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This work is dedicated to the truth:
Jesus saith unto him,
I am the way, the truth, and the life:
no man cometh unto the Father, but by me. [15]

Abstract

This paper treats the fundamentals of the wector differential calcu-
lus part of universal geometric calculus. Geometric calculus simplifies
and unifies the structure and notation of mathematics for all of science
and engineering, and for technological applications. In order to make the
treatment self-contained, I first compile all important geometric algebra
relationships, which are necessary for vector differential calculus. Then
differentiation by vectors is introduced and a host of major vector dif-
ferential and vector derivative relationships is proven explicitly in a very
elementary step by step approach. The paper is thus intended to serve
as reference material, giving details, which are usually skipped in more
advanced discussions of the subject matter.

Keywords— Geometric Calculus, Geometric Algebra, Clifford Algebra, Vector
Derivative, Vector Differential Calculus

1 Introduction

“Now faith is being sure of what we hope for and certain of what we do not see. This
is what the ancients were commended for. By faith we understand that the universe
was formed at God’s command, so that what is seen was not made out of what was

visible.” [5]
The German 19" century mathematician H. Grassmann had the clear vision, that
his “extension theory (now developed to geometric calculus) ...forms the keystone

of the entire structure of mathematics.”[4] The algebraic “grammar” of this universal
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form of calculus is geometric algebra (or Clifford algebra). That geometric calculus is
a truly unifying approach to all of calculus will be demonstrated here by developing
the vector differential calculus part of geometric calculus.

This paper is an improved version of [9]. The basic geometric algebra necessary for
this is compiled in section 2. Then section 3 develops vector differential calculus with
the help of few simple definitions. This approach is generically coordinate free, and
fully shows both the concrete and abstract geometric and algebraic beauty of Grass-
mann’s “keystone” of mathematics. For a comprehensive introduction to Clifford’s
geometric algebras we refer to [12]. Applications of geometric algebra are surveyed in
[13].

The underlying strategy of this paper is to demonstrate the proofs for all common
formulas of vector differential calculus in an elementary step by step fashion. Thus
enabling the interested reader to ultimately use this article as reference material, where
other texts (e.g. [6],[7]) tend both to skip “elementary steps”, and to presume, that the
reader would be smart enough to fill in the gaps himself. I put the emphasis therefore
on thorough proofs and not on comments, interpretations or application. Following the
same approach as taken here, the step from vector to multivector differential calculus is
taken in [10]. We further recommend the two excellent college level textbooks [16, 17].

2 Basic Geometric Algebra

This section is a basic summary of important relationships in geometric algebra. For
brevity they are stated without proof. This summary mainly serves as a reference
section for the wvector differential calculus to be developed in the following section.
Most of the relationships listed here are to be found in the synopsis of geometric
algebra and in chapters 1 and 2 of [6], as well as in chapter 1 of [7], together with
relevant proofs. Beyond that [6] and [7] follow a much more didactic approach for
newcomers to geometric algebra.

G(I) is the full geometric algebra over all vectors in the n-dimensional unit pseu-
doscalar T =& Né A ... A&, A, = G'(I) is the n-dimensional vector sub-space of
grade-1 elements in G(I) spanned by €1,€>,...,€,. For vectors a, 575 c A, = gl(I)
and scalars «, 3, A\, 7; G(I) has the fundamental properties of

e associativity

a(be) = abe), a+b+e=(G+b)+¢ (1)
e commutativity I
o0d=da, a+b=b+a, (2)
e distributivity . . R .
ab+@& =ab+ac  (b+@&)ad=ba+da, 3)
e linearity . N o
a(@+b) = ad + ab = (@ + b)a, (4)

e scalar square (vector length |d|)
@ =di=a-a=|a’. (5)

The geometric product @b is related to the (scalar) inner product @ - b and to the
(bivector or 2-vector) outer product d A b by

db=ad-b+anb, (6)



with

a.z;:%@mga):aa_ma:a a2 (@h)o, (7)
mz?:%(az?—z?a):—gmzaﬂ—a 52 (ab)s ®)

The inner and the outer product are both linear and distributive
a-(ab+ B8 =ad-b+f6d-é (9)
@A (ab+ BE) =ad b+ Bd A (10)

A unit vector a in the direction of @ is

B

a= B with &> =aa=1,  a=ald| (11)
a
The inverse of a vector is ) . .
J a a
=@ 4 (12)

A multivector A can be uniquely decomposed into its homogeneous grade k parts ({ )x
grade k selector):

A= (A +(A), + (A, +..+ (4), +..+ (4), (13)
N~ ~—~ ~— ~—~
scalar  vector  bivector k-vector pseudoscalar
If A is homogeneous of grade k one often simply writes
A= (A), = A (14)
Grade selection is invariant under scalar multiplication
A{A)), = (AA), . (15)

The consistent definition of inner and outer products of vectors @ and r-vectors A,

A= (@A) = %(JAT —(~1)"A,d) (16)
GA Ay = (@A) a1 = %(mr b (~1)"A,d). (17)

By linearity the full geometric product of a vector and a multivector A is then
GA=a-A+anA. (18)
This extends to the distributive multiplication with arbitrary multivectors A and B
a(A+ B) =dA+ aB. (19)

The inner and outer products of homogeneous multivectors A, and B, are defined ([7],
p. 6, (1.21), (1.22)) as

A, - Bs = (A, Bs) for r,s > 0, (20)

[r—s]

A, -Bs=0forr=00r s=0, (21)



Ar N Bs = (ArBs), s
A ANX=AANA, = MA, for scalar \. (23)

The inner (and outer) product is again linear and distributive

(AA,;) - Bs = Ay - (ABs) = M(A, - Bs) = A, - By, (24)
Ar'(Bs+Ct):AT'Bs+AT'Ot7 (25)
A(Bs + Ci) = AB, + ACh. (26)

The reverse of a multivector is
n

A= " (—)MED2 ), (27)

k=1

[7] uses a dagger instead of the tilde.
Special examples are

—~—

X=\ d=d daAb=bAd=—adAb, (28)

The scalar magnitude |A| of a multivector A is

AP = AxA =(A)F+ D (A),- (A, (29)

scalar product

where the separate term (A)g is in particular due to the definition of the inner product
in [7], p. 6, (1.21). The magnitude allows to define the inverse' for simple k-blade
vectors _
A
-1 _ . —1, -1 _
AT = with ATMA= AT =0 (30)

Alternative ways to express @ € A,, = gl(I) are
INd=0 or Ia=1I-d (31)

The projection of @ into A, = Ql(I) is

Pi@) = P@) =Y da-a=Y ad -a, (32)

where @" is the reciprocal frame defined by

1 if j=k,

ata; = f = Kronecker delta = { 0 if j£k

(33)

A general convention is that inner products @ - b and outer products @ A b have
priority over geometric products ab, e.g.

- =

@-bcAdé= (@ b)(EAd)e. (34)

! Every multivector can be inverted, as long as its determinant is nonzero, see [14, 18].



The projection of a multivector B on a subspace described by a simple m-vector (m-
blade) Ay, =d1 Ad2 A... ANdp is

Pa(B)=(B-A)- A =" 471 (A Bs)), (35)
general degree dependent
Pa((B)y) = (B)y, Pa({B),)=(B), AA™", (36)

the exceptions for scalars (B), and pseudoscalars (B),, being again due to the definition
of the inner product in [7], p. 6, (1.21). A projection of one factor of an inner product
has the effect to project the other factor as well

@-P(b) = P(@)- P(b) = P(a@) - b. (37)
For a multivector B € G(A,,), with A = A,,, we have
(@dAB)-A=(@ANB)A=a-(BA), if anA=0. (38)

Reordering rules for products of homogeneous multivector are

A, -Bs = (—1)T<57T)35 -A. for r<s, (39)
Ar ANBs = (—=1)"°Bs A Ar. (40)

Elementary combinations that occur often are
a-(bAE) = (a-b)é— (@-b=a-bé—a- b, (41)
@nb)-(@nd)=a-(b-(@nd) = (a-d)b-¢) —(a-&)(b-d, (42)

d
(@AD)*=(@AD)-(@Nb)=(G-b)*—ab>=—(bAad)-(@AD)

= —|and? (43)

and the cyclic Jacobi identity
a-(bAS)+b-(Enad)+E (@AD)=0. (44)

The commutator product of multivectors A, B is

AxB= %(AB—BA). (45)

One useful identity using it is
(@Ab)x A=ab-A— A-@=abAA— AN ab. (46)

The commutator product is to be distinguished from the cross product, which is strictly
limited to the three-dimensional Euclidean case with unit pseudoscalar /s :

axb=BAa)s=—(GAb)Is = (@ADb)I5 (47)

For more on basic geometric algebra I refer to [6], [7] and to section 3 of [§].



3 Vector Differential Calculus

This section shows how to differentiate functions on linear subspaces of the universal
geometric algebra G by vectors. It has wide applications particularly to mechanics and
physics in general [6]. Separate concepts of gradient, divergence and curl merge into
a single concept of vector derivative, united by the geometric product.

The relationship of differential and derivative is clarified. The Taylor exzpansion
(Prop. 9) is applied to important examples, yielding e.g. the Legendre polynomials
(Prop. 16). The adjoint (Def. 57) and the integrability (Prop. 42, etc.) of multivector
functions are defined and discussed. Throughout this section a number of basic dif-
ferentials and derivations are performed explicitly illustrating ease and power of the
calculus.

Since my emphasis here is on explicit step by step proofs, I refer the reader, who
is interested in the philosophy, comments and interpretation to the literature in the
final Reference section.

As for the notation: Prop. 7 refers to proposition 7 of this section. Def. 13 refers to
definition 13 of this section. (6) refers to equation number (6) in the previous section
on basic geometric algebra, etc.

Standard definitions of continuity and scalar differentiability apply to multivector-
valued functions, because the scalar product determines a unique “distance” |A — B|
between two elements A, B € G(I).

Definition 1. Directional deriwative. F = F(&) multivector-valued function of a
vector variable & defined on an n-dimensional vector space A, = gl(I), I unit pseu-
doscalar, @ € A, :

dF(E+ar) _ . F@+ir) - F(#)

G- OF =
“ dr T—0 T

(48)

Nomenclature: derivative of F in the direction d, d-derivative of F. ([6] uses
V =9, [7] uses & =9.)

Proposition 2. Distributivity w.r.t. vector argument.
(@+0b)-0F =a@-0F +b-9F, Va,be A, (49)

Proof.

T—0 T
. { F(Z 4 7d@ 4 7b) — F(Z + 7b) + F(Z + 7b) — F(Z) }
70 T
= lim @ AF(Z+7b)+b-0F =a@-0F +b-9F (50)
O
Proposition 3. For scalar A
(A\@) - OF = \(@- OF). (51)



Proof.

(AG) - GF P iy L(E+ A7) = F(@) (52)
T—0 T
Case 1: A #0:
— - . — — > I\ —
(Ad)- & Def1 1. )\F(x + d(Ar)) — F(Z) U S, F(Z+adr') — F(X)
T—0 AT /=0 i
PE NG - IF), (53)
with rp. = reparametrization: 7 — 7.
Case2: A=0:
S ef. . ©) — F(& - 5
(Ad) - 9 P tim £ = @) _o—0(@-dr). (54)
O
Proposition 4. Distributivity w.r.t. multivector-valued function.
G- 9(F+G)=d- 0F +a-daG, (55)

with G = G(&), F = F(&), multivector-valued functions of a vector variable &. In the
notation of Def. 13:
F+G=F+G. (56)

Proof.

G- J(F+G)PE lim

T7—0 T

~ lim P+ a(TT)) — F(&) + lim (7 + 5(:)) - G(@)
Pl G OF +a- dG. (57)
O
Proposition 5. Product rule.
@a-0(FG) = (a-9F)G+ F(a-dG). (58)
In the notation of Def. 13:
FG=FG+ FG. (59)
Proof.
N Def.1 (Z+ ar)G(Z + ar) — F(Z)G(Z)

i { F(& + ar)G(% + ar) — F(D)G(T + ar) + F(&)G(Z + ar) — F(Z)G(Z) }
_ 112% { F(Z+ 6,'77'—) - F(f)G(:E’—&— ar) + F(3) G(Z + a:—) - G(Z) }

PeLl (G.dF) lim G(% + ar) + F(a- 9G)

= (@-9F)G+ F(a-0G) (60)



Proposition 6. Grade invariance.
@-O(F), = (a@-0F).
@-dis therefore said to be a scalar differential operator.

Proof.

Proposition 7. Scalar chain rule.

a&v:(aa&)%

with F = F(A(Z)), A = M&) a scalar valued function.

Proof. Using the Taylor expansions:

dF  72(AN)? d°F

F AN =F AN— ..
(A +TAN) N+ )\d)\—&- 5 e o
2
AE +73) B N@) + 1@ - INE) + (@ 9 A@) +
we have
G- IFONF)) Def.l . F(\(Z+ dr)) — F(A(Z))
7—0 T
@) | FO@) +7d - 0A\E) - FOE)
o TL)O T
oy FO@) +7{@a- D@} % -FO@)
=’ lim =(a-
T—0 T
Proposition 8. Identity. .
a-0f=a
Proof.
F@) =2 & 0z°2 im %% _jma=a
T—0 T T—0

Proof.

T—0 T



Proposition 10. Vector length.
a-9|F = =a-a, (71)

with & = & unit vector in the direction of Z, see (11).

z

Proof.

7 = |7 = a@-0F=a- 0|7’
e e Ry L B AT
= a-&=|z|(a-0|z|) = a-o0lx = 7 =d-I (72)
z
O
Proposition 11. Direction function
7.5 a—aﬁ-maz:xw—/’\a (73)
|Z| |z
Proof.
= 1
L 2. o =T Prop 5H~8” 7q 1 Props. 7,8 @ e AL dm
a-0t=a-0—= = — 5= — — + Z(d- 9|Z|) ==
|Z| |Z| |Z| |Z| d|Z|
Prop. 10 @ o —1 a o1 a—a-3x t3d—3z-ad
=T S +Ea@ )y = —2dT) = = = =
|Z| 17> |2 |Z]| || |Z]|
_#@-ada+and)—zz-d i Ad (74)
|7 |7
O
Proposition 12. Taylor expansion.
= (@- 5
F(Z+d) =exp(a- F(a: Z F(Z). (75)
k=0

Proof. Note that this proof is done without referring to Props. 7 to 11!

G(t) = F(Z + ar)
dG(0) dF(Z+ar) Def.1
dr dr
d*G(0) d dF(Z+ ar) pet.l , mdF(Z+ar)

dr2 dr dr lr=0 =30

PENa-9(a- or(@) = (@ 0)°F (@) o




General: dkf,io) = (@- §)"F(Z) . The Taylor series for G is:
dG(0) 1d*G(0)

G(1)=G(0+1)=G(0)+ p +§ 72 +...
B ilde(o)
- k! drk
k=0
oo 1 . .
= G)=F(@+a) = ZH (@-0)*F (&) = exp(@ - §)F(
k=0

Definition 13. Continuously differentiable, differential.

F' is continuously differentiable at X, if for each fized a, a - 5F(g]) erists and is a

continuous function of i for each ¥ in a neighborhood of Z.

If F is defined and continuously differentiable at &, then, for fized T, d - 5F(f) is

a linear function of d, the (first) differential of F'.
F(@,7) = Fz(%) =a- 0F ().

([6], p. 107 uses F' = F.)
Suppressing &, or for fired ¥ :

F=F(@) =Fz=ad-oF.
Proposition 14. Linearity.

F(i+b)=F(@)+F

A scalar : F(A\@) = A
Proof. Propositions 2 and 3.

Proposition 15. Linear approzimation.
For |F| = |& — Zo| sufficiently small:

F(Z) — F(Zo) = E(% — %o) = F(Z) — F(Zo).
Proof.

Prop. 12 ., 2 1 =

F(Z) = F(Zo + 7)

= F(io) + |7IF - OF (Zo) + |’;' (7)Y F (%) + ...

+%( B F(Fo) + ...

with # = {Z. For sufficiently small |7] :

7

F(Z) = F(Z0) + 7 OF (Z) = F (&) + (& — &) - OF (o)
Def 13 F(Z’o) +E(f—fo7fo) Def:.13

= F(#) + (%) - E()
)

F (o) + 7 OF (7o) + 5 (7" IV F(To) + ...

(78)

(83)



Proposition 16. Chain rule.

ar' .. (d =
@) = (Z30) - IF@) o (86)
Proof. Using the Taylor expansion
- S d 2 d?
Zt+71)=2(t)+ T%m(t) + ?@m(t) +..., (87)
r - F( aylor . F(Z(t LEt)) — F(Z(t
OF ) — i FEEET) = FEO) 1o P + T7(0) = (1)
dt T7—0 T 7—0 T
Def. 1 (d _, 2 o
L (ax(t)) LA F(®) (88)
F=a(t)
O
Definition 17. Vector derivative. Differentiation of F' by its argument &
dzF (%) = OF, (89)

with the differential operator 5, assumed to

(i) have the algebraic properties of a vector in A, = G'(I), I unit pseudoscalar;
and

(ii) that @ - 8z with @ € Ay is @- Oz F as in Def. 1.

Proposition 18. Algebraic properties of Js.

IAG: 0. (90)
15, & 1.3, (91)

Iz © @ty - Oz, (92)
k=1

where the @° express the algebraic vector properties and the dk'a_;‘;’ the scalar differential
properties.

Definition 19. Gradient. The vector field f = f(Z) = 8:®(&) = 0D for a scalar

function ® = ®(Z) is called the gradient of .

Proposition 20. 3-dimensional cross product. For b independent of & € Az = G (I3):
a-9(ZFxb)=axb. (93)

Only here X means the 3-dimensional cross product (47), not the commutator product
in (45) or in Proposition 81.

Proof.
- - (47) =~ - Prop. 5 o B Th - TN A
a-0@xb) = —a-9((FAb)Is) =" [-a (& Ab)Is— (ZAb)d- I3
BT S g §@ n b © -3 5 (7b) |l 2 (3-53) I
2 2

Prop. 5 _ <(Ei~ _’f)g> I3 — <f(c_i : 53)>2 Is et <dg>2 I

11



(95)

Proposition 21. .
a-o(z-(A),)=a-(A),,
A € G(I) independent of . By linearity
a-0(z-A)=d- A (96)
Proof.
L 2L (16) , =, Prop. 6 /_, =, .
a-9(@-(a),) Fa-d@a),), 0 (a-d@),)
Prop. 5 N RN Props. 8,9 ,
20 ((@-0m)(4), +7a-5(4),)  TUENEA),),
2.4, (97)
O
Proposition 22.
a- -0z - (ZAb)=d-(EAb)+T-(AAD) (98)
Proof.
@ 9z - @nb) L g 8% - 7 bl
Prop 45 G 97 + #%a - b — [a- 9(z - b))F — & - b(a - I%)
Proof 10, P:rop. 9,21,8 a. fg— q- gf-‘,— z. Eil;— . gd.
WG (@AD) +7 (@ND). (99)
(]
Proposition 23. For ¥ independent of & and r = || = |T — ] :
. = I S
a~8r:a-;=a-r7 (100)
where 7 = g .
Proof. Compare [6], p. 681. r? = (Z — &) (& — '), then
@ o7 (G 9z - @)@ - &)+ (& - F)]a- 9@ - )]

P GE - ) + (7 7 )d=2d -7, (101)

—- =~ 2 Prop. 5 o = N - =

a-or" = "2r(@a-0r) = 2a-v=2r(a-or)

> g dr=g Dz (102)

T
O
Proposition 24.
A AL (103)

T



Proof. Compare [6], p. 681.

= =T Prop. 5 1, = =1 Prop. 71, = 1 =
@ dr=a-0-""®° g.gr+ia-0- "L a8z &)~ ipa Or
r r r r r
Prop. 8, 23 1. CCT‘ . Prop. 8 Prad — #(7 - @) ®) A d (104)
r r r T
O
Proposition 25.
T Y
a-o(f-a)= LA (105)
T
Proof.
L o2 oo o FFedpPropsl, = o L =1
a-o(f-a)y=da " = .a (F-a)+7-a@ )r
vop. 7,28 1., =, LoTead, .1, . (F-@)?
Prop. 728 1o 8@ a— a)—gawr/\afa a_(r a)
r r T r
a1 #2@% — (7- @) @3) (FAQ) - (FAE) (3) |F Ad)? (106)
T - T T
O
Proposition 26.
. p.ganf
@ 9 ng) = 22T (107)
r

Proof.

T
Prop. 9, 24, (43) 77 A &'C_L, _(@AP)@AT) 39), (40) A TG — (GAT)(F A Q)
o T T o T
@ @ANF(Fd— (FAQ) ) GAFF-G@  7-G3NT (108)
o T B T o T '
O
Proposition 27.
- Fealr A a
q O na|=—" “‘: g (109)
Proof.
a dina® "2 P 2p Adla- 9 Adl, (110)
a-dina? ®a di(rra)-@nd) L a dita® - (7-a)
. D)
P G gi —ap - aya- A @) TP —a @) P )
T
- . ~ —\ | A /\ =12
=2|fAdlad-d|F Nd| = _2(r a)lr A al (112)
T
o S DA G
NP TN e GO (113)
T
O

13



Proposition 28.
. ozl 1,1
a 8:: —Sa—- (114)
I3 (s
Proof.
_,ﬂl(l)_,—’FProp.Sl_,—’_, N —*1Pr0p.71_, - 2_,—*
a 8?:a- ol T—2a~ar+m~ar—2 = r—2a+r(—r—3)a- r
Prop. 23 1 7. (12),a1) 11, 1, 1
= ?a72f3a~7‘ = ::a72:a’:
r r T ror
11 1,1 11 1.1
@ —=@— 2= — 330=—=d3 (115)
(g ror T (T
O
Proposition 29.
L =21 a-r
L (116)
Proof.
L, =1 m 2 , = Prop.23 2, .
a 87"2 = —r—3a~8r 2 — 50 (117)
O
Proposition 30.
1,0 =221 3@ -#)?*—|pna?
5((1.8) 2= - . (118)
Proof.
1,, =21 Prop.201_ = a-t,prop.5 ,., =~1., . 1. =, .
5(&%9) 2 £ §a-8(72r—3) z f(a-ar—g)a«rfr—ga (@-r)
Prop. 7,23,25 3@ -7 _ . 1 _|f-a@*> 3(@-#)?—|#-al?
= oA AT ga— = o (119)
O
Proposition 31.
1, =31  —4@@-#)3+4fnada- v
6(‘1' ) == = ) (120)
Proof.
1_,—*31 1_,—*1_,—'21 Prop301_,—'3(d"f’)2f|’f' 6'2
= - ==(@-0)z(@-9)" = =(@-o
F@0) 5 = (@05 97 s@ 92
Prop. 5,7 1 32(d - 7)a- (@ #) — 2|7 Adla- 9| Ad
T3 r4
+ L@@ #)? - | AaP(-4)—a- b
3 rd
AA =2 A A =
Prop. 23,25,27 Q(d"f)lw\,,a‘ + % 7 A G| C‘L’lrﬁa‘
= o
4 1
- 3B3@ 7‘)2—|f/\62]r—56~f'
20@-7)|FAG>P+ 2P AGPF-d—A@@-7)° + P AaPP-d
= o
—A@-7)* + 4 napa- i (121)

14



Proposition 32.
-0logr=—-=a-

ST

Proof.

Prt)£.71a,.5rpro& 23 @-7 (1) @-7

a- 5logr

T T

Proposition 33. For integer k and ¥ if K <0 :

Proof.

Proposition 34. For integer k and ¥ # 0 if 2k +1 <0 :
@- okt = PR(G + 2ka - 7).

Proof.

Proposition 35. Taylor expansion of =1=.

Z—a

15

5 -

(122)

(123)

(124)

2k—2
= 2kr a-r

(125)

(126)

(127)

(128)



Proof.

1 Prop. 12 _551 > (—6 )k 1
D 1_ : 129
Z—a z kZ:O k! z’ (129)
- Hkl S Ak—1 = #1Prop. 28 = ﬁk_llﬁ,l
_ 2 —(-G-b ) P _ iy St
(-0 % = (a9 -a B TR (a9 el
= 1,1
—(—g- &g 1.1
(- 9= O) [z
Prop. 5 = Ak—2 N =1 _,]. 1_, = =1
-0 0=)i= + za(—a- 0=
(<@ 9)2((~a-Fhya + sa(-a J)]
Pro& 28 2( > 5)]@,2%&,%’6%’
Tz
Provs: 528 _93(_g.9)**Lalalat
T T T X
Props. 5,28 - ﬂk_kl _,1 k 1 _,1 k
=0T =k(-a- —(@a=)" = k=(a= 130
(-a- 0 @)t = Ko@n)t (130)
1 I | 1.1
— (= Z=Z(g= 131
= (-a ) = (@) (131)
1 21,1,
= = =(ds 132
Foa— 2703 (132)
k=0
]
Proposition 36. Legendre Polynomials.
The Legendre polynomials P, (homogeneous and of grade n) are defined by:
1 2\ Po(2@) <= P, (Zd)
= = . 133
TP IR e B (133)
The explicit first four polynomials are:
Py(Za) =1, (134)
b (Zd) =7 -a, (135)
1 1
P (Zd) = 5[3(5;% a)? a7 = (Z-a)’ + 5(ng @), (136)
1
Py(73) = 5[5(% @)’ - 33’77 a]:(;aa)%%f a(Ena)?, (137)
P, (Za) = |2|" P.(2d) = |Z|"|d|" Pa(2d) (138)
Proof.
Lo 1 Prop. 12 _ 5.5, - > (-a ﬂ)" 1
F(Z—a) = = F(z)= —
1 o o=1 1, =251 1, =31
=—=-d-0=+-@-90)" =—=@9)’=+... (139)
|| 17l 2 17 6 |Z|
= Py(7a@) =1, (140)
= =1 Prop. 7 1 — 2 - Prop. 10 1 = AProp.llC_L".I_I‘
_g. gL Pt 1 o 05 p. 10 1 o o Prop. 114 T 141
= R = e A
= P(Zd)=a-7Z, (142)



Ql
ST}

1 sane 1 3(@-x)? — &2a*

| 2 |5

7a’} ) (@-0)° + H{and)’ "
§ - HE (149)

ST
ISH
—
ST
8y
NS
|
N —
B
w
s)

— 2@ = (@ )+ %{m 7}, (144)

1, =231 1. = - 13(@- %)% — %a*
—6(‘1' )3*2—5‘1'8[ ( ]

6|2
1 2.

15(a@ - ¥)® — ba?aa - ¥ — 48°a°a - ¥ L3 o2
= el = 2|fl7[5(a-x) —3zx°d‘a- T

(145)

7)2. (146)

1 Pu(3d) (147)

and
= 1 Py1(Zd)
-9t - = [l e
(=a-9) E (n+1)! |Z[2(n D) +1
(n—|— 1)' Pn+1(fa) i —*-5 Pn(fc_i)
n! |§:’|2(n+1)+1 _( a )|f|2n+l

P _g. 51 (7) — —2—@ - OP,(70)

Prop. 7 2n+1 o Sy |
e T P, (Za)a - 0|%| — T d- 0P, (Za)

Prop. 10 2TL+1 N a-r 1 L 2 R
= e T T e 09
2n+1 -

= FEes (@

1

)a - T — |Z]2n+1 (148)

@- 9P, (zd).
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P,(Zd)d - # is a homogeneous function of degree n + 1, if we assume P, to be homo-
geneous of degree n :

f_, assume Zak ‘:E|n k—*” k’ (149)
ayp = const., which is especially true for n = 0,1, 2,3. The right term

n
i -OP,(Td) =ad- 0y on(3-a)|@" " a "
k=0

n
Prop;4,5,9Z{ak[a.é’(f.a)k”x|n kgn— k+ak(f'd) @ 5| |n k]—m k}

k=0
n
Props. 5,7 {

k=0
n

. 10,2 b nk—1o o) en—k on— . k1@ T
Pr0p5:10 21 {O{k[k(ma)k 1 ]|x|n k n k+0&k(xa)k[(nfk)|x|n k 1W}an k}

S {akk(f @)@ TR E R 4 g (n— k)(F - a)’v+1|f|"*ka"*’“} (150)

yields |Z|* @ - 9P, (#d@), to be homogeneous of degree n + 1. Hence

(n+1)! Pyya(2d@)  (Polynomial homogeneous of degree n + 1)
n! \f| (n+1)+1 |$‘2(n+l)+1

(151)

By induction every P, will therefore be homogeneous of degree n. This and the explicit

. P, (%
expressions above for mg‘&% fully prove for all n :

P, (Zd) = |Z|" P, (2d) = |Z|"|a@|" Pn(za). (152)
O
Definition 37. Redefinition of differential, over-dots.
F@)=ia-or @ %(55F + dar), (153)
where the over-dots indicate, that only F is to be differentiated and not @ .

Proposition 38. Fordi¢ A, =G'(I), P=P; :

@ 0y =a-P(dz) = P(d)-Jz, P(@) € An. (154)
Proof.
36, P R Y i a0 = Y Pla) - 6
k=1 k=1
= P(d) - . (155)
O
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Proposition 39.

F(a) = F(P(a)) = P(a) - OF. F(a) =0, o P(@)=0. (156)
Proof.
F(@@) 7" 2L ppa)) L pay - 6F, = F(@) =0, if P@) =0. (157)
O
Proposition 40. Differential of composite functions. For F(Z) = G(f(Z)) and
ffeA,=G') — f(&) e A, =G (I, (158)
we have
G-0F =[-0G,  F(@)=G(f(¥),[(#a)  (Def. 13). (159)
The differential of composite functions is the composite of differentials :
E(z,a@) = G(f(%), [(%,d)) (esplicit). (160)
Proof. Using Taylor expansion (Prop. 12):
F(@+78) = f(7)+7d- IF(F) + %72(5 @) + ... (161)
a-36(1(@) "L 6@ + 1)
dr =0
Taylor (Prop._12), Def. 13 %G(f(i’) n Ti(d)) B
Def. 1,/ 7 /o
) [(aj 0,
= f(d@) - 9G (evaluation at corresponding points.) (162)
O
Definition 41. Second differential.
Fo=b-8a-9F(1). (163)
Suppressing & : Fp = b- 5&' -BF .
Proposition 42. Integrability condition.
Fy=F;.. (164)

The second differential is a symmetric bilinear function of its differential arguments
ab .
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= et 1 - 2dF(Z+7d) & F (% + 7d@ + ob)
. s N, il Sl B =
dodt

T7=0

F(Z47d@+ob)—F(Z+ob)  F(Z+71a3)—F(&)

= lim lim

oc—071—0 o ’

-

which is symmetric under (@, 7) <> (b,0). Hence

Fo(#)=b-0d 0F@&) =a-db-0F(@) = Fy (7).

a

The bilinearity follows from the linearity in each argument (Props. 2,3,14).

Proposition 43. Differential of identity function.

- -

-7 = P(@) = 0:(% - @).

SI8

Proof. We first prove the first identity:

Prog 38 Pj(d) . 525 Pro:p. 8 PI(EI:)

a- 0%

7=0,0=0

(165)

(166)

(167)

(168)

Regarding the second identity, especially for base vectors dx € A, = G*(I):

Proposition 44. Operator identity.
)z = Pr(dz) = 8:(a - 9z).
Proof. Proposition 18 and 43.
Proposition 45. Derivative from differential.
J:F(Z) = 0;(@- 9z)F(Z) = 8:F (&, d)
Proof. Proposition 44 and Definition 13.

Definition 46.
Pro& 45

JF = 8:F (%) 9:F (%,d@) = J F,

where é is the derivative with respect to the differential argument @ of F (&,

Proposition 47.
OF =0-F+0AF.

Proof. Vector property (Prop. 18) of d = d5 and (18).

Proposition 48. Gradient. For scalar F = ®(Z) :

J.o=o0, D—GnD=dd.

20

(169)
(170)

(171)

(172)

(173)

a).

(174)

(175)



Proof. (21), Prop. 47 and (23). O

Remark 49. In Prop. /8 the special definition of Hestenes and Sobczyk[7] in (20)
and (21) for the inner product becomes important. It should be possible to make it
more intuitive by replacing the inner product with the contraction [3].

Definition 50. Divergence and curl.
e Divergence of F' : J- F,

e Curl of F : ONF.
(Full vector derivative of F: OF.)

Proposition 51. Vector derivative of sums.

d(F +G)=08F + dG. (176)
Proof.
IHF+e) "EC G F+e) "R A+ o) T Y d - G+ Q)
k
Prop. 4 Z _'k(d’k O F + 55@)
k
distributivity, (19) Z k- = Sk =
= aak-65E+Za ay - 0:G
k k
Prop. 18, Def. 46 JF 4 8. (177)
Note that geometric multiplication is distributive with respect to addition. O

Proposition 52. Vector derivative of products.

3(FG) = G + OFC. (178)
Proof.
J(FG) "L §(FG) T2 ° G(FG + FG) Pt LT O G pG + OFG
DL 16 510G + GFC. (179)

The third equality is a special case of Prop. 51, if we take the definition of § in Def.
46 into account. The last term is to be interpreted as:

IFG = G;(F@G@)| (180)
Y=
O
Proposition 53. .
7 = 27 (181)
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Proof.

Proposition 54.

Proof.

= dF
F=i——-.
“dlz]
Proof.
= ro = F rop. F
i oF "R 75~8\5%P %546-5:%
N 5FDef:.4656(6.—»)F:56d, . dF prop. 43 _ dF

Taz T Taal

Definition 56. Sides of differentiation. Only right side differentiation:

Def. 46

FiG FIG =FicC.

Left and right side differentiation (another form of the product rule Prop. 52):

FIG = FIG + FIC.
Definition 57. Adjoint. For
f:ieA,=G'I) = f(@) € A, =G'(I"),
the entity

is the adjointof f or explicitly:

-

F(z,3d) = &y [((a.ai)f(f)) -d’] DL 37 5.14(&, @) - @)

Proposition 58.

or explicitly:

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)

(190)

(191)

(192)

(193)

(194)



Proof.

@) " 8 [ (@30 1@) @] = data- 3 [£@) - @)
TR G (f(@) - @) (195)
(Compare [7] p. 50; [2] p. 23 (1.109), p. 24 (1.118), and p. 104 (5.11).) O
Proposition 59. Linearity of adjoint. For scalar o € R :
f@+8)=7@)+71®),  Fflad)=af@). (196)
Proof. Linearity of the inner product (9). O
Proposition 60. B B
P(f(@)) = f(@). (197)
Proof.
P (F(@) ™" T T P (3(0@) - @) = P @) @ B :(1(@) - @)
Prop: 587 (. (198)
O
Proposition 61. B . B
f(@) = 0a(f(a) - @) = F(P'(@)), (199)
with P’ the projection into the range of f and f, i.e. into AL =gH(I).
Proof.
F@) "= Ga(f@) - a) TR G (1) - @) = (1P (@) @)
= 3:(f(@) - P@)) "B RP(@), (200)
O
Proposition 62. B B
PfP' (@) = f(@), P'fP(d) = f(@). (201)

Proof. First identity: Definition 57 and Proposition 58. _
Second identity: Proposition 39 and because the range of f and fis A, = G*(I'). O

Proposition 63. Change of variables. For F (%) = G(f(Z)), i.e. T — f(T) :

8:F (%) = J(3z)G(), (202)
i.e. 9z = f(0)
Proof.
Gz P (7) T2 M Gala - 9:F () = Fala - 3G (f(@)) TR Y Balf (@) - 9w G|
—_— T'=f(Z)
= [0:(£(@) - 92 ) G(&")] P
D= (3G @) w—pi) = T(02)G(T). (203)
O
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Proposition 64. Second differential.

2F () = 8p0:F g = (35 - O + 35 A Dz) Fig. (204)
Proof.
e F(@) "2 (@ de (@) TE iy (205)
=  BF(Z) = 0z(8:F(2)) = 82(8:Fx)
Prop. 54 8_;;[ 5. d. (_’aFa)] _ —»g 315 - 32) F] Def. 41 5b _’EFaE
scalar operator
Prop: 18 (5. 5 1 5. A )P (206)
O
Proposition 65. Integrability condition for vector derivative.
e NOz=0 & Fg=F;. (207)
Proof. (=)
Iz Az = 0 (208)
= 0=(GAD)-(B:ANI)F L a b 0snF)F
=+ (b 02)0z — Bz(b- D) F = ((b- 0z)(@ - Oz)F — (@~ 0z)(b- Ox)F)
DLt p o (209)
(<) Integrability (Prop. 42) means: F_; = Fj.. Obviously
- %(}}Fas— usFs) % 2 2 050 — Bal) P = 05 1 Bl
R O G N B F () (210)
= 9:NPz=0 (211)
O
Proposition 66. Laplacian. Integrability of F < 8_2 =z - Oz.
Proof. Integrability of F’ Proé'} o 5;; A ﬂg =0
& 52 O G 5+ 8s Nz = 5 - B (212)
O
Proposition 67. .
AT =0. (213)
Proof.
N = %8} A (28) TR %P %( Ve A B3 T2 %0, (214)
because I = &2 is integrable. O
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Proposition 68.

Gz =87 % n. (215)
Proof.
n
—»i_,Prog 47 _’j f+ —'f/\ _'PTOE 67 55 _, Prop. 18 (Z(ik&'k 5_') 7
k=1
:nﬂk.ﬂ —‘ﬂﬂProp43nﬂk. N :nﬂk.ﬁ:
a’ - (dy - 0z) a’ - P(dy) a -dr=n (216)
k=1 k=1 k=1
O
Proposition 69.
dz|@|" = k|@* 2z, (217)
Proof.
=k
R R PN A S SR T PR ) (218)
d| 7|
O
Proposition 70.
i n—k
aa( ) - 219
) = 219
Proof.
= 1_:' Prop. 52 7 , _, 1 5 | = —k Prop. 68,69 1 - S —k—2 >
a-( 2 ) D 2 5 (T) = + T0g|| O8O 4 E(—k)|F %
|Z[* S ’ |Z[*
1 k2 n -k n—k
= nW o EE k27" = i (220)
O
Proposition 71.
-
Proof.
8y log |3 Prop. 55 Adlo§|az| _ ‘%i_’ (12) % 12) 21 (222)
|7 |7 z|
O
Proposition 72. For A = P(A) = (A),
Dz(Z-A) = A-9:=rA (223)
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Proof. If A is a simple r-blade, then

Fe(3- A) D Go(A- B (1) = YFeaz — (<) @Ged) A=)
2 ——
=n,Prop. 68
1.5 - r 3 = r— r—
= S[0AF — (-1 A@D)(-1) " = (@ A1)
® 4.8z, (224)
B 4G A) = ANA G D pa(@z TR T ( @ - 5~)f
k=1
=S a @Gz e dta Er, (225)
k=1 k=1
= 03(Z-A)= (A 03)% =rA. (226)

Last step: Multiplication with A from the left. Distributivity (19), (25) gives the same
result even for non-simple r-vectors A. O

Proposition 73. For A= P(A) = (A)

Fe(FAA) = ANTZ = (n—r)A. (227)

Proof. If A is a simple r-blade, then

=

e 1 A) D Ge(A N 7)Y (1) =

1 4 . -
S0zAT + (=1)"  (8:3)  A(-1)
N——
=n,Prop. 68

= S[0RAF + (~1) A@D)(-1) = 0 A A1) L (AnT)T, (228)
GO ATVG(FAA) = AN ANDDT = AT T UI(AN )

Ipseudoscalar, (40) A 1_1[ . (555‘ A A) (_1)1"}3—:»
——
r+1 grades

AT (@5 A A) - NE(—1) DD

(=

(3:8) A*ll—fl[a_’f . (AI)]a—j»(il)Tﬁ»(r«kl)(nfr)f'rfl

(3:9) A_ll_l [(A]) .555}5(_1)(7‘+1)(n—r)—1+n—7‘—1
——

(g) A—ll—l[(IA) .55}5(_1)7"(”_7‘)4!‘7”(”_7')
—~— | S ——
n—r =+1

(35) (36) P, (—'i) Proof of Prop 72 no—r (229)
Fe(FAA) = (AAF)T = (n—1)A (230)

AA~1=1,(30
= (30)

Last step: Multiplication with A from the left. The distributive rule for the inner
product gives the same result even for non-simple A. O
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Proposition 74. For A= P(A) = (A)

3

FeAz =S @ Ady = (—1)"(n — 2r)A. (231)
k=1
Proof.
Gz Az TR NG G - 0 AR =Y @ Aa - na TE T Y @ Aan,  (232)
k=1 k=1 k=1
GeAz = 0elA -5+ AnF] OO GiE A(-1) £ E A A(-1)]
= (~1)7[-0a(E - A) + Dx(@ A A)] DT (C1) [r At (n - 1)A]
=(=1)"(n—2r)A. (233)
O
Proposition 75. For @ = d(Z) , b= g(f) :
x(@-b)=ad-0zb+b- 0@ —a- (0z Ab) —b- (Jz A Q). (234)
Proof.
@ (0 nB) TP G 58— 56 - @), (235)
b (8:na) TP UV 5. — 5x(@ - D), (236)
addition 5@ - b) = 0z(@ - b) + Ox(b - @)
=G -Ozb+b-0za—a- (O3 AD)—b- (05 A @). (237)
O
Definition 76. Lie bracket. For @ = @(&), b = b(Z), the Lie bracket is defined as:
[@b)=a-9:b—b-0za. (238)
Proposition 77. For @ = @(%), b = b(Z), we get the following expression for the Lie
bracket :
[@b] =8z (@Ab) — bds - @+ @ds - b. (239)
Proof.
_,f (E[/\ —‘) Prop. iS (41) (—‘f ) d,)g_ (—‘CE —‘)6
=0Tz @) + (@- 0z)b— d(Jz - b) — (b- x)d (240)
- 71 Def. 76 ., F 7 TR o = - . T 2.3 — - P
= [@b] ="a-0zb—b-0zd=0z-(@Nb) —b(0z-ad)+ d(0z-b). (241)
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), é=a(d)

A~
1)

Proposition 78. For @ = (%), b = b

-

#(@-¢) — - 0x(a-b) + 6,0 - d@, (242)

L

=

(@AD)- (B N@)=b- Dz b=b-

S5

SIS

= o 2
-C—cC-0z

SIS

Q-

-

where the Lie bracket [C,b| is defined according to Def. 76.

Proof.

—5.8:(G-0)—b-8x(@-&) — & Bs(@-b) + - de(@-b)

=5 8:(a@-3) — G 8@ -b) + @ 9x(b- @) — b Dx(&- @)

e 6 5 §x(@- ) — & B2(a@- D) + [2,5) - G (243)
O

Proposition 79. For @ = @(z), b = b(7) :

G- (FeAD)=b-(BsnNa@)+x- (GAD) = (@NTx)-b+d-0:b—ads b (244)

Proof. It follows from the Jacobi identity (44) that
@ (B NB) + 8- (bAG) +b- (@A Ds) = 0. (245)

= G- (FAD) =b-(FeAT) + s @ND)
@D G AFy) b+ d-Fsb— ads-b. (246)
O
Proposition 80. For @ = (%), b = b(%)
Je - (GAD) = (F: AD)—b- (9 AG)

=(bAFz)-@+ad- (OzAb)— (@ADz)-b—b-(Jz A Q). (247)

Proof. It follows from the Jacobi identity (44) that
9z (@AD)+a-(bADz)+b-(Fz ANd) =0 (248)
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Proposition 81.
Ax (FeNB) = A-8:8— 8:b- A= ANGSE— Fb A A. (250)

with the commutator product A X B of multivectors A, B, introduced in (45).

Proof.
Ax (F:n0) ) —@nbyx A _Gb- A+ AT
@ _FHAA+ ANGD. (251)

Proposition 82. For A= (A) = A(Z), B=(B), = B(%) :

ANGeAB=(—1)"3:AN(AAB) = ANG AB+ (1) FC*IBAG A A (252)
Proof.

ANG:n B (Z1)°8: A (AN B), (253)

ANGNB=ANINB+(ANI)AB L ANGAB+ (~1)(3: A A) A B
W ANG:AB+ (~1) VB A (82 A A). (254)

O

4 Conclusion

This article first summarized important geometric algebra relationships, which are
necessary for the thorough and explicit development of the vector differential calculus
part of universal geometric calculus.

It then showed how to differentiate multivector functions by a vector, including
the results of standard vector analysis. The vector differential relationships are proven
in a very explicit step by step way, enabling the reader, who is unfamiliar with the
algebraic techniques to get complete comprehension. It may thus serve as important
reference material for studying and applying vector differential calculus.

Further study in a similar manner to elucidate the calculus with multivector deriva-
tives can be found in [10].
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