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Abstract. Using the method of compression we improve on the current lower

bound of Heilbronn’s triangle problem. In particular, by letting ∆(s) denotes
the minimal area of the triangle induced by s points in a unit disc. Then we

have the lower bound

∆(s) �
log2 s

s2
.

1. Introduction

Let D denotes any convex shape in the plane and ∆(S) denotes the minimal area
of the triangle induced by a set of s points in D so that ∆(s) denotes the supremum
of all the ∆(S). Then Heilbronn conjectured what is now known as Heilbronn’s
triangle problem, which states

Conjecture 1.1. The minimal area of the triangle induced by s points in D satisfies

∆(s) = O

(
1

s2

)
.

Indeed Erdős had shown earlier to the effect of Heilbronn’s conjecture the lower
bound

∆(s)� 1

s2
.

This lower bound would have vindicated Heilbronn’s conjectured upper bound as
the sharpest if it had been proven to be true. Heilbronn’s triangle problem had
long remained open until in 1982 when it was proven false by Komlos, Pintz and
Szemeredi [1]. In particular, they constructed a set of points in D whose minimal
area of their induced triangles, denoted ∆(s) satisfies the lower bound (see [1])

∆(s)� log s

s2
.

What remains open now is the asymptotic growth rate of the minimal area of
the triangle determined by a finite set of points in D. To that effect the quest for
improved lower and upper bounds are of worthy pursuit. The first non-trivial upper
bound was obtained by Roth [4] given as

∆(s)� 1

s
√

log log s
.
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A refinement of a method in [3] eventually yields the best currently known upper
bound (see [2])

∆(s)� ec
√
log s

s
8
7

.

In this paper we obtain an improved lower bound of the minimal area of the
triangle induced by s points in a unit disc, by considering a particular type of
configuration:

Theorem 1.1. Let ∆(s) denotes the minimal area of the triangle formed by s points
in the unit disc. Then we have the lower bound

∆(s)� log2 s

s2
.

2. Preliminaries and background

Definition 2.1. By the compression of scale m > 0 on Rn we mean the map
V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression pushes
points very close to the origin away from the origin by certain scale and similarly
draws points away from the origin close to the origin.

Proposition 2.1. A compression of scale m > 0 with Vm : Rn −→ Rn is a bijective
map.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective. �

2.1. The mass of compression. In this section we recall the notion of the mass
of compression on points in space and study the associated statistics.

Definition 2.3. By the mass of a compression of scale m > 0 we mean the map
M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

Lemma 2.4. The estimate remain valid∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .
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Remark 2.5. Next we prove upper and lower bounding the mass of the compression
of scale m ≥ 1.

Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Nn, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj ≥ 1. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

Definition 2.6. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m Vm, denoted G◦Vm[(x1, x2, . . . , xn)], we mean
the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
Definition 2.7. Let (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
Then by the ball induced by (x1, x2, . . . , xn) ∈ Nn under compression of scale m,
denoted B 1

2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] we mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ ≤ 1

2
G ◦ Vm[(x1, x2, . . . , xn)].

A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality. We call the ball the circle induced by points under compression if we
take the dimension of the underlying space to be n = 2.

Remark 2.8. The circle induced by points under compression is the ball induced on
points when we take n = 2.

Proposition 2.3. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.
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In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
for ~x ∈ Nn.

Lemma 2.9 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2, then we
have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1
− 2mn.

Theorem 2.10. Let ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all 1 ≤ i < j ≤ n.
Then ~z ∈ B 1

2G◦Vm[~y][~y] if and only if

G ◦ Vm[~z] ≤ G ◦ Vm[~y].

Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all

1 ≤ i < j ≤ n, then it follows that ||~y|| > ||~z||. Suppose on the contrary that

G ◦ Vm[~z] > G ◦ Vm[~y],

then it follows that ||~y|| < ||~z||, which is absurd. Conversely, suppose

G ◦ Vm[~z] ≤ G ◦ Vm[~y]

then it follows from Proposition 2.3 that ||~z|| ≤ ||~y|| and sup(zj) ≤ sup(yj) by
Lemma 2.9. It follows that∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~y].

This certainly implies ~z ∈ B 1
2G◦Vm[~y][~y] and the proof of the theorem is complete. �

Theorem 2.11. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
If ~y ∈ B 1

2G◦Vm[~x][~x] then

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] and suppose for the sake of contradiction that

B 1
2G◦Vm[~y][~y] 6⊆ B 1

2G◦Vm[~x][~x].

Then there must exist some ~z ∈ B 1
2G◦Vm[~y][~y] such that ~z /∈ B 1

2G◦Vm[~x][~x]. It follows

from Theorem 2.10 that

G ◦ Vm[~z] > G ◦ Vm[~x].
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It follows that

G ◦ Vm[~y] ≥ G ◦ Vm[~z]

> G ◦ Vm[~x]

≥ G ◦ Vm[~y]

which is absurd, thereby ending the proof. �

Remark 2.12. Theorem 2.11 tells us that points confined in certain balls induced
under compression should by necessity have their induced ball under compression
covered by these balls in which they are contained.

2.2. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 2.13. Let ~y = (y1, y2, . . . , yn) ∈ Nn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then ~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].

Remark 2.14. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball. Next we show
that all balls can in principle be generated by their admissible points.

Theorem 2.15. The point ~y ∈ B 1
2G◦Vm[~x][~x] is admissible if and only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Then there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that

~z /∈ B 1
2G◦Vm[~y][~y].

Applying Theorem 2.10, we obtain the inequality

G ◦ Vm[~y] < G ◦ Vm[~z] ≤ G ◦ Vm[~x].

It follows from Proposition 2.3 that ||~x|| < ||~y|| or ||~y|| < ||~x||. By joining this
points to the origin by a straight line, this contradicts the fact that the point
~y ∈ B 1

2G◦Vm[~x][~x] is an admissible point.. This contradicts the fact that the point

~y ∈ B 1
2G◦Vm[~x][~x] is an admissible point. Now we notice that ~y ∈ B 1

2G◦Vm[~x][~x]

certainly implies G ◦ Vm[~y] ≤ G ◦ Vm[~x]. Conversely we notice as well that ~x ∈
B 1

2G◦Vm[~y][~y], which certainly implies G ◦Vm[~x] ≤ G ◦Vm[~y] by Theorem 2.10. Thus

the conclusion follows. Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]
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and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y must satisfy the
inequality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~x].

It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~x]

and ~y is indeed admissible, thereby ending the proof. �

Next we obtain an equivalent notion of the area of the circle induced by points
under compression in the plane R2 in the following result.

Proposition 2.4. Let ~x ∈ N2 ⊂ R2. Then the area of the circle induced by point
~x under compression of scale m, denote by Vm[~x] is given by

δ(Vm[~x]) =
π(G ◦ Vm[~x])2

4
.

Proof. This follows from the mere definition of the area of a circle and noting that
the radius r of the circle induced by the point ~x ∈ R2 under compression is given
by

r =
G ◦ Vm[~x]

2
.

�

3. Lower bound

Theorem 3.1. Let ∆(s) denotes the minimal area of the triangle formed by s points
in the unit disc. Then we have the lower bound

∆(s)� log2 s

s2
.

Proof. First let s ≥ 4 and let m := m(s) > 0 be fixed. Pick arbitrarily a point
(x1, x2) = ~x ∈ R2 with xj > 1 for 1 ≤ j ≤ 2 such that G ◦ Vm[~x] < 1. This ensures
the circle induced under compression is contained in some unit disc. Next we apply
the compression of scale m > 0, given by Vm[~x] and construct the circle induced
by the compression given by

B 1
2G◦Vm[~x][~x]

with radius (G◦Vm[~x])
2 . On this circle locate (s − 3) admissible points so that the

chord joining each pair of adjacent (s− 1) admissible points including ~x and Vm[~x]
are equidistant. Let us now join each of the (s− 1) admissible point considered to
the center of the circle given by

~y :=
1

2

(
x1 +

m

x1
, x2 +

m

x2

)
.



AN IMPROVED LOWER BOUND OF HEILBRONN’S TRIANGLE PROBLEM 7

Invoking Proposition 2.4, the area of the circle induced under compression is given
by

δ(Vm[~x]) =
π(G ◦ Vm[~x])2

4
.

We join all pairs of adjacent admissible points considered by a chord and produce
(s − 1) triangles of equal area. We note that we can use the area of each sector
formed from this construction to approximate the area of each of the triangles
inscribed in the sector as we increase the number of such admissible points on the
circle. It follows that the area of each sector formed must be the same and given
by

A : =
π(G ◦ Vm[~x])2

4× (s− 1)

�
2Inf(x2j ) +m2 log

(
1− 1

sup(x2
j )

)−1
− 4m

4× s
.

The lower bound follows by taking

m :=
log2 s

s
and Inf(xj) := K

log s√
s

for K ≥ 2. �

1.
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