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Abstract  

The special problem we try to get at with these lectures is to maintain the interest of the very 

enthusiastic and rather smart people trying to understand physics. They have heard a lot about how 

interesting and exciting physics is—the theory of relativity, quantum mechanics, and other modern 

ideas—and spend many years studying textbooks or following online courses. Many are discouraged 

because there are really very few grand, new, modern ideas presented to them. Also, when they ask too 

many questions in the course, they are usually told to just shut up and calculate. Hence, we were 

wondering whether or not we can make a course which would save them by maintaining their 

enthusiasm. This paper is a draft of the second chapter of such course.  
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Preface1 
To explain what a probability amplitude might actually be, one has to get into the specifics of the 

situation: explaining how an ammonia maser might work as opposed to, say, having a look at 

Schrödinger’s hydrogen atom, are very different endeavors. However, despite the very different 

physicality of these two systems, they allow for a similar approach in terms of their quantum-mechanical 

analysis. The question is: why is that so? The preliminary answer is this: both phenomena involve 

periodicity and regularity – some oscillation – which, mathematically, can be represented by the same 

mathematical functions: a sinusoid or – what Nature seems to prefer – a combination of a sine and a 

cosine: Euler’s a·eiθ = a·(cosθ + i·sinθ) function.2  

In our previous lecture (chapter I), we showed how we may use the elementary wavefunction to 

represent an elementary particle: we looked at the electron and its smaller more massive and unstable 

variant⎯the muon. We also discussed protons and neutrons⎯modeling the latter as composite 

particles, which are stable inside of a nucleus only.3 We concluded all should be thought of as ring 

currents which can, effectively, be represented by Euler’s function: we may, effectively, interpret r = 

a·eiθ as the r = (x, y) position of the electric charge as it orbits around some center with radius a = ħ/mc 

and frequency ω = E/ħ. There is more than one way to represent this model but we think the easy 

formulas and derivation below do the trick rather well4: 

𝑐 = 𝑎ω
E = ℏω

 } ⇒
𝑐

𝑎
=

E

ℏ
⟺ 𝑎 =

ℏ𝑐

E
=

ℏ

m𝑐
 

This should – by now – come across as rather intuitive: Einstein and de Broglie’s intuition in regard to 

the wave-nature of matter was essentially correct, but they should have thought of a stationary circular 

 
1 This is the second chapter of a rather ironic re-write of Feynman’s iconic lectures series on quantum mechanics. 
The reader will not be able to make sense of this chapter without a thorough reading of our first chapter. 

2 The sine and cosine function are the same function but with a phase difference of 90 degrees. We, therefore, 
may think of some kind of perpetuum mobile: two oscillations working in tandem and transferring (potential 
and/or kinetic) energy to and from each other. We developed this metaphor in one of very first papers which, if 
only because of its naïve simplicity, we may still recommend.  

3 The negative charge inside of a neutron may help to keep the nucleus together. We can, therefore, think of this 
charge as some kind of nuclear glue. We tentatively explored this idea in a paper: Electrons as gluons? The basic 
idea is this: the electromagnetic force keeps electrons close to the positively charged nucleus and we should, 
therefore, not exclude that a similar arrangement of positive and negative charges – but one involving some 
strong(er) force to explain the difference in scale – might exist within the nucleus. One can effectively never find a 
proton pair without one or more neutrons: the main isotope of helium (4He), for example, has a nucleus consisting 
of two protons and two neutrons, while a helium-3 (3He) nucleus consists of two protons and one neutron. When 
we find a pair of nucleons, like in deuterium (2H), this will always consist of a proton and a neutron. The idea of a 
negative charge acting as an in-between to keep two positive charges together is, therefore, quite logical. Think of 
it as the opposite of a positively charged nucleus keeping electrons together in a multi-electron atom. 

4 This derivation shows our model applies Wheeler’s ‘mass without mass’ idea: all of the mass is in the energy of 
the oscillation. A dimensional analysis of the two sides of the c/a = E/ħ equation is interesting too. We have the 
inverse of a time unit on the left-hand side because we are dividing a (tangential) velocity by a distance unit (the 
Compton radius): c/a = ω = 2π·f = 2π/T. The latter is, effectively, the inverse of what is sometimes referred to as an 
angular period (T/2π), as opposed to a linear period (T). Energy is expressed in N·m, while Planck’s (reduced) 
quantum of action is expressed in N·m·s. Hence, these physical dimensions make sense. 

https://www.feynmanlectures.caltech.edu/III_toc.html
https://vixra.org/pdf/2006.0068v3.pdf
https://vixra.org/pdf/1806.0106v1.pdf
https://vixra.org/pdf/1908.0430v4.pdf
https://en.wikipedia.org/wiki/Frequency#/media/File:Commutative_diagram_of_harmonic_wave_properties.svg
https://en.wikipedia.org/wiki/Frequency#/media/File:Commutative_diagram_of_harmonic_wave_properties.svg
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oscillation instead of trying to adapt the linear wave concepts that we associate with photons or, more 

generally, with electromagnetic and all other physical waves. The conceptual switch that has to be made 

here is to think of c as a tangential rather than a linear velocity: that is all⎯nothing more, nothing less. 

So let us turn the page on this and move to the next⎯the topic of this chapter: the concept of 

probability amplitudes. 

Indeed, using Euler’s function to describe a particle and using it in what is commonly referred to as a 

probability amplitude are two very different things. Let us look at the latter in more detail by analyzing a 

particular two-state system and then see whether or not we can generalize whatever results we might 

get.  

2-1 A two-position system 
A state may refer to a position so we will take an easy two-position system5 as an example of a two-

state system: an ammonia molecule in an electric field (Figure 1).6 

 

Figure 1: An ammonia molecule in an electrostatic field7 

We choose this example for the same reason as why Feynman uses it in his introduction to two-state 

systems: the ammonia maser is one of the very first practical applications of the theory of quantum 

mechanics. It was built in the early 1950s and its inventor, Charles Townes, wanted the m in maser to 

refer to molecular. The mechanism is similar to that of a laser: the a, s, e, r in maser effectively refer to 

the same as in laser (amplification by stimulated emission of radiation). However, instead of 

electromagnetic waves in the frequency spectrum of visible light, a maser produces micro-, radio- or 

infrared frequencies. These are associated with lower energies, which correspond to the smaller 

differences between the energies that are associated with the position of the nitrogen atom in the 

 
5 In case the reader wonders: yes, we just invented this term. 

6 In case you wonder what an electric field actually is, we mean an electrostatic field, which originates from static 

charges−as opposed to a magnetic field, which originates from moving charges. 

7 We gratefully acknowledge the online edition of Feynman’s Lectures for this illustration. 

https://www.feynmanlectures.caltech.edu/III_09.html
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ammonia (NH3) molecule. 

The state concept 
Figure 1 clearly shows position states 1 and 2 have nothing to do with the spin state of the molecule 

as a whole: that is the same in the right- and left-hand side illustrations, as shown by the rotation arrow 

around the symmetry axis of this molecule. There is no spin flip, and you should also not think that this 

NH3 molecule goes from state 1 to 2, or vice versa, by flipping over as a whole⎯by changing its 

orientation its space, that is. No! What happens here is that the nitrogen atom (N), somehow, manages 

to tunnel through the plane that is formed by the three hydrogen atoms (H3). We will come back to this. 

Before we do so, we should note that we have not introduced much quantum-mechanical symbolism 

yet, so let us quickly do this now. 

The 1 and 2 notation represent physical base states here. This ϕ notation is known as the ket in 

Dirac’s bra-ket notation and always refers to some initial state that may or may not change. In contrast, 

the 〈χ| notation is a bra-state and refers to some final state. These initial and final states are separated 

by time – states may change as the clock keeps ticking without us intervening in any way – or, 

alternatively, because we put the particle through some apparatus, process, or force field⎯which we 

may denote by A or S. We may, therefore, say some apparatus or process will operate on some (initial) 

state ϕ to produce some (end) state 〈χ|. We write that like this: 

⟨ χ | A | ϕ ⟩ 

Note you need to read this from right to left, like Arabic or Hebrew. Because this looks quite formidable, 

we should give a practical example: if the electric field – the Ɛ in the illustration8 – is very strong or, if it 

is being applied long enough, then an atom in the 1 state will go into the 2 state so as to ensure the 

electric dipole moment of the ammonia molecule () is aligned with the electric field.9 This is all quite 

logical because the energy of the ammonia molecule as a whole will be lower if and when it can align its 

dipole moment with the field. 

We should, of course, note that the notion of an energy difference between the two states can only be 

defined with reference to some external field: we can say that the NH3 molecule has more energy in 

state 1 than in state 2 because its polarity in state 1 opposes the field. We may, therefore, say that 

the external field establishes the frame of reference: what is up or down, left or right, and back or front 

can, effectively, only be defined with a reference to this externally applied field.10 This may seem to be a 

 
8 We usually use E for an electric field but we use the Ɛ symbol here so as to ensure there is no confusion with the 
E that is used to denote energy. 

9 Notation is tricky once again because we use the same  symbol to refer to a magnetic moment in another 
context. However, we trust the reader is smart enough to know what is what here. 

10 The reader may think this electric field has the same axis of symmetry as the NH3 molecule and that we may, 
therefore, not be able to distinguish left from right or vice versa. However, this problem is solved because it is 
assumed we have knowledge of the spin direction (see the rotation arrow in Figure 1). We also know what is back 
and front because we are doing this experiment and we, therefore, have some idea of our own relative position 
vis-à-vis the electric field and the ammonia molecule. In short, we may say that the experiment as a whole comes 
with the relevant frame of reference for the measurement of position, energy and whatever other physical 
property or quantity we would want to observe here. 
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trivial philosophical remark but physicists sometimes seem to lose sight of this when doing more 

complicated abstract mathematical calculations.  

Potential wells and tunneling 
If there is an energy difference between state 1 than in state 2, then how can we explain the nitrogen 

atom tends to stay where it is? How is that possible? The reader will be familiar with the concept of a 

potential well – if not, google it – and the reader should, therefore, note that the potential energy of the 

N atom will effectively be higher in state 1 than in state 2 but, because of the energy barrier (the wall 

of the potential well), it will tend to stay where it is⎯as opposed to lowering its energy by shifting to the 

other position, which is a potential well itself! 

Of course, you need to read all of the above carefully: we wrote that the nitrogen atom will tend to stay 

where it is. From time to time, it does tunnel through. The question now becomes: when and how does 

it do that? That is a bit of a mystery, but you should think of it in terms of dynamics. We basically 

modeled particles as charges in motion. Hence, we think of an atom as a dynamic system consisting of a 

bunch of elementary (electric) charges. These atoms, therefore, generate an equally dynamic 

electromagnetic field structure. We, therefore, have some lattice structure that does not arise from the 

mere presence of charges inside but also from their pattern of motion. 

Can we model this? Feynman did not think this was possible. In contrast, we believe recent work on this 

is rather promising⎯but we must admit it has not been done yet: it is, effectively, a rather complicated 

matter and, as mentioned, work on this has actually just started!11 We will, therefore, not dwell on it 

here: you should do your PhD on it!       The point is this: you should take a dynamic view of the fields 

surrounding charged particles. Potential barriers – and their corollary: potential wells – should, 

therefore, not be thought of as static fields: they vary in time. They result from or more charges that are 

moving around and thereby create some joint or superposed field which varies in time. Hence, a particle 

breaking through a ‘potential wall’ or coming out of a potential ‘well’ is just using some temporary 

opening corresponding to a very classical trajectory in space and in time.  

There is, therefore, no need to invoke some metaphysical Uncertainty Principle: we may not know the 

detail of what is going on⎯but we can surely model it using classical mechanics! In fact, that is precisely 

what we are trying to do here!     

Modeling uncertainty 
The reader should, once again, note that the spin state or angular momentum state is the same in the 

1 and 2 states. Hence, the only uncertainty we have here is in regard to the position of the nitrogen 

atom (N) vis-à-vis the plane that is formed by the three hydrogen atoms (H). As long as we do not 

actually investigate, we cannot know in what state this nitrogen atom – or the molecule as a whole – 

actually is. Paraphrasing Wittgenstein12, we can say our theory tells us what might be the case: it is only 

some measurement that can establish what actually is the case. We can, of course, also prepare the NH3 

molecule by polarizing it in a strong-enough electric field. However, in either case, we will, of course, 

 
11 In case you would want to have an idea of the kind of mathematical techniques that are needed for this, we 
hereby refer you to a recent book on what is referred to as nuclear lattice effective field theory (NLEFT).  

12 We refer to Wittgenstein’s theses in his Tractatus Logico-Philosophicus, which our reader may or – more likely – 
may not be familiar with. 

https://www.springer.com/gp/book/9783030141875


5 
 

disturb the system and, by doing so, put it in some new state.  

We do not want to do that. Instead, we will try to model our uncertainty in regard to the position of the 

nitrogen atom, in the absence of a measurement or polarization, by thinking of it in very much the same 

way as the proverbial cat in the equally proverbial Schrödinger box: because we do not know if it is dead 

or alive, we can only associate some abstract logical state with it⎯a combination of being dead and 

alive which exists in our mind only. Fortunately, the state of the ammonia molecule is much less 

dramatic or critical as that of Schrödinger’s cat, and we will simply write it as: 

|ϕ⟩ = C1·1 + C2·2 

This looks like a very simple formula but it is actually quite frightening what we are doing here: 

1. The 1 and the 2 states are (logical) representations of what we think of as a physical state: they are 

possible realities⎯or real possibilities, whatever term you would want to invent for it. When using them 

in a mathematical equation like this, we will think of them as state vectors. There is a lot of 

mathematical magic here, and so you should wonder: what kind of vectors are we talking about? 

Mathematicians refer to them as Hilbert vectors13 and Figure 2 shows why Schrödinger liked them so 

much: whatever they might represent, we can effectively add and multiply them, somehow. 

 

Figure 2: Adding cats dead, alive or in-between14 

2. In this case, we multiply them with C1 and C2, which are usually referred to as complex numbers (or 

complex functions, to be precise) but – because we are multiplying them with these state vectors – you 

will want to think of them as vectors too. That is not so difficult: complex numbers have a direction and 

a magnitude, so they are vectors alright! 

3. The sum of the C1·1 + C2·2 then gives us the |ϕ⟩ state. This is a logical state: it exists in our mind 

 
13 This is actually incorrect: they are referred to as being vectors in a Hilbert space. It depends on what you think of 
as being special: we think it is the vectors, rather than the space, so we add Hilbert’s name to the vectors rather 
than the space. In case you wonder, David Hilbert is not English. He was German. He died in 1943 and his tomb 
carries these words: Wir müssen wissen. Wir werden wissen, which we may translate as: “We must know. We will 
know.” 

14 We saw this cartoon on MathExchange, which references AbstruseGoose as the source. 

https://math.stackexchange.com/questions/416551/what-is-a-hilbert-space
https://abstrusegoose.com/
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only.15 Why in our mind only? Because we are not trying to measure anything so we are in a state of 

uncertainty ourselves.  

Let us stop the philosophy here: let us present a few calculations instead. 

2-2 Amplitude math 

What is that we want to calculate? 
Because calculation is very boring and, more importantly, because it is important to not lose track of 

whatever is that we want to calculate16, we will give you a sneak preview of the result that we want. It 

looks like this⎯two probabilities ‘sloshing back and forth’, as Feynman would say, as a function of time: 

 

Figure 3: Probabilities sloshing back and forth17 

The illustration triggers an obvious question: how do we know our nitrogen atom will be at position 1 or, 

we should say, in state 1 at t = 0, π, 2π,… as measured in the relevant unit here, which is ħ/A? The 

graph assumes we do: perhaps we had switched on some strong electric field for a while so as to 

polarize the ammonia molecule⎯and then we switched it off at t = 0. It does not matter⎯not at this 

point, at least: probabilities are probabilities, so there is, perhaps, no reason why we must be so sure. 

The important thing is the periodicity of these functions: the cycle time πħ/A.18 That is what we want to 

calculate. So how do we find that cycle time, and what is the value of A?19  

We will tell you. Let us just quickly also answer the latter question: A is equal to μƐ0. Of course, this is no 

real answer because the question now becomes: what is Ɛ0? We can, effectively, measure the (electric) 

 
15 You may think we should distinguish a third physical state: the state of our nitrogen atom while it is moving from 
position 1 to position 2 or vice versa. However, we assume this happens so quickly that the time that is spent in 
this state is negligible. We think the state itself is, therefore, negligible. 

16 You will be surprised but people do sometimes forget what they want to get at. I sometimes do, at least.       

17 We gratefully acknowledge the online edition of Feynman’s Lectures for this illustration too. 

18 When expressing the cycle time, the factor 2 vanishes because we must measure the cycle time from peak to 
peak, or from trough to trough. 

19 We will quickly tell you the answer: A is equal to μƐ0. Of course, this is no real answer because the question now 
becomes: what is Ɛ0? We can, effectively, measure the (electric) dipole moment μ, but Ɛ0 must be related to the 
strength of the external field Ɛ. What field? Feynman is remarkably and mysteriously vague about that. πħ/A 

https://www.feynmanlectures.caltech.edu/III_09.html
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dipole moment μ, but Ɛ0 must be related to the strength of the external field Ɛ. What field are or should 

we be applying here? Feynman is rather vague about that, but we get some kind of answer in the next 

lecture20: it turns out that, when actually operating an ammonia maser, we will apply an electric field 

that varies sinusoidally with a frequency that is equal or very near to the so-called resonant frequency of 

the molecular transition between the two states, which is equal to ω = ω0 = 2A/ħ. We write21: 

Ɛ = 2Ɛ0·cos(ωt) = Ɛ0·(ei·ωt + e−i·ωt) 

The reader will (or should) note there is some circularity in the argument here, but we cannot help that: 

we stick quite closely to Feynman’s rather heuristic approach to explaining quantum math, and so it is 

what it is and we request the reader to try to get through it and make sense of it. 

Coefficients and the Hamiltonian matrix 
If someone has talked to you about quantum mechanics at all, chances are he or she mentioned the 

Hamiltonian. So what is this (in)famous Hamiltonian? It has got little or nothing to do with classical 

Hamiltonian mechanics, so we recommend you do not try to compare too much: one can, actually, but it 

will probably only confuse you if you try to do this at this stage of your studies.22 To explain what it is all 

about, we will review that formula we started out with: 

|ϕ⟩ = C1·1 + C2·2 

You may want to think of C1·1 and C2·2 as two vector products, and you may think this is consistent 

with the notion of probabilities being calculated as the (absolute) square of some probability amplitude. 

To be precise, a probability will generally be calculated as something like this23: 

 
20 This chapter deals with a number of chapters in Feynman’s Lectures (about half of his lectures discuss some kind 
of two-state system) but Feynman’s Chapter 8 and 9 are the basic ones, because they both deal with the 

mechanics of the ammonia maser⎯which we, just like Feynman, think of representing the basics of a quantum-
mechanical discussion of any two-state system. 

21 The reader should note the interesting formula for the sum and/or the difference of conjugate complex numbers 
or functions here, because we will need them later: 

ei·θ + e−i· θ  = cosθ + i·sinθ + cosθ − i·sinθ = 2·cosθ 

ei·θ − e−i· θ  = cosθ + i·sinθ − cosθ + i·sinθ = 2·i·cosθ 

22 Sir William Rowan Hamilton, whose name is associated with this, died long ago (in 1865, or be precise) and was, 
therefore, aware of classical mechanics only. In fact, Hamiltonian mechanics refers to a reformulation of good old 
Newtonian mechanics. Most relevant for quantum mechanics is his great work in regard to complex number 
theory: he actually extended the concept of complex numbers to quaternions, which have found renewed usage in 
the programming of computer video games. 

23 You should probably review some of the basic rules in regard to complex numbers, basic trigonometry, and 
various other related and unrelated rules, such as the rule for squaring absolute values and all that. Note that we 

must not necessarily assume the coefficient a is a real but positive number⎯although it usually is: a2 will always 

be equal to a2, even if a is a negative real number. As for eiθ2 being equal to 1, we should remind ourselves of the 
definition of the absolute value of a complex number: it is the length of the associated vector, which we find by 
taking the positive square root of the sum of the squares of cosθ and sinθ. Let us write this out for clarity: 

|𝑒𝑖θ| = +√cos2θ + sin2θ ⟺ |𝑒𝑖θ|
2

= |+√cos2θ + sin2θ|
2

= |+√1|
2

= 1 

https://en.wikipedia.org/wiki/Quaternion
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P = 2 = a·eiθ2 = a2·eiθ2 = a2  

We may remind ourselves also of some other formula here, which might or might not help us to get a 

more intuitive grasp of the rather special math we are going to use⎯Pythagoras’ formula in vector 

format24: 

c2 = a2 + b2  c2 = a2 + b2  c2 = a2 + b2  c·c = a·a + b·b2  

Needless to say, the a and b vectors are orthogonal or perpendicular vectors here. It is interesting to 

write c more generally as the sum of any two vectors a and b – orthogonal or not – and to square this 

sum: 

c2 = (a + b)2 = a2 + b2 + 2a·b = a2 + b2 + a·b·cosθ = a2 + b2 if and only θ = ±π/2   

We get the same result: Pythagoras formula is valid if and only if a and b are orthogonal vectors. This 

condition is valid in quantum math too: a system – any system, really – will always be described in terms 

of base states which will be orthogonal one to another. This matches the condition of linear 

independence for any set of base vectors in any mathematical space.      

So far, so good. Let us think about what we wanted to think about here: those coefficients C1 and C2. 

They will be complex functions of time as well, so we should write them as C1(t) and C2(t). We will also 

have time derivatives dC1(t)/dt and dC2(t)/dt. What can we do with this? I must refer to Feynman’s 

lecture on how states change with time25 here for a great but rather complicated abstract logical 

argument which involves time as an apparatus. I will just note Feynman’s introduction to it⎯and the 

grand result, of course: 

“We have already talked about how we can represent a situation in which we put something 

through an apparatus. Now one convenient, delightful “apparatus” to consider is merely a wait 

of a few minutes; that is, you prepare a state ϕ, and then before you analyze it, you just let it sit. 

Perhaps you let it sit in some particular electric or magnetic field—it depends on the physical 

circumstances in the world. At any rate, whatever the conditions are, you let the object sit from 

time t1 to time t2.”   

Then follows the mentioned brilliant exposé⎯which we will not copy here. We just copy the grand 

result: 

𝑖ℏ
𝑑𝐶1

𝑑𝑡
= 𝐻11𝐶1 + 𝐻12𝐶1 

𝑖ℏ
𝑑𝐶2

𝑑𝑡
= 𝐻21𝐶1 + 𝐻22𝐶1 

 
24 We are deliberately a bit sloppy in using the dot for a product, or not⎯because we want you to think about the 
difference between a vector dot product and the usual scalar product. A vector dot product involves a cosine 

factor: a·b = a·b·cosθ. The θ is, of course, not the phase but the angle between the two vectors.   

25 See: Feynman’s Lectures on Quantum Mechanics, Chapter 8, section 4. The argument is quite dense and we, 
therefore, produced one or two explanatory blog articles on it. However, we will not repeat those here because 
Caltech objected to us using some of Feynman’s original material. 

https://www.feynmanlectures.caltech.edu/III_08.html#Ch8-S4
https://readingfeynman.org/2016/01/21/the-hamiltonian-coefficients-what-are-they/
https://readingfeynman.org/2020/06/18/the-dark-forces/
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You may wonder: what is this? It does not define those Hamiltonian coefficients Hij, does it? The answer 

is: it does. The coefficients C1 and C2 vary in time and to find them, we must solve for these Hamiltonian 

coefficients, which relate the C1(t) and C2(t) functions to their (time-)derivatives. These Hamiltonian 

coefficients are not time-dependent: they are constants and one can show they are related to the 

energy levels and/or the energy difference between them. To be precise, one can show26 that, in this 

particular case, the coefficients in the Hamiltonian will be equal to: 

[
𝐻11 𝐻12

𝐻21 𝐻22
] = [

E0 −A
−A E0

] 

What this energy E0 and the energy difference A actually means, should be clear from the illustration 

below, which shows what happens in the absence and/or presence of an external electric field. 

 

Figure 4: Separation of energy states when applying an external field27 

Indeed, Figure 4 shows we can actually not talk of separate energy states if no external field is being 

applied: the energy of the ammonia molecule is just E0 and there is no such thing as a higher or a lower 

energy state. In contrast, when an external field is being applied, we will have a higher or lower energy 

state depending on the position of the nitrogen atom and, therefore, of its position state. Feynman no 

longer refers to these energy states or levels as 1 or 2 but as state I and II, respectively.28 Why is that so? 

 
26 See the above-mentioned reference to Feynman’s Chapter 8. 

27 We gratefully acknowledge the online edition of Feynman’s Lectures for this illustration too. 

28 We have no idea why Feynman thinks it is necessary to switch to a supposedly new set of base states, which he 

writes as I + II respectively and which are associated with two new amplitudes CI and CII, respectively. It confuses 
the argument greatly and we do not see any added value. In any case, the reader should note Figure 4 gives us the 
formulas for these two energy levels: 

E𝐼  =  E0 + √A2 + μ2Ɛ2  

E𝐼𝐼  =  E0 − √A2 + μ2Ɛ2 

https://www.feynmanlectures.caltech.edu/III_09.html
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Because the nitrogen atom will no longer equally divide its time over position 1 and 2: if possible, at all, 

it will want to lower its energy permanently by staying in the lower energy state. This is, effectively, how 

we can polarize the ammonia molecules in a maser. Hence, the illustration below – which basically 

recopies Figure 3 – is valid only for very small values of Ɛ0: if we apply a stronger field, all ammonia 

molecules will align their dipole moment and stay aligned. 

But so we will assume we are applying a very small field only⎯or no field at all, in which case we can 

calculate C1 and C2 as follows: 

𝐶1 = 𝑒
−𝑖

E0
ℏ

𝑡
cos (

A

ℏ
𝑡) 

𝐶2 = 𝑖 ∙ 𝑒
−𝑖

E0
ℏ

𝑡
sin (

A

ℏ
𝑡) 

How did we calculate that? We cannot say because we did not calculate anything here: we refer to 

Feynman for a rather ingenuous solution to that set of differential equations above.29 The point is this: 

we can now take the absolute square of these amplitudes to get the probabilities: 

|𝐶1|2 = cos2 (
A

ℏ
𝑡) 

|𝐶1|2 = sin2 (
A

ℏ
𝑡) 

Those are the probabilities shown in Figure 3. The probability of being in state 1 starts at one (as it 

should), goes down to zero, and then oscillates back and forth between zero and one, as shown in that 

P1 curve, and the P2 curve mirrors the P1 curve, so to speak. We can also see they respect the 

requirement that the sum of all probabilities must add up to 1: cos2θ + sin2θ = 1, always. That is 

Pythagoras’ theorem once more.   

Is that it? Yes. We must conclude our remarks here. We will do so by re-asking the question we started 

out with. 

What is that we want to calculate? 
We wanted to calculate that cycle time πħ/A, and so we did that. And then we did not, of course. We 

are still stuck with that circular A = μƐ0 equation. In fact, we need to ask ourselves: what determines E0? 

At the very end of his argument, Feynman writes this30: 

“In the discussion up to this point, we have assumed values of E0 and A without knowing how to 

calculate them. According to the correct physical theory, it should be possible to calculate these 

constants in terms of the positions and motions of all the nuclei and electrons. But nobody has 

 
In the absence of an external field (Ɛ = 0), these formulas reduce to E0 + A and E0 − A, which correspond to the 

energy levels that are associated with the original 1 and 2 position states as well as with the C1 and C2 
amplitudes, respectively. 

29 Reference above: Feynman’s Lectures, Volume III, Chapter 8, pages 8-11 to 8-14. 

30 To be truthful, it is not at the very end of his exposé⎯but just quite late in the game (section 9-2), and what 
follows does not give us anything more in terms of first principles. 
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ever done it. Such a system involves ten electrons and four nuclei and that’s just too 

complicated a problem. As a matter of fact, there is no one who knows much more about this 

molecule than we do. All anyone can say is that when there is an electric field, the energy of the 

two states is different, the difference being proportional to the electric field. We have called the 

coefficient of proportionality 2μ, but its value must be determined experimentally. We can also 

say that the molecule has the amplitude A to flip over, but this will have to be measured 

experimentally. Nobody can give us accurate theoretical values of μ and A, because the 

calculations are too complicated to do in detail.” 

This basically amounts to admitting defeat: we cannot calculate what we wanted to calculate based on 

first principles. Not a great success! In addition, we are still left with this great mystery: why do we need 

to take the (absolute) square of some complex-valued amplitude to get a probability? 

Conclusions 
We did not manage to clearly answer the question we started out with: what are those probability 

amplitudes, exactly? And why should we square them to get some probability? We cannot really answer 

this question because, while thinking of C1·1 and C2·2 as two vector products, we did not associate any 

mathematical function with 1 and 2. We therefore feel that we have just been blubbering around 

without being able to offer any real interpretation of what those probability amplitudes actually are: 

talking about these coefficients C1 and C2 without clearly stating what these C1·1 and C2·2 products 

represents results in the whole argument coming across as vague and mysterious. We must assume that 

is how the author of the arguments we presented here – Richard Feynman – wanted it to be. 

We will try to come up with some better definitions of what a state or base vector might actually be 

here. We suspect it will depend on the specifics of the situation which, in this case, is the modeling of a 

maser: as long as long as we do not come up with a better description or definition of these state or 

base vectors, the concept of a probability amplitude is bound to remain as vague as the 1 and 2 

notation that we have been using.  

In the absence of such more precise description, we may just as well say we are looking at some 

oscillation here, and that we may use the Planck-Einstein relation once again to determine its frequency. 

The relevant energy to be used is an energy difference and the situation, therefore, resembles the 

energy difference between, say, two electron orbitals in the Rutherford-Bohr model of an atom. We 

write: 

ω =
E

ℏ
=

A

ℏ
=

μƐ0

ℏ
 

The particular form of the Planck-Einstein relation above may, therefore, be equivalent to a classical 

description of the situation at hand. Such simpler classical description has the added advantage that it 

avoids ill-defined concepts such as state vectors and probability amplitudes. 


