v toward the ball is given using SR’s (1) and (2), then, for anyinputs for the rocket’s acceleration a and the initial distance d between them, they reach eachother at relative rest, and the initial distance d/γ < c2/a (no matter how small c2/a is, even lessthan a nanometer), so the ball is initially above the rocket’s Rindler horizon.

https://en.wikipedia.org/wiki/Lorentz_factor
https://www.npl.washington.edu/eotwash/equivalence-principle


3

Figure 1: Spacetime diagram showing a uniformly accelerated particle, P, and an event E.The event’s  future light cone never intersects the particle’s world line.  By ChristopherThomas / tiZom / CC     BY-SA  .In Fig. 1, let P be the hovering rocket. The diagram is for a LIF that momentarily comoves withthe rocket at t = 0; the rocket blasts off from rest in this frame. Let the event E occur at therocket’s  Rindler  horizon.  As  explained above,  SR allows  the  ball  to  be  initially  above  therocket’s  Rindler horizon, between E and P in this diagram/LIF at  t = 0, even when the E-Pdistance (= c2/a) is less than a nanometer. So the ball can reach the rocket in principle.To better see this, adapt the barn-pole paradox: The runner, representing a free-falling object(e.g., the ball, or Vega), holds the trailing end of the pole that has any proper length d. In thebarn frame the runner’s velocity v is such that the pole (which is length contracted to d/γ) iscompletely within the barn when the switch is thrown. Instead of the barn doors closing, arocket blasts off horizontally from the far door (with an acceleration  a), so that the runnerchases the rocket, and a flash of light emits from the near door, eventually reaching the rocket(so in the barn frame at blastoff the light source is above the rocket’s Rindler horizon, which isc2/a below the rocket). Having passed the light source before it flashed (so  d/γ <  c2/a), therunner can in principle reach the rocket before the flash does. In the runner’s frame at t = 0 therocket blasts off  distance  d ahead of the runner, and decelerates toward the runner with aninitial velocity v. They reach each other at relative rest when that initial velocity is given usingSR’s (1) and (2). See also the ladder paradox.SR allows the ball to reach another free-falling object at a point just above the hovering rocket.In the ball’s LIF the time t would be given by t = d/v (where d is the initial distance betweenthe ball and the other object, and v is the other object’s velocity), just as that equation appliesin the Vega system to receive/reach a free-falling package sent from Earth, irrespective of theRindler horizons of rockets that decelerate toward Vega along the package’s route.All  the  above  shows  that  the  EP  requires  the  escape  velocity  to  be  <  c everywhere  inSchwarzschild  geometry.  A  new  metric  for  Schwarzschild  geometry  is  derived  below,  thatdoesn’t predict black holes.
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https://en.wikipedia.org/wiki/Ladder_paradox
http://math.ucr.edu/home/baez/physics/Relativity/SR/barn_pole.html
https://creativecommons.org/licenses/by-sa/1.0/
https://commons.wikimedia.org/wiki/File:Event-horizon-particle.svg
https://commons.wikimedia.org/wiki/File:Event-horizon-particle.svg
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3 New equations for free-fall motionNASA says the velocity v of a free-falling object that was dropped in a uniform gravitationalfield with no air resistance is given by the equation (3)where a is the acceleration and t is the time.The EP shows that (3) is invalid:

Figure 2: Ball falling to the floor in an accelerating rocket (left) and on Earth (right). ByPbroks13/Mapos / CC     BY-SA  .The EP implies that SR’s laws hold in both scenarios in Fig. 2. The RR equations describe theball’s motion within the rocket. Then the RR equations describe the ball’s motion within thebox on Earth as well, and so  the velocity  (1), which always returns a  value  <  c, supplantsNASA’s (3). The time t in (1) is measured in the ball’s LIF.
4 A new equation for escape velocityHereafter, geometric units are used, where c = G (the gravitational constant) = 1.GR’s equation for escape velocity ve is (4)where  M is the mass of the massive body in geometric units, and  r is the radial coordinate(circumference of a circle centered on the massive body, divided by 2π).I made a conversion equation that converts  the old free-fall velocity  (3) to  the new free-fallvelocity  (1),  and used it to convert  GR’s escape velocity  (4) to a new equation for escapevelocity that’s approximated by (4) and predicts that the escape velocity is < c everywhere.

https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:Elevator_gravity.svg
https://www.grc.nasa.gov/WWW/K-12/airplane/mofall.html


5The conversion equation is (5)The  new  equation  for  escape  velocity  ve,  derived  using  GR’s  escape  velocity  (4)  and  theconversion equation (5), is (6)
5 A new gravitational time dilation factorImagine  nested  spherical  shells  concentric  to  a  massive  body.  An  observer  drops  from anarbitrarily large distance, falling freely toward the massive body while measuring, as a fraction xof the observer’s own rate of time, the rate of clocks at each shell as they pass right by. Eachshell  passes at  the  escape velocity  there.  Inputting that  velocity into the  reciprocal  of  thegamma factor gets the value x for that shell. The escape velocity at an arbitrarily large distanceis zero, so  x = 1 there. The observer remains stationary relative to the  falling space, so theobserver’s own rate of time remains the rate of time at an arbitrarily large distance. Then thegravitational time dilation factor, the rate of time at a radial coordinate r, as a fraction of therate of time at an arbitrarily large distance, is given by the pseudo-equationgravitational time dilation factor = 1 / gamma factor(escape velocity at r). (7)I verified (7) by deriving GR’s  gravitational time dilation factor from it,  using GR’s escapevelocity (4):

(8)
where t0 is the proper time between two adjacent events as measured by a clock at the radialcoordinate r, and tf is the time between those events as measured by a clock at an arbitrarilylarge distance from the massive body.The new gravitational time dilation factor, derived using the pseudo-equation (7) and the newescape velocity (6), is (9)
6 A new metric for Schwarzschild geometryThe  only  difference  between  the  metric  for  flat  spacetime  in  polar  coordinates  and  theSchwarzschild metric is GR’s curvature factor (1 – 2M/r) that’s in the Schwarzschild metric andgiven  by  the  old  gravitational  time  dilation  factor  (8).  To  derive  the  new  metric  for

https://en.wikipedia.org/wiki/Gravitational_time_dilation
https://arxiv.org/abs/gr-qc/0411060


6Schwarzschild geometry I used  the new gravitational time dilation factor  (9) to replace thosecurvature factors.The new metric for Schwarzschild geometry is (10)where σ is the proper distance between two adjacent events, t is the time between those eventsas measured by a clock at an arbitrarily large distance from the massive body, and  ϕ is themeasure of angle in a plane through the center of the massive body.
7 Experimental confirmation of the new metricThe only change made to the Schwarzschild metric was to the escape velocity that’s built intoit. Since the old escape velocity (4) better approximates the new escape velocity (6) as gravityweakens, the Schwarzschild metric better approximates the new metric (10) as gravity weakens.For the Schwarzschild precession in the orbit of the star S2 around Sgr A*, both metrics predict12.1′ per orbit, in agreement with observations. When the Schwarzschild metric predicts 12.100′per orbit for S2’s Schwarzschild precession, the new metric predicts 12.095′ per orbit.For the Schwarzschild precession of Mercury, both metrics predict 42.98″ per Julian century, inagreement  with  observations.  When  the  Schwarzschild  metric  predicts  42.9799″ per  Juliancentury for Mercury’s Schwarzschild precession, so does the new metric.The new gravitational time dilation factor (9) goes to zero as  r goes to zero. Gravitationalredshift indicates gravitational time dilation, so a star can look black when viewed from afar.
8 RecommendationI recommend that the Einstein field equations or their dependencies be updated, so that theirsolution for Schwarzschild geometry is the new metric (10).

https://en.wikipedia.org/wiki/Tests_of_general_relativity#Perihelion_precession_of_Mercury
https://www.aanda.org/articles/aa/full_html/2020/04/aa37813-20/aa37813-20.html
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