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Abstract

It is shown through three different approaches that, contrary to a

long-standing conviction more than 160 years long, the orbit of Mercury

behaves as required by Newton’s equations with a very high precision if

one correctly analyses the situation in the framework of the two-body

problem without neglecting the mass of Mercury.

General relativity remains more precise than Newtonian physics, but

the results in this paper show that Newtonian framework is more powerful

than researchers and astronomers were thinking till now.

1 Introduction

Based on astronomical observations, in the early 1600s Kepler established that
the orbit described by a planet in the solar system is an ellipse, with the Sun
occupying one of its foci. Assuming that a planet is subject only to the gravita-
tional attraction of the Sun, Kepler’s result is easily obtained mathematically in
Newton’s theory. But the other planets also have a gravitational attraction on
the planet in question. What is the effect of their presence? If one repeats the
calculation taking into account this complication, one finds that the attraction
exerted by all the other planets of the solar system on the planet in question
induces an advance (a precession), orbit after orbit, of the perihelion (the point
of maximum approach to the Sun of the orbit of the planet). The precession of
the Earth’s rotation axis also gives rise to the same effect. For example, Mer-
cury’s perihelion moves slightly at the speed of 5,600 arcseconds per century,
in the same direction in which the planet rotates around the Sun. However,
when the contribution of the Earth’s precession is removed (5,025 arcseconds),
that due to the attraction of the other planets, calculated according to New-
tonian physics, is not able to correctly predict what happens in reality. The
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balance indeed misses 43 arcseconds. It is a general conviction, supported by
centennial computations, that this deviation of Mercury’s orbit from the ob-
served precession cannot be achieved by Newtonian theory. This is the famous
anomalous rate of precession of the perihelion of Mercury’s orbit. It was origi-
nally recognized by the French Astronomer Urbain Le Verrier in 1859 as being
an important astronomical problem [1]. Starting from 1843 [2], Le Verrier in-
deed reanalyzed various observations of the perihelion of Mercury’s orbit from
1697 to 1848, by showing that the rate of the precession of the perihelion was
not consistent with the previsions of Newtonian theory. This discrepancy by
38′′ arcseconds per tropical century, which has been corrected to 43′′ by the
Canadian-American astronomer Simon Newcomb in 1882 [3], seemed till now
impossible to be accounted through Newton’s theory. Various ad hoc and un-
successful solutions have been proposed, but such solutions introduced more
problems instead. The most famous approach by 19th century astronomers was
the attempting to explain this discrepancy through the perturbing effect of a
planet, Vulcan, hitherto escaped observation, smaller than Mercury and closer
than this to the Sun. However, the search for this planet turned out to be
unfruitful. The solution of the problem is due to Albert Einstein through his
magnificent general theory of relativity in 1916 [4]. Recent analyses due to the
MESSENGER data plus the Cassini mission gave a value of about 42, 98′′ to the
general relativistic contribution to the precession of perihelion of Mercury per
tropical century [5]. If one expresses the perihelion shift in radians per revolu-
tion (in this work, polar coordinates will be used), one gets instead the general
relativistic value [6]

△ϕ ≃
24π3a2

T 2
0 c

2 (1− e2)
, (1)

where a is the semi-major axis of the orbit, T0 is Mercury’s Newtonian orbital
period, c is the speed of light, and e is the orbital eccentricity. Eq. (1) corre-
sponds to a total angle swept per revolution by Mercury

ϕ ≃ ϕ0

(

1 +
2π2a2

T 2
0 c

2 (1− e2)

)

, (2)

where ϕ0 = 2π is the unperturbed (i.e. in absence of precession) total angle
swept by Mercury during a complete revolution around the Sun. Inserting the
numerical values in Eq. (1), see for example [7–9], one gets the well known gen-
eral relativistic value △ϕ ≃ 5.02∗10−7 radians per revolution which corresponds
to about 0, 1 arcseconds.

Now, the precession of the perihelion of Mercury’s orbit is calculated in the
Newtonian framework. Three different approaches will be considered.

2 Approximation of circular orbit

One starts from the case in which Mercury’s mass is considered negligible with
respect to the mass of the Sun, i.e. one considers the planet as being a test
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mass immersed in the Newtonian gravitational field of the Sun. In addition, one
considers Mercury’s orbit as being circular instead of elliptical. Thus, the case
under consideration here is the simplest one. One takes the origin of the frame of
reference in the center of the Sun. By using the traditional Newtonian equations,
in order to obtain the orbital period, one merely equals the gravitational force
to the centripetal one as

GMm

r20
=

mv20
r0

, (3)

where G is the gravitational constant, M is the solar mass, m the mass of
Mercury, r0 the orbit’s radius and v0 the velocity of rotation of the planet.
Hence, v0 is easily obtained as

v0 =

(

GM

r0

)

.
1
2 (4)

Then, the Newtonian orbital period is

T0 =
2πr0
v0

=
2πr

3
2
0

(GM)
1
2

. (5)

The corresponding angular velocity is

ω0 =
2π

T0
. (6)

Thus, in radians per revolution the angular distance that Mercury sweeps during
the Newtonian orbital period T0 is

ϕ0 = ω0T0 = 2π. (7)

Now one asks: what does it happen if one removes the approximation to consider
Mercury’s mass negligible with respect to the solar mass? One argues that a
Newtonian observer set in the center of the Sun must replace Eq. (3) with

G (M +m)m

r20
=

mv2

r0
, (8)

i.e. one must replace M with M +m in Eq. (3). Let us clarify this point. The
Newtonian law of universal gravitation can be written down in its general form
for Mercury and the Sun as

−→
F G =

GMm

r2
ûr, (9)

where r is the distance between the Sun and Mercury and ûr is the unit vector
in the radial direction. Thus, for an external inertial Newtonian observer, the
Newtonian equations of motion for the Sun and Mercury are

Masûr =
GMm

r2
ûr =⇒ asûr =

Gm

r2
ûr (10)

3



and

mamûr = −
GMm

r2
ûr =⇒ amûr = −

GM

r2
ûr, (11)

respectively, where as is the acceleration of the Sun and am is the acceleration
of Mercury. Thus, the relative acceleration of Mercury with respect to the Sun
is

aûr ≡ amûr − asûr = −

(

GM

r2
+

Gm

r2

)

ûr = −
G (M +m)

r2
ûr. (12)

Then, the total force acting on Mercury as it is seen by a Newtonian observer
set in the center of the Sun is

F ûr = −
G (M +m)m

r2
ûr, (13)

which immediately justify Eq. (8) for a circular motion. From Eq. (8) one gets
immediately the perturbed velocity of rotation of the planet as

v =

[

G (M +m)

r0

]
1
2

(14)

corresponding to a period

T =
2πr0
v

=
2πr

3
2
0

[G (M +m)]
1
2

. (15)

But it is also

(M +m)−
1
2 = M−

1
2

(

1 +
m

M

)

−
1
2

, (16)

which, inserted in Eq. (15), gives

T =
2πr

3
2
0

(

1 + m
M

)

−
1
2

[G (M)]
1
2

= T0

(

1 +
m

M

)

−
1
2

. (17)

Then, the corresponding perturbed angular velocity is

ω =
2π

T
=

2π

T0

(

1 +
m

M

)
1
2

= ω0

(

1 +
m

M

)
1
2

. (18)

Hence, the angle that Mercury sweeps during the period T0 is

ϕ = ωT0 = 2π
(

1 +
m

M

)
1
2

≃ 2π
(

1 +
m

2M

)

, (19)

in radians per revolution, where in the last step the first-order approximation in
m
M

has been used, that is
(

1 + m
M

)
1
2 ≃ 1+ m

2M , because it is m ≪ M. Therefore,
in each complete revolution around the Sun, Mercury sweeps an angle larger
than the unperturbed angle (7) and the difference, in radians per revolution, is

△ϕ = ϕ− ϕ0 ≃
πm

M
. (20)
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The NASA official data give m ≃ 3.3 ∗ 1023Kg [8] and M = 1, 99 ∗ 1030Kg [7].
Thus, one gets △ϕ ≃ 5.21 ∗ 10−7radians per revolution which corresponds to
about 0, 107 arcseconds. On the other hand, the Mercury/Earth ratio of the
tropical orbit periods is 0.241[9]. Thus, one gets 44.39′′ per tropical century.
This is a remarkable result that shows that, despite the above calculation has
been made in the approximation of circular orbit, the correct value of the con-
tribution of Newtonian theory to the precession of perihelion for Mercury per
tropical century well approximates the value of about 42, 98′′ per tropical cen-
tury of general relativity [5] and the well known observational value of 43′′ per
tropical century.

The physical interpretation of this nice result is that it is Mercury’s back
reaction, in terms of Newton’s third law of motion (to every action there is

always opposed an equal reaction), see Eqs. from (9) to (13), that generates the
advance of the perihelion of Mercury in Newtonian framework.

3 Mercury’s orbit as harmonic oscillator

Following [10], one recalls that each central attractive force can produce a circu-
lar orbit that should not necessarily be closed. It is closed if the radial oscillation
period is a rational multiple of the orbit period. Now, let Fc(r) be the total
central force. Mercury’s equation of motion in the radial direction is given by
[10]

Fc(r) = m
(

r̈ − θ̇2r
)

, (21)

where, again, r is the distance between the Sun and Mercury for an observer in
the center of the Sun. The last term in Eq. (21) can be physically interpreted
as a force centrifuge. Since the angular momentum J is a constant of motion,
one has that

J = mr2θ̇. (22)

Solving for θ̇ and substituting in Eq. (21), one gets

Fc(r) = m

(

r̈ −
J2

m2r3

)

. (23)

In the case of a circular orbit of radius r0, r̈ = 0 and Eq. (23) reduces to

Fc(r0) = −
J2

mr30
. (24)

If Mercury is now slightly perturbed in the plane of its orbit and perpendicularly
to its initial trajectory, it will oscillate around r0 [10]. Then, one introduces
x = r− r0 and expresses the radial equation of motion in terms of x. Therefore
[10]

Fc (x+ r0) = mẍ− J2

m(x+r0)
3

= mẍ− J2

mr30

(

1+ x

r0

)3 .
(25)
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Since x
r0

≪ 1, one can use series expansion for the term in parentheses, con-
sidering only the first order terms in x

r0
. Expanding the member on the left in

Taylor series around the point r = r0 one gets [10]

Fc (r0) + F ′

c (r0) = mẍ−
J2

mr30

(

1−
3x

r0

)

. (26)

Inserting Eq. (24) in Eq. (26) one obtains [10]

ẍ+m−1

[

−
3Fc (r0)

r0
− F ′

c (r0)

]

x = 0 (27)

One notes that this equation describes a simple harmonic oscillator if the term
in parentheses is positive [10]. If this term was negative, there would be an
exponential solution and the orbit would not be stable [10]. Thus, for stable
orbits, the period of oscillation around r = r0 is [10]

T0 = 2π

(

m

− 3Fc(r0)
r0

− F ′

c (r0)

)
1
2

. (28)

One defines the apse angle ϕ0

2 as the angle swept by the radial vector between
two consecutive points of the orbit where the radial vector itself takes on an
extremal value [10]. The time that Mercury needs to travel this angle is T0

2 .

Since the orbit can be considered approximately circular and being therefore
constant r and equal to r0, one solves Eq. (22) for θ̇ and finds [10]

ϕ0

2
=

T0

2
θ̇ = π

(

m

− 3Fc(r0)
r0

− F ′

c (r0)

)
1
2

J

mr20
. (29)

Furthermore, observing Eq. (24), one notes that the last term of Eq. (29) can
be rewritten as [10]

J

mr20
=

(

−
Fc (r0)

mr0

)
1
2

. (30)

Then, one gets [10]

ϕ0 = 2π

[

3 +
F ′

c (r0)

Fc (r0)

]

−
1
2

, (31)

and, by setting Fc = FG in Eq. (31), where FG is the Newtonian gravitational
force given by Eq. (9), one finds ϕ0 = 2π, which is exactly Eq. (7).

But, again, in the computation in this Section Mercury’s mass has been
considered negligible with respect to the mass of the Sun. A good way to
take into account the presence of Mercury’s mass is to work in the framework
of the two-body problem. The two-body problem studies the dynamics of a
system consisting of two massive objects (the Sun having mass M and Mercury
having mass m in the present case) subjected to a central force. Central force
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is defined as a force that only depends by the modulus of the difference of the
vectors position of the two objects and which is directed along the junction of
the two bodies. The expression of this kind of force is well known:

−→
F = F (|rm − rM |)

−→r m −−→r M

|−→r m −−→r M |
, (32)

where rm and rM are the positions of the two objects of mass m and M respec-
tively, that are subject to the central force of Eq. (32) in an inertial reference
system. One introduces the variables relative position, r, and position of the
center of mass, R. In this way, it is always possible to approach to the general
two-body problem with two independent problems through the following change
of variables:

−→
R = m

−→r m+M
−→r M

M+m

−→r = −→r m −−→r M .

(33)

With this change of variables the positions of Mercury and the Sun can be
written as:

−→r m =
−→
R + M

M+m
−→r

−→r M =
−→
R − m

M+m
−→r .

(34)

One also defines MT ≡ M +m and µ ≡ Mm
M+m

as the total mass and the reduced
mass of the system, respectively. It is well known that the problem of the
dynamics of two bodies of masses m and M interacting through one force that
depends only on mutual distance is reduced to the problem of a single body of
reduced mass µ that moves in space under the action of a central field. In other
words, in order to have a more precise description of the Sun-Mercury system
one makes the replacement m → µ in Eqs. from (21) to (31). In particular,
Eqs. (29) and (30) now read

ϕ

2
=

T

2
θ̇ = π

(

µ

− 3Fc(r0)
r0

− F ′

c (r0)

)
1
2

J

µr20
. (35)

and
J

µr20
=

(

−
Fc (r0)

µr0

)
1
2

, (36)

respectively. To first order in m
M

the reduced mass can be rewritten as

µ =
(

M+m
Mm

)−1
=
(

1
m

+ 1
M

)

−1

= m
(

1 + m
M

)

−1
≃ m

(

1− m
M

)

.

(37)
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Thus, Eq. (35) becomes

ϕ
2 = T

2 θ̇ ≃ π

(

m(1− m

M )
−

3Fc(r0)

r0
−F ′

c
(r0)

)
1
2

J

m(1− m

M )r20

≃ π
(

1 + m
2M

)

(

m

−
3Fc(r0)

r0
−F ′

c
(r0)

)
1
2

J
mr20

.

(38)

Then, one gets

ϕ = 2π
(

1 +
m

2M

)

[

3 +
F ′

c (r0)

Fc (r0)

]

−
1
2

, (39)

where now it is
Fc =

GMTµ
r2

=
G(M+m)( Mm

M+m )
r2

= FG

(40)

and one finds
ϕ = 2π

(

1 +
m

2M

)

, (41)

which is the same result of Eq. (19).

4 Weak deviation from third Kepler’s law

In order to work again in the framework of the two-body problem, one starts
by replacing m → µ in Eq. (22), obtaining

J = µr2θ̇ = 2µȦ0, (42)

where A is the area swept by ~r during the orbital motion. Thus, one obtains

J = 2µ
dA

dt
and dt = 2µ

dA

J
. (43)

Then, by integration over a period, one obtains

T = 2µ
A

J
. (44)

Recalling that the generic expression for the area of a conic is given by

A = πa2 (1− e)
1
2 , (45)

where a and e are the semi-major axis and the eccentricity of the ellipse, re-
spectively, one substitutes for (44) and gets

T = 2πµ
a2 (1− e)

1
2

J
. (46)
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Also remembering that it is

J2

µk
= a (1− e) , (47)

one obtains
J = [µak (1− e)]

1
2 . (48)

Then, by inserting Eq. (48) in Eq. (46) and by using a bit of algebra, one gets

T = 2π

(

a3µ

k

)
1
2

. (49)

As it is k = GMm for the gravitational system of Mercury and the Sun, Eq.
(49) becomes

T = 2π

(

a3

GMT

)
1
2

, (50)

where MT = M +m is the total mass of the system. Hence, from Eq. (50) one
easily obtains

a3

T 2 = GMT

4π2

= G(M+m)
4π2 = GM

4π2

(

1 + m
M

)

,

(51)

and one immediately sees that Kepler’s third law, that is “the ratio between T 2

and a3 is constant for each planet in the solar system, depending only on the

mass of the Sun and not from that of the planet”, i.e.

a30
T 2
0

=
GM

4π2
, (52)

is strictly correct only in the approximation m ≪ M , when the mass of the
planet is considered negligible with respect to the solar mass. a0 and T0 in
Eq. (52) are the unperturbed semi-major axis and the unperturbed period of
revolution of the ellipse, respectively. Therefore, if one considers the mass of the
planet as being not negligible with respect to the solar mass, Eq. (51) shows
that there is a weak deviation from Kepler’s third law in Newtonian gravitation.
Combining Eqs. (52) and (51) one obtains

a3

T 2 =
a3
0

T 2
0

(

1 + m
M

)

=⇒ a3

a3
0
= T 2

T 2
0

(

1 + m
M

)

.

(53)

On the other hand, if one wants that the variation of the angle merely makes
the ellipse precess [11], that means that the shape and area of the ellipse remain
unchanged during the advance of the perihelion, one must set a = a0. Then,
inserting this in Eq. (53) one immediately gets

T =
T0

(

1 + m
M

)
1
2

, (54)
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which is exactly the result of Eq. (17) that was obtained in Section 2 in the
approximation of circular orbity. One also easily checks that Eq. (54) is consis-
tent with Eq. (38) in Section 3 too. Thus, the corresponding perturbed angular
velocity is

ω =
2π

T
=

2π

T0

(

1 +
m

M

)
1
2

= ω0

(

1 +
m

M

)
1
2

. (55)

Hence, the angle that Mercury sweeps during the period T0 is

ϕ = ωT0 = 2π
(

1 +
m

M

)
1
2

≃ 2π
(

1 +
m

2M

)

, (56)

in radians per revolution, where in the last step the first-order approximation
in m

M
has been used exactly like in previous Sections. The result of Eq. (56)

is the same as that of Eqs. (19) and (41), but the analysis in this Section is
more precise because it has been performed in the framework of the two-body
problem and considering the exact elliptical orbit of Mercury.

5 Conclusion remarks

It has been shown through three different approaches that, contrary to a long-
standing conviction longer than 150 years, the orbit of Mercury behaves as re-
quired by Newton’s equations with a very high precision if one correctly analyses
the situation in the framework of the two-body problem without neglecting the
mass of Mercury. The results obtained are remarkable. The real value predicted
by Newtonian theory concerning the advance of the perihelion of Mercury is of
44.39′′ per tropical century that well approximates the value of about 42, 98′′ per
tropical century of general relativity and the well known observational value of
43′′ per tropical century. Thus, the real difference between Einstein’s and New-
ton’s previsions concerning the advance of the perihelion of Mercury is not of
about 43′′ as astronomers and researchers were thinking for more than 100 years.
Instead, such difference is only of 1.41′′ per tropical century. The physical inter-
pretation of this remarkable result is that it is Mercury’s back reaction, in terms
of Newton’s third law of motion, that generates the advance of the perihelion
of Mercury in Newtonian framework. General relativity remains more precise
than Newtonian theory regarding the precession of Mercury’s perihelion, but
the difference is very little. Another important point is that general relativ-
ity achieves a very precise value for the advance of the perihelion of Mercury
considering the planet as being a test mass immersed in the general relativistic
gravitational field of the Sun. Instead, in order to gain power of predictability,
Newtonian theory must consider Mercury’s mass as being not negligible. Thus,
surely the results in this paper are not against the great power of predictability
of Einstein’s theory. They instead endorse the issue that Newtonian theory is
more powerful than researchers and astronomers were thinking till now! One
also recalls Einstein’s opinion on Newton’s reseach work [12]: “Enough of this!

Newton, forgive me; you found the only way which, in your age, was just about

possible for a man of highest thought - and creative power. The concepts, which
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you created, are even today still guiding our thinking in physics, although we

now know that they will have to be replaced by others farther removed from the

sphere of immediate experience if we aim at a more profound understanding of

relationships.”
In order to finalize this paper, one argues that it is not too much surprising

that Newtonian theory can give such a very precise value for the advance of the
perihelion of Mercury. In fact, it is a well known issue that general relativis-
tic corrections are strictly necessary in physics only in the cases of relativistic
velocities and/or strong gravitational fields. But, on one hand, the velocity
of Mercury in its revolution around the Sun is never relativistic. On the other
hand, there is no presence of strong gravitational fields, because the distance be-
tween Mercury and the Sun is always much longer than the Sun’s gravitational
radius.

Thus, the present paper shows that Newtonian theory still has big surprises
for scientists!
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