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Abstract 

“Point-diffraction” ptychographic methods use small-area illumination of relatively 

simple diffracting objects, e.g. in the context of point-diffraction interferometry or spot-scanning 

microscopy.  The resulting interferograms can be adequately sampled with relatively few 

detector pixels, and the reduced data volume enables the use of faster or more accurate 

reconstruction algorithms that might not be usable in conventional wide-field ptychography.  In 

one algorithmic approach, “first-principles ptychography”, the diffraction object’s optical 

transfer function and the illumination field are simultaneously reconstructed without relying on 

any assumptions about the internal structure or diffraction mechanisms within the object or 

illumination optics.  This capability would be useful for applications such as interferometric 

testing of optics for EUV lithography and inspection/metrology. 

 

Introduction 

Coherent Diffraction Imaging (CDI, [1]) uses far-field diffraction patterns from an 

illuminated object to reconstruct the object’s spatial image field (amplitude and phase), based on 

a known illumination field.  Point-diffraction interferometry similarly extracts information from 

diffraction-generated, far-field interferograms, but in this case the diffracting object is known 

and the illumination field (with optical aberrations) is unknown.  Ptychography (scanning CDI 

[2]) can simultaneously reconstruct both the object and illumination fields from multiple 

interferograms collected with the object in different positional scan positions.  In the context of 

ptychographic microscopy, the method can be applied as a calibration process to characterize the 

illumination so that subsequent image reconstructions can be done with the illumination known.  

In the context of ptychographic interferometry, the diffracting object can be characterized during 

instrument calibration so that subsequent interferometric testing can be done with the object 

known. 

 

Point-Diffraction (Small-Spot) Ptychography 

Ptychography typically uses broad-area object illumination to generate richly detailed 

diffraction patterns, which are sampled with multi-megapixel detectors.  The object/illumination 

reconstruction calculations with such large data sets are very computationally intensive and are 

only practicable with simple optical modeling algorithms.  The object is typically modeled using 

a thin-film approximation.  Alternatively, a tomography or “multi-slice” model can be used for 
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thick samples. [3-5]  These models do not accurately represent the near-field, volumetric 

scattering mechanisms within real objects. 

Point-diffraction interferometry, by contrast, is conventionally done with the diffracting 

object at or very close to the focal point of a convergent illumination beam. [6, 7]  The relatively 

small illumination area results in less detailed diffraction patterns and a relaxed pixel density 

requirement.  This can make it possible to use more accurate but computationally intensive 

algorithms such as Rigorous Coupled-Wave Theory (RCWA, [8]) in ptychographic 

reconstruction calculations. 

Spot-scanning microscopy, the imaging analogue of point-diffraction interferometry, can 

similarly be implemented as a form of small-spot ptychography in which an inspection surface is 

raster-scanned across an array of diffraction-limited point illumination spots while the far-field 

diffraction pattern from each spot is sampled by a position-sensing detector comprising only four 

sensor elements. [9] The large illumination field and massive detector array of conventional 

ptychography are replaced by massively parallel point scanning on a dense spatial grid (e.g. 

~2 million spots, 20-nm scan step).  The relative simplicity of point illumination with quad-cell 

detectors can greatly simplify the data processing; for example, a simple threshold detection 

algorithm might be used for defect inspection. 

 

Ptychographic Interferometry and Interferometric Polarimetry 

The focus spots in a spot-scanning microscope can be accurately characterized using a 

ptychographic point-diffraction interferometer (PDI).  Point-diffraction interferometry would 

generally be well suited for testing point-imaging characteristics of high-performance optics such 

as EUV metrology and lithography projection systems because of its simplicity and high 

sensitivity, and because the test is performed in basically the same way that the test optic is used.  

An improved variant of PDI is the Zernike point-diffraction interferometer (aka “Zernike phase-

contrast test” [10-15]), which replaces the “point” transmittance aperture with a phase-shifting 

spot.  (A half-cycle optical phase shift is typically used.)  This differs from other more complex 

“phase-shift” PDI systems. [16]  If the PDI diffracting aperture is large in relation to the 

diffraction limit it is similar to a Foucault knife-edge interferometer or the related phase Foucault 

knife-edge interferometer [13, 17].  These interferometer variants differ only in the diffracting 

object characteristics.  Multiple, interchangeable aperture filters can be used as diffracting 

objects within the same instrument.  For applications requiring polarization measurement, 

polarizing or birefringent filters can be used and the interferometer can contain polarization-

separation optics and multiple detector arrays for sensing different polarization states. 

 

Ptychographic Modeling and Calibration Algorithms 

Accurate object modeling, e.g. via RCWA, would be indispensable for applications such 

as testing high-NA EUV optics.  For example, actinic interferometry at wavelength 13.5 nm with 

a Zernike PDI or phase Foucault knife-edge test might use a diffracting edge formed as a 60-nm 
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step in a ruthenium layer deposited on a thin (e.g., 50-nm) silicon substrate.  The 60-nm step is 

much larger than a 0.55-NA focused beam’s waist (13-nm FWHM) and focus depth (35 nm). 

[18]  Furthermore, while a 60-nm step would provide a half-cycle phase shift at near-normal 

incidence, the phase shift will vary significantly over the full range of incidence angles.  The 

focus beam would also exhibit polarization effects at high incidence angles, which might need to 

be accounted for in the optical modeling. [19]  These factors would require accurate diffraction 

modeling to reliably measure beam aberrations. 

As an alternative to complex near-field diffraction modelling, the ptychographic 

instrument could simply be represented by a generic optical transfer function, a linear 

transformation from the illumination field to the detector field at the pixel sensor elements.  This 

“first-principles ptychography” approach would make no assumptions about the illumination 

optics or the object, other than the assumed linear dependence between the illumination and 

detector fields.  In the context of microscopy, diffraction modeling of the object would be 

required to determine its structure from its measured optical transfer function, but the calculation 

would not rely on any assumptions about the illumination optics.  In the context of 

interferometry, the illumination optics would need to be modeled to extract aberration data from 

the measured illumination field, but no assumptions would need to be made about the object 

structure.  However, the object and illumination optics would both need to be modeled, at least 

approximately, in the ptychographic reconstruction calculations to provide initial estimates of the 

illumination field and transfer function, which are computed by an iterative numerical process. 

A drawback of first-principles ptychography is that the object transfer function and 

illumination field cannot be determined from only translational object scans.  The process would, 

at a minimum, require multi-axis rotational scans, and a robust measurement process might 

require up to 6-axis translational and rotational scanning.  (The positional scan coordinates 

would not necessarily need to be accurately controlled or measured; they can be calculated as 

part of the reconstruction algorithm. [20, 21])  The measurement might also require data from 

multiple illumination fields and multiple aperture filters.  However, this process would only be 

required during system calibration. 

 

Interferometric Measurement Processes and Applications 

After the interferometer’s transfer function has been calibrated, it can be used to sample 

an optical system’s point-imaging performance at multiple image field locations to fully and 

accurately characterize aberrations and geometry errors of all optical surfaces in the system.  In 

addition to measuring surface form errors, ptychographic interferometry can be used to measure 

optical alignment errors for all surfaces and also positioning errors in the illumination source 

point and the diffracting object’s location at each scan position. 

Ptychographic interferometry would be useful for shop testing and alignment of high-

performance optics and for in situ aberration testing e.g. for thermal compensation or adaptive 

optics.  The method could be used for manufacturing EUV and X-ray mirrors in two ways:  A 

test using a long wavelength (UV or visible) would be used for aberration measurement in the 
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surface figuring process (before reflective coatings have been applied to the mirrors), and then 

the operating EUV or X-ray wavelength would be used for final test and alignment. 

A spot-scanning microscope could be calibrated by using a ptychographic interferometer 

as a primary accuracy standard.  Potential applications for spot-scanning microscopy include 

actinic EUV mask inspection, wafer inspection, defect review, metrology, and wafer alignment 

(for accurate field stitching and overlay). 

 

Algorithm Approach 

Following is a conceptual outline of the reconstruction algorithm approach (or one 

possible approach), assuming coherent illumination and neglecting polarization effects and the 

finite size of detector pixels. 

The illumination field (illum)( )A x , as a function of position x , comprises an integral 

superposition of plane waves of the form 

 (illum) [illum]

| 1/
( ) ( )exp( 2 )A A i d




=
= fx f f x  (1) 

where x  and f  are spatial position and spatial frequency vectors, which have the following 

coordinate representations relative to coordinate basis vectors 
1ê , 

2ê , and 
3ê , 

 
1 1 2 2 3 3 ,1 1 ,2 2 ,3 3
ˆ ˆ ˆ ˆ ˆ ˆ, j j j jx x x f f f= + + = + +x e e e f e e e  (2) 

The illumination traverses the object in the 
1ê  direction, and the ,1jf  frequencies are all positive 

and are defined by the condition | | 1/ =f , 

 
2 2 2

,1 ,2 ,31/j j jf f f= − −  (3) 

where   is the illumination wavelength.  The integral in Eq. (1) is a two-dimensional integral 

over a portion of the sphere | | 1/ =f , and the differential d  is a solid angle element on the 

integration sphere.  (In numerical implementations, the integral in Eq. (1) can be approximated 

as a sum over a finite set of discrete frequencies f .) 

The detector pixels are labeled with index j  and the field amplitude on pixel j , denoted 

(pixel)

jA , is a linear function of the illumination wave amplitudes sampled at some reference point 

(ref )=x x , 

 
(pixel) [illum] (ref )

| 1/
( ) ( )exp( 2 )j jA L A i d




=
= f f f f x  (4) 

The signal jS  acquired from pixel j  is proportional to 
[pixel] 2| |jA , 

 
[pixel] 2| |j j jS A=  (5) 
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where 
j  is a conversion efficiency.  (The signals are normalized to a direct measure of the 

illumination source power.)  
(pixel)

jA  and ( )jL f  can be scaled to absorb the efficiency factor 

(pixel) (pixel)( , ( ) ( ) )j j j j j jA A L L  f f , so we can assume without loss of generality that 

1j = . 

 
(pixel) 2| | ( 1)j j jS A = =  (6) 

Also, the phase of 
(pixel)

jA  can similarly be absorbed in a complex scaling factor 

(pixel) (pixel)( , ( ) ( ), | | 1)j j j j j j jA c A L c L c  =f f , so we can constrain 
(pixel)

jA  to be real-valued and 

non-negative, 

 
(pixel) (pixel)Im( ) 0, 0j jA A=   (7) 

The reference position (ref )
x  is not explicitly specified, but its three coordinates can be implicitly 

constrained by the condition that [illum]( )A f  is real-valued for three specific, linearly independent 

frequencies f . 

Within these constraints, the problem is to determine the amplitudes [illum]( )A f  and 

coefficients ( )jL f  from the signals 
jS .  (In numerical implementations f  is finitely discretized, 

L  becomes a matrix operator, and [illum]A  is a vector; so the number of unknowns is finite.)  A 

single interferogram defined by Eq. (4) does not contain sufficient information to determine the 

unknowns, but they can be resolved by combining Eq. (4) with a constraining optical model for 

the detector and/or illumination optics, or with additional information from interferograms 

acquired at different detector positions as described below. 

The linear coefficients ( )jL f  in Eq. (4) represent the optical transfer function of a 

detector system, which includes an aperture filter, the pixel array, and any intervening optics.  If 

the detector position is changed by translational displacement vector x  (with the illumination 

field stationary) then Eq. (4) will apply to the field amplitudes sampled at  (ref )= +x x x , 

 

(pixel, ) [illum] (ref )

| 1/

( ) [illum] (ref )

| 1/

( ) ( )exp( 2 ( ))

( ) ( )exp( 2 )

j j

j

A L A i d

L A i d











=



=

= +  

= 





x

f

x

f

f f f x x

f f f x
 (8) 

where 

 
( ) ( ) ( ) exp( 2 )j jL L i  = x

f f f x  (9) 

The “x ” superscripts represent the transformed pixel amplitudes 
(pixel, )

jA x
 and coefficients 

( )

jL x
 under translation of the detector.  The corresponding signals are 



6 

 

 
( ) (pixel, ) 2| |j jS A =x x

 (10) 

The detector can be scanned over a three-dimensional range of displacement vectors x  to 

provide additional information without increasing the number of unknowns (except that the 

vectors x  might not be accurately controlled and can be included with the unknowns). 

 Even with translational scanning Eq. (8) is insufficient to resolve the unknowns without a 

constraining model because an arbitrary function of f  can be shifted between ( )jL f  and 

[illum]( )A f  without affecting the integral (e.g., ( ) ( ) / ( )j jL L uf f f , [illum] [illum]( ) ( ) ( )A u Af f f ).  

However, it may be possible to eliminate the model dependence and realize first-principles 

ptychography by using additional information from rotational scans.  If the detector is first 

translated by displacement x , and is then rotated around the coordinate origin by rotation 

operator R , then the pixel amplitudes are described by the following generalization of Eq. (8), 

 

(pixel, , ) 1 [illum] (ref )

| 1/

( , ) [illum] (ref )

| 1/

( ) ( )exp( 2 ( ))

( ) ( )exp( 2 )

R

j j

R

j

A L R A i d

L A i d









 −

=



=

= +  

= 





x

f

x

f

f f f x x

f f f x
 (11) 

where 

 
( , ) 1( ) ( ) exp( 2 )R

j jL L R i  −= x
f f f x  (12) 

The “ R ” superscripts represent the transformed pixel amplitudes 
(pixel, , )R

jA x
 and coefficients 

( , )R

jL x
 after rotation of the detector.  The rotation operator is defined by three Euler angles, 

which can be included with the unknowns. 

 The measurement robustness and stability can be improved by combining data from 

multiple detector systems and multiple illumination fields.  With M  detector systems and N  

illumination fields combined pairwise, the number of unknowns (not counting scan coordinates) 

is a linear function of M  and N  (e.g. a M b N+ ), whereas the number of constraining 

equations defined by Eq. (11) is proportional to M N , so the equations become highly 

overdetermined with large M  and N  and can be solved by least-squares error minimization. 

 In practice, the multiple detectors can all be the same apparatus, but with different 

aperture filters.  The calibration algorithm can be modified to allow translation and rotation of 

only the filter, not the entire detector apparatus.  The multiple illumination fields can be 

generated by using a set of quick-change, far-field transmission masks.  The algorithm can also 

be generalized to accommodate partial coherence and polarization effects. 
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