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Abstract

Gravity is the most problematic interaction of modern science. Our current
understanding of gravitation as a spacetime curvature needs the introduction
of both Dark Matter and Dark Energy accounting for 95% of the energy of
the universe. Questioning the very foundations of gravity might be the key
to understanding it better since its description changed over time. Newton
described it as a force, Einstein described it as a spacetime curvature and this
paper shows how gravity can be described as a force able to bend spacetime
instead. Based on a physical interpretation of the Schwarzschild metric, this
approach yields the same predictions as General Relativity such as Mercury’s
Perihelion Precession, Light Bending, Time Dilation and Gravitational Waves
as well as predicted testable deviations from General Relativity. Applying this
description of gravity to cosmology accounts for the accelerating expanding
universe with no need for Dark Energy. Described as a spacetime bending
force, gravity becomes quantizable as a force in a curved spacetime which is
compatible with the Standard Model of particle physics. Therefore, one could
adapt the Lagrangian of the Standard Model to this theory to achieve Quantum
Gravity.

INTRODUCTION

Understanding gravity is one of the most important challenge of modern sci-
ence. For a long time, General Relativity had no reason to be questioned since
it was in line with the observations. That was until the observation of an unex-
pectedly high rotation speed of galaxies and then, more recently, the discovery of
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the accelerating expanding universe through observations of distant supernovae.
Both are not explainable through General Relativity unless we hypothesize the
existence of Dark Matter and Dark Energy respectively, accounting for 95% of
the energy of the universe. Current research focuses on creating models to de-
scribe Dark Matter and Dark Energy instead of seriously questioning General
Relativity. Thinking differently about gravitation might be the key to under-
standing it better.

Newton thought of it as a force, then Einstein theorized it as a spacetime cur-
vature, but what if gravity could be described as a force able to bend spacetime
instead? This paper shows that gravity can be consistently described as a space-
time bending force based on a physical principle inferred from the Schwarzschild
metric. We show that, writing the Lagrangian of a force in a curved spacetime,
we get equivalent equations of motion as General Relativity thanks to a phys-
ically acceptable hypothesis. From a simple homogeneous universe model, we
then show that it is possible to explain the accelerating expanding universe with
no Dark Energy. As a spacetime bending force, gravity becomes quantizable as
a force in a curved spacetime analogous to electromagnetism.

In this paper, Greek letters range from 0 to 3 (representing spacetime) and
Roman letters range from 1 to 3 (representing space). The metric signature
is (+ − −−) and we use Einstein’s summation convention. The Greek capital
letter Φ is the gravitational potential.

I - A Spacetime Bending Force

Einstein’s General Relativity states that a body moving through gravity is just
following a straight path in a curved spacetime. This is described by the geodesic
equations derived from a least action principle, with the following Lagrangian:

L0 = −m0c
√
gµν ẋµẋν

where gµν is the metric of the curved spacetime and m0 is the rest mass of
the body. If gravity were a force, in a scalar theory, the Lagrangian would be
of the form:

L′0 = −m0c
√
ηµν ẋµẋν −m0Φ

where ηµν is Minkowsky’s metric of a flat spacetime and Φ is the gravita-
tional potential. We know this Lagrangian is not correct since it would lead
to incorrect geodesic equations. So how could we get to the same geodesic
equations as General Relativity taking into account spacetime curvature and a
potential term? In a scalar theory, the Lagrangian of gravity as a force in a
curved spacetime would be of the form:
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L = −mc
√
gµν ẋµẋν −mΦ

where m is the inertial mass. As such, we still wouldn’t get the same geodesic
equations as General Relativity. Is it possible to slightly change it in a physically
acceptable way so it becomes equivalent to General Relativity’s Lagrangian?
Speed of light cannot be modified since Special Relativity laws wouldn’t apply
anymore. The only thing that could be changed is the inertial mass of the body.
Let’s then hypothesize that the inertial mass is relative such that:

m = α(Φ)m0

where the rest mass m0 is defined as the inertial mass in case of zero potential.
So we have: α(0) = 1. Inertial mass relativity is physically acceptable since we
already consider that the relativistic mass of a body is relative depending on its
speed.

The Lagrangian becomes:

L = −α(Φ)m0c
√
gµν ẋµẋν − α(Φ)m0Φ (1)

For more clarity, let’s also write: ṡ0 =
√
gµν ẋµẋν

We then have: L = −α(Φ)m0cṡ0 − α(Φ)m0Φ [i]

The Lagrangian equation restricted to space variables is:

∂L

∂xi
− d

dτ

∂L

∂ẋi
= 0 [ii]

Since Φ doesn’t depend explicitly on ẋi, we have:

−∂α(Φ)m0cṡ0

∂xi
− ∂α(Φ)m0Φ

∂xi
+

d

dτ

∂α(Φ)m0cṡ0

∂ẋi
= 0 [iii]

Leading to: −∂α(Φ)cṡ0

∂xi
− ∂α(Φ)Φ

∂xi
+

d

dτ
(α(Φ)

∂cṡ0

∂ẋi
) = 0 [iv]

It comes:

−α(Φ)
∂cṡ0

∂xi
− ∂α(Φ)

∂xi
cṡ0 −

∂α(Φ)Φ

∂xi
+
dα(Φ)

dτ

∂cṡ0

∂ẋi
+ α(Φ)

d

dτ

∂cṡ0

∂ẋi
= 0 [v]

We see the Lagrangian equation of General Relativity in the first and last
terms of the equation [v]. Let L0 = −m0cṡ0 , it comes:
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−∂α(Φ)

∂xi
cṡ0 −

∂α(Φ)Φ

∂xi
+
dα(Φ)

dτ

∂cṡ0

∂ẋi
+ α(Φ)(

∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 = 0 [vi]

Parametrizing with the body’s proper time, we have: ṡ0 = c. Thus:

−∂(α(Φ)c2 + α(Φ)Φ)

∂xi
+
dα(Φ)

dτ

∂cṡ0

∂ẋi
+ α(Φ)(

∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 = 0 [vii]

Notations can be misleading. We cannot replace ṡ0 by c in the expression
∂cṡ0

∂ẋi
since it’s a partial derivative. We have in fact:

∂cṡ0

∂ẋi
= c ·

∂
√
gµν ẋµẋν

∂ẋi
= c · 2 · gµiẋµ

2 ·
√
gµν ẋµẋν

= c · 2 · ẋi
2 · c

= ẋi [viii]

Hence:
dα(Φ)

dτ

∂cṡ0

∂ẋi
=
∂α(Φ)

∂Φ
· ∂Φ

∂xµ
ẋµ · ẋi [ix]

And calculating (
∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 gives a known standard result of General

Relativity [3][4][5][6]:

(
∂L0

∂xi
− d

dτ

∂L0

∂ẋi
)/m0 = gµiẍ

µ + 1/2 · (−∂igµν + ∂µgνi + ∂νgµi)ẋ
µẋν [x]

Thus, after multiplying [vii] by gik (which is the inverse of the restriction of
the metric to space), defining Christoffel symbols as:

Γkµν = gik/2 · (−∂igµν + ∂µgνi + ∂νgµi)ẋ
µẋν

(as said in the introduction, Roman letters span from 1 to 3 whereas Greek
letters span from 0 to 3) we get:

−gik ∂(α(Φ)c2 + α(Φ)Φ)

∂xi
+
∂α(Φ)

∂Φ

∂Φ

∂xµ
ẋµẋk + α(Φ)(ẍk + Γkµν ẋ

µẋν) = 0 [xi]

We see that, for it to give correct equations of motion in the Newtonian limit,
we necessarily have:

∂(α(Φ)c2 + α(Φ)Φ)

∂xi
= 0 [xii]

It yields: α(Φ) = (1 + Φ/c2)−1 [xiii]

4



Then:
∂α(Φ)

∂Φ
= −1/c2 · (1 + Φ/c2)−2 [xiv]

Hence, recasting in [xi] we get:

−(1 + Φ/c2)−2 · ∂Φ

∂xµ
ẋµẋk/c2 + (1 + Φ/c2)−1(ẍk + Γkµν ẋ

µẋν) = 0 [xv]

After neglecting second order terms, it yields:

ẍk + Γkµν ẋ
µẋν =

∂Φ

∂xµ
ẋµẋk/c2 (2) [xvi]

These equations of motion look like the geodesic equations of General Rela-
tivity. For weak-fields and low speeds, we trivially get the Newtonian limit.

Hence, if the inertial mass is relative such that:

m = (1 + Φ/c2)−1m0 (3)

gravity described as a spacetime bending force instead of a spacetime curva-
ture yields similar results. The small deviation from General Relativity induced
by ∂µΦẋµẋk/c2 makes this theory testable.

For more clarity, let’s write: m0
∂Φ

∂xµ
ẋµẋk/c2 = (−~F · ~v) · ~v/c2

where ~F is the gravitational force and ~v the speed of the body. We can
interpret it as an anomalous thrust unexpected from General Relativity. In the
case of Mercury, its speed around the Sun is v = 47km/s so v2/c2 = 2.5 · 10−8

that makes it neglectable and hard to detect. Such an anomaly is expected to
be measurable in the recently launched Parker Solar Probe if solar wind and
radiation pressure can be neglected so close to the Sun. That would be a test
of this theory.

In case of an orbital motion, we see that for a circular trajectory, this force is
null. Thus, it can be neglected for low eccentricities yielding the same predic-
tions of orbit precession as General Relativity, especially Mercury’s perihelion
precession.
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However, the reader could demonstrate that the influence of this force over
a revolution period is a resulting force parallel to the great axis and directed
towards the aphelion of the trajectory that increases in magnitude with the
eccentricity. Thus, it contributes to increasing the eccentricity of the trajectory
over time. That might be the main reason why Mercury’s eccentricity is high
compared to other planets although tidal circularization would tend to make it
null.

In this section, we described gravity with a scalar theory as an introduction.
We need to extend it to a vectorial theory that would make it a special case.
That is the aim of Section II and III.

II - Modifying Gravitoelectromagnetism

Describing gravity as a spacetime bending force yields equivalent equations of
motion as General Relativity but has to account for predictions such as: Time
Dilation, Light Bending, Shapiro Delay, Lens-Thirring and geodetic effects.

We know the Lens-Thirring and the geodetic effects are both well described
by Gravitoelectromagnetism [2] which is a theory of gravity in a flat spacetime
analogous to Maxwell’s theory of electromagnetism. So including spacetime
curvature in Gravitoelectromagnetism would still make those predictions.

Analogous to electromagnetism in General Relativity, we can consider grav-
ity as some kind of gravitoelectromagnetism in a curved spacetime and see if
it makes the same predictions as General Relativity. The Lagrangian of an
electrically charged body in General Relativity is:

L = −mc
√
gµν ẋµẋν − qẋµAµ

where Aµ is the electromagnetic four-vector potential and q the electric charge
of the body. The idea is to consider a gravitational four-vector potential Gµ
analogous to the electromagnetic four-vector potential Aµ and consider the fol-
lowing Lagrangian:

L = −minertialc
√
gµν ẋµẋν −mgravitationalẋ

µGµ

where minertial is the inertial mass of the body and mgravitational is its grav-
itational mass. For some reason that will become clear in Section III, we define
the gravitational mass as:

mgravitational = γ−1minertial

where γ is defined as γ−1 =

√
gµν

dxµ

dx0

dxν

dx0
similar to Lorentz factor.
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Same as Section I, we hypothesize that the inertial mass is relative such that:

minertial = α(Φ)m0

where m0 is the rest mass, defined as the inertial mass if the gravitational
potential is null: α(0) = 1. The Lagrangian becomes:

L = −α(Φ)m0c
√
gµν ẋµẋν − γ−1α(Φ)m0ẋ

µGµ (4)

How the Gravitational four-vector potential Gµ is calculated is not of rele-
vance in this paper since gravity is not postulated to be Newtonian. It should
then be subject to further studies. It depends on the type of gravitational po-
tential. If Newtonian, it would be the exact analogous of electromagnetism in
curved spacetime as we would just have to replace ε0 by −1/4πG where G is
Newton’s constant.

In electromagnetism, the four-vector potential is of the form Aµ = (V/c, ~A)

where V is the electrical potential and ~A is the potential vector . Even though
Gµ remains to be calculated depending on the gravitational potential theory
used (not necessarily Newtonian), we know that, analogously to electromag-

netism it is of the form Gµ = (Φ/c, ~G) where Φ is the gravitational potential.

In electromagnetism, the magnetic field is derived as the curl of ~A. Analo-
gously, defining the gravitational tensor as:

Fµν = ∂µGν − ∂νGµ =


0 − 1

cE
x
G − 1

cE
y
G − 1

cE
z
G

1
cE

x
G 0 BzG −ByG

1
cE

y
G −BzG 0 BxG

1
cE

z
G ByG −BxG 0


provides a good description of the Lens-Thirring and the geodetic effects.

Another prediction of General Relativity is Gravitational Waves. It is not
mentioned in the tests because it is in fact due to a gauge choice. Whereas
viewing gravity as a spacetime bending force, gravitational waves would not be
due to a gauge choice since Gµ is Lorentzian by definition. Indeed, Lorentz
gauge induces a wave equation of the potential.

III - First Order Non-Relativistic Dynamics

As we said in the previous section, we consider the following Lagrangian:

L = −α(Φ)m0c
√
gµν ẋµẋν − γ−1α(Φ)m0ẋ

µGµ [i]

7



Let’s demonstrate that this Lagrangian yields the special case scalar theory
of Section I when the Lens-Thirring and the geodetic effects can be neglected
in case of non-relativistic speeds and in weak-fields.

Let’s first simplify the Lagrangian by neglecting second order terms. If the
Lens-Thirring and the geodetic effects can be neglected, then cross-terms be-
tween space and time can be neglected. Parametrizing with the body’s proper
time, we have c2 = g00(ẋ0)2 + gij ẋ

iẋj which yields for non-relativistic fields:

ẋ0 · √g00 = c · (1− 1/2 · gij ẋiẋj/c2) [ii]

Similarly, with γ−1 =

√
gµν

dxµ

dx0

dxν

dx0
, we have:

γ−1/
√
g00 =

√
gµν/g00 ·

dxµ

dx0

dxν

dx0
=

√
1 + gij/g00 ·

dxi

dx0

dxj

dx0
[iii]

Since dx0

dτ = ẋ0 and for non-relativistic speeds ẋ0 ≈ c, neglecting second order
terms it comes:

γ−1/
√
g00 =

√
1 + gij/g00 · ẋiẋj/(ẋ0)2 = 1 + 1/2 · gij/g00 · ẋiẋj/c2 [iv]

Since in weak-fields 1/g00 ≈ 1− 2Φ/c2, neglecting second order terms yields:

γ−1/
√
g00 = (1 + 1/2 · gij ẋiẋj/c2) [v]

Multiplying [ii] and [v] we get:

γ−1ẋ0 = c · (1 + 1/2 · gij ẋiẋj/c2 − 1/2 · gij ẋiẋj/c2 − (1/2 · gij ẋiẋj/c2)2) [vi]

Neglecting second order terms again it comes: γ−1ẋ0 = c [vii]

The Lens-Thirring and the geodetic effects being neglected, we also have
G0 = Φ/c and Gi = 0 we get:

ẋµGµ = ẋ0G0 = ẋ0Φ/c [viii]

Recasting [vii] yields: γ−1ẋµGµ = γ−1ẋ0Φ/c = Φ [ix]
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Introducing Lorentz factor in the definition of the gravitational mass is conve-
nient as it suppresses perturbative terms. Its physical meaning is quite intuitive
though: the faster a body, the more massive it gets in term of relativistic mass,
and the less the influence of a force on it. Taking this into account implies the
introduction of Lorentz factor in the definition of the gravitational mass.

The Lagrangian [i] becomes:

L = −α(Φ)m0c
√
gµν ẋµẋν − α(Φ)m0Φ [x]

Which is the special case already studied in Section I.

The Lagrangian’s variables are xµ and ẋµ but parametrizing with the body’s
proper time, we have c2 = g00(ẋ0)2 +gij ẋ

iẋj which shows that the variables are
not independent. We then have to choose a set of independent variables. Since
space and time are disjoint by hypothesis, it is really convenient to choose xi and
ẋi as a set of independent variables. This is why we restricted the Lagrangian
equation to space variables in Section I.

This way we now have a vectorial theory of gravitation that yields equivalent
equations of motion as General Relativity. We are then left with finding a way
to derive the metric. Let’s first have a look at the physical implication of inertial
mass relativity.

IV - Physical Implications

The hypothesis of inertial mass relativity yields equivalent results as Gen-
eral Relativity in weak fields and non-relativistic speeds. This hypothesis has
physical implications and interpretations as we will see.

Mathematically, a natural physical interpretation arises. Indeed, we can give
a physical meaning to EΦ = minertialc

2 thanks to inertial mass relativity:

EΦ = m0c
2/(1 + Φ/c2)

Generalized to a relativistic body, we have:

EΦ = γmc2/(1 + Φ/c2) where γ = 1/
√

1− v2/c2 is Lorentz factor [7].

Let’s rewrite it as: EΦ =
√
m2

0c
4 + p2

0c
2(1 + Φ/c2)

Or rather, for brevity : EΦ = E0/(1 + Φ/c2) (5)
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Applied to photons of energy E0 = hν0, with EΦ = hνΦ we have:

νΦ = ν0/(1 + Φ/c2)

That looks a lot like General Relativity’s formula of gravitational redshift.
Thus we define EΦ as the Apparent Energy of the body.

Writing it as EΦ = E0/
√
g00, it’s as if the energy of a body could be redshifted.

It’s as if a body was also a wave which we know accurate since De Broglie’s
hypothesis of wave-particle duality.

Apparent Energy is nothing new. When a wave is Doppler-shifted for a
moving observer, the shifted frequency is said to be apparent frequency. Anal-
ogously, the energy of a photon for a moving observer doesn’t change, but since
its frequency is Doppler-shifted, the change in energy is in fact Apparent Energy.

This physical meaning implies the time dilation factor be: g00 = (1 + Φ/c2)2

This provides another testable deviation from General Relativity. Indeed in
General Relativity we have:

g00,schwarzschild = 1 + 2Φ/c2

The second order difference is (Φ/c2)2 . It’s really small but measurable and
can be tested.

V - Physical meaning of the Schwarzschild
metric

Most tests of General Relativity are based on the Schwarzschild metric [1]

below. Let’s see if we can give a physical meaning to it.

ds2 = (1 + 2Φ/c2)c2dt2 − (1 + 2Φ/c2)−1dr2 − r2(dθ2 + sin2θdψ2)

First let’s consider the following equivalent metric in weak-fields:

ds2 = (1 + Φ/c2)2c2dt2 − (1 + Φ/c2)−2dr2 − r2(dθ2 + sin2θdψ2)

Space and time being disjoint, we can define the space metric:

ds2
Space = (1 + Φ/c2)−2dr2 + r2(dθ2 + sin2θdψ2)
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The volume element of a Riemannian manifold is the square root of the de-
terminant of the metric in absolute value times the coordinate elements. For
the Schwarzschild space metric it yields:

dV =
√

(1 + Φ/c2)−2 · r2 · r2sin2θ · drdθdψ = (1 + Φ/c2)−1 · r2|sinθ|drdθdψ

It comes:

(1 + Φ/c2) · dV = r2|sinθ|drdθdψ

This doesn’t depend on Φ which is an invariance principle. Let’s multiply by
ρc2 where ρ is a hypothetical mass density of vacuum, we get:

(ρc2 + ρΦ) · dV = ρc2 · r2|sinθ|drdθdψ

In other words, analogous to the invariance of the speed of light, we have the
following principle:

”The energy of vacuum is invariant”.

It seems like the same way speed of light invariance induces time dilation,
vacuum energy invariance induces space dilation. Just as the Strong Equivalence
principle is a postulate of General Relativity, Vacuum Energy Invariance (VEI)
can be taken as a postulate. We will see that it yields the Schwarzschild metric
in weak-fields and therefore provides the same predictions as General Relativity.

In Section VI and VII, we derive the metric thanks to this principle.

VI - Metric Derivation (part I)

We showed in Section I, II and III that gravity can be coherently described
as a spacetime bending force if the inertial mass is relative. We are left with
how the metric can be derived such that the Schwarzschild metric is a particular
case.

We naturally postulate that the metric gµν is of the form:

g =

(
g00(Φ) 0

0 −gs(Φ)

)
Indeed, in General Relativity, cross terms between space and time are respon-

sible for the Lens-Thirring and the geodetic effects but since these are already
accounted for by considering gravity as spacetime bending force, we can postu-
late that space and time curvature are disjoint.
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We then consider that space and time are independently dilated by VEI.

Let’s derive both det(gs) and g00 thanks to VEI principle.

At a given point in time t, in a volume element dx1dx2dx3, under zero gravity
(flat space) with vacuum energy density E0, we have:

dE0 = E0dx1dx2dx3

and under Φ-gravity potential, we have:

dEΦ = E0(1 + Φ/c2)
√
det(gs)dx1dx2dx3

Applying VEI, we have: dE0 = dEΦ.

It comes:

det(gs) = (1 + Φ/c2)−2 (6)

Let’s apply VEI in time domain to have a more rigorous way to find g00.

The reasoning is a bit similar to the one for the derivation of the gravitational
redshift. We reason in terms of observational events.

Let E0 be the total vacuum energy and N be the number of observational
events.

The total vacuum energy by time unit for an observer under a global 0-
potential is:

P0 =
d(NE0)

dt

The total vacuum energy by time unit for the same observer under a global
Φ-potential is:

PΦ =
d(NE0(1 + Φ/c2))

dτ

Applying VEI, we have: P0 = PΦ

It comes: E0dNdτ = E0(1 + Φ/c2)dNdt
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With dτ2 = g00dt
2 it eventually comes:

g00 = (1 + Φ/c2)2 (7)

The equation of motion [xvii] of Section I, for non-relativistic speeds becomes:

ẍk + Γk00ẋ
0ẋ0 = 0

In weak-fields, standard result of linearized General Relativity yields :

ẍk = −1/2 · ∂kh00c
2

where hµν = gµν − ηµν is the perturbation of the metric.

From VEI we have h00 = 2Φ/c2 which yields Newton’s law [8].

VII - Metric Derivation (part 2)

We still don’t fully know gs. Any gs formula predicting a correct Light Deflec-
tion and reproducing the Schwarzschild metric for the Sun’s mass distribution
works to account for every experimental tests.

Considering gravity as a spacetime bending force would give us a space met-
ric gs different from General Relativity. It doesn’t change anything to the New-
tonian limit since in that case only g00 is relevant for the equations of motion.
The idea is to aggregate the contributions of every mass of the distribution to
the space deformation. In case of a compact spherical distribution, far from the
sphere, space dilation would be purely radial just as in the Schwarzschild metric
whereas it wouldn’t be the case close to the mass distribution. A non-radial
space dilation is a testable prediction of this theory.

Space deformations induced by a single punctual mass must be radial for
trivial physical reasons. Then in a local orthonormal basis (~er, ~eu, ~ev) where ~er
is radial, space metric is −gs,ruv of the form:

gs,ruv =

β−2 0 0
0 1 0
0 0 1

 = I + (β−2 − 1)

1 0 0
0 0 0
0 0 0


Applying VEI yields: β = 1 + Φ/c2.

LetMT be the change of basis orthonormal matrix from (~er, ~eu, ~ev) to (~e1, ~e2, ~e3).
So with ~er = ri~ei , ~eu = ui~ei and ~ev = vi~ei , changing coordinates we have:
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gs = MT gs,ruvM with MT =

r1 u1 v1

r2 u2 v2

r3 u3 v3



Since MTM = I, it comes: gs = I + (β−2 − 1)MT

1 0 0
0 0 0
0 0 0

M

Eventually:

gs = I + (β−2 − 1)

 r2
1 r1r2 r1r3

r2r1 r2
2 r2r3

r3r1 r3r2 r2
3

 or gs,ij = δij + (β−2 − 1)rirj

In weak-fields, this is equivalent to the Schwarzschild metric written in Carte-
sian coordinates. This doesn’t depend on the choice of ~eu and ~ev. For a mass
distribution, the unit vector pointing from a massive point towards a local point
in space is the same as the radial vector ~er so we can aggregate their influence
thanks to the above formula.

Indeed, for an infinitely small potential dΦ, we have β−2 − 1 = −2dΦ/c2 and
the metric becomes, when integrating over every infinitely small potential:

gs,ij = δij + λ ·
∫
−2rirjdΦ/c2 with λ such that det(gs) = (1 + Φ/c2)−2

Space being curved there might not be a unique choice of ri. Therefore
we introduce the potential angular distribution φ(~σ), where ~σ is the observed
direction. Leading to the following metric equation:

gs,ij = δij + λ ·
∫
−2φ(~σ)/c2 · ri(~σ)rj(~σ)dσ (8)

With: Bij =

∫
−2φ(~σ)/c2 · ri(~σ)rj(~σ)dσ (9)

We have: gs,ij = δij + λBij

In fact, for any 3x3 matricial function f such that f(P−1MP ) = P−1f(M)P
and f(M) = I + M if M is small, gs = f(λB) would also be valid. For
physical reasons, rather than summing the infinitely small perturbations, we
should multiply the metrics induced by each infinitely small perturbations. That
would yield:

gs = eλB (10)
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Deriving λ is then straightforward since B being symmetric, it is diagonal
in a certain basis, and eλB would be a diagonal matrix in such a basis whose
determinant is the exponential of the sum of its eigenvalues. The sum of the
eigenvalues being the trace of λB, we have:

det(eλB) = eTr(λB)

Applying VEI principle we then have : eλTr(B) = (1 + Φ/c2)−2

Hence : λ = −2 · ln(1 + Φ/c2)/Tr(B) (11)

So in the weak-fields limit we have: gs,ij = δij − 2Φ/c2 ·Bij/Bkk (12)

Applying it to a punctual mass, space deformation being radial, in spherical
coordinates we trivially obtain a modified Schwarzschild metric:

ds2 = (1 + Φ/c2)2c2dt2 − (1 + Φ/c2)−2dr2 − r2(dθ2 + sin2θdψ2) (13)

So this predicts Mercury’s Perihelion Precession and Light Deflection by the
Sun since its mass is concentrated in its core. But in case of a homogenous
spherical mass distribution like the Earth, the radial dilation would be smaller
than the one predicted by the Schwarzschild metric because the deformation is
fairly distributed according to the influence of every part of the mass distribu-
tion, inducing an azimuthal space dilation not predicted by General Relativity.
This could be measured through interferometry and provides another test.

VIII - Summary

Gravity as a spacetime bending force can be summarized by the following
equations:

Φ0 = Φ

L = −αm0c
√
gµν ẋµẋν − γ−1αm0ẋµGµ

α = (1 + Φ0/c
2)−1

γ−1 =

√
gµν

dxµ

dx0

dxν

dx0
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g =

(
(1 + Φ0/c

2)2 0
0 −eλB

)
Bij =

∫
−2φ0(~σ)/c2 · ri(~σ)rj(~σ)dσ

λ = −2 · ln(1 + Φ/c2)/Tr(B)

This can be easily adapted to any violation of the Weak Equivalence princi-
ple by separating vacuum gravitational potential from the bodies’ gravitational
potential: Φ0 6= Φ

IX - Universe Expansion

The Cosmological Redshift can as well be interpreted as due to an expanding
universe if we postulate that the universe is homogeneous and isotropic and has
a beginning. Indeed, if gravity is a force, gravitational potential propagates at
the speed of light. The older the universe, the more propagated the gravitational
potential and the greater space dilation would be.

Let’s see how global vacuum gravitational potential evolves in a homogeneous
and isotropic universe from its creation. The potential is induced by the mass
in a cT radius sphere where T is the age of the universe. The gravitational
potential is:

Φ =
∫ cT

0
φ(r)ρ · 4πr2dr

Taking space dilation into account and conservation of matter, we have:

ρ = ρ0 · (1 + Φ/c2)−1

And with the variable change t = r/c we have:

Φ = 4πρ0c
3 ·
∫ T

0
φ(ct)(1 + Φ/c2)−1t2dt

Hence the following gravitational potential differential equation:

dΦ/dT = 4πρ0c
3 · φ(cT )(1 + Φ/c2)−1T 2

Separating variables, we get:

Φ + Φ2/2c2 = 4πρ0c
3 ·
∫ T

0
φ(ct)t2dt

Hence the solution:
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1 + Φ/c2 =

√
1 + 8cπρ0 ·

∫ T

0

φ(ct)t2dt (14)

The age T is the time elapsed from the point of view of an observer in a null
gravitational potential, as if he was shielded from gravity.

Since the universe is homogeneous, VEI implies that the scale factor is a =
(1 + Φ/c2)−1/3 so recasting the solution yields:

a(T ) = (1 + 8cπρ0 ·
∫ T

0

φ(ct)t2dt)−1/6 (15)

To be able to compare this model with Friedmann-Lemaitre-Robertson-Walker
models, we need to express the dilation factor with a time equivalent to comov-
ing observers. The time Tc of a comoving observer satisfies:

dTc =
√
g00dT = (1 + Φ(T )/c2)dT

It comes: Tc =

∫ T

0

(1 + 8cπρ0 ·
∫ t

0

φ(cτ)τ2dτ)1/2dt (16)

Intuitively, the dilation factor has a positive acceleration because it is a divi-
sion by a quantity that seems to near zero. In fact, the above equations shows
that the absolute time T can have a finite limit value when the comoving time
Tc tends to infinity. That depends on the gravitational potential theory used.
Let’s do the calculation for a Newtonian potential φ(r) = −G/r. We have:

Tc =
∫ T

0
(1− 4πGρ0t

2)1/2dt

And: a(T ) = (1− 4πGρ0T
2)−1/6

From this simple Newtonian model, we see the scalar factor has a positive
acceleration. The potential is not necessarily Newtonian, but we see that an
accelerating expanding universe would be more expected than a non-accelerating
universe, especially for non-Newtonian potentials such that G/r ·φ(r)−1 = o(1).
This model doesn’t require Dark Energy to explain such acceleration.

X - Quantizing Gravity

Describing gravity as a force in a curved spacetime, we now have a coherent
way to blend gravity into the quantum realm. What follows is based on Fock’s
equation [9] as a curved spacetime version of Dirac equation:

17



[iγµ(∂µ − Γµ − ieAµ)−m] · ψ = 0

Were γµ are the generalized gamma matrices defining the covariant Clifford
algebra [10]: γµγν + γνγµ = 2gµν

were gµν is the spacetime metric, whose signature is (+ − −−), Γµ is the
spinorial affine connection and Aµ is the electromagnetic four-vector potential.

In order to take into account gravity, we just write m = m0(1+Φ0/c
2)−1 and

we take into account the gravitational four-vector potential Gµ. We get:

[iγµ(∂µ − Γµ − ieAµ − im0(1 + Φ0/c
2)−1Gµ)−m0(1 + Φ0/c

2)−1] · ψ = 0 (17)

CONCLUSION

Gravity can be consistently described as a spacetime bending force based on
an invariance principle inferred from the Schwarzschild metric. Analogous to
the speed of light invariance which implies time dilation through speed, Vacuum
Energy Invariance implies space dilation through gravitational potential. Writ-
ing the Lagrangian of a force in a curved spacetime, we get equivalent equations
of motion as General Relativity if the inertial mass is relative depending on
the gravitational potential. This is a physically acceptable hypothesis since the
relativistic mass of a body is already relative depending on its speed.

This theory not only yields the same classical predictions as General Rela-
tivity such as Mercury’s Perihelion Precession, Time Dilation or Light Bending
but is also testable through many predicted deviations such as: an anomalous
thrust, a time dilation second order correction and a non-radial space dilation
described in Section I, IV and VII respectively.

This approach of gravitation is compatible with non-Newtonian gravitational
potentials and violations of the weak equivalence principle. From there, many
models can be developed to fit the available cosmological data. The reader
can then complete this theory with a suitable description of the gravitational
four-vector potential.

More than that, gravity as a force in a curved spacetime analogous to elec-
tromagnetism is renormalizable. Therefore, it is compatible with the Standard
Model of particle physics. The reader could adapt the Standard Model’s La-
grangian to this theory to achieve Quantum Gravity.
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