A straightforward and Lagrangien proof of the mass as the internal energy of a system

Ozgiir Berké (ozgur.berke@live.fr)

| propose a Lagrangian proof of Einstein's well-known law that the mass system is its internal energy.

The interest of this proof is to show how appears the distinction between internal degrees of
freedom and the center of mass in the Lagrangian formalism.
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1. The Einstein law
1.1. The law

According the expression of the law of physics via the principle of least action [Landau-Lifchitz] and
the relativistic invariance: the mass m, of a material point “a” is simply the multiplicative coefficient
appearing in the Lagrangien of this material point, interacting or not with an external field.

Saz2 tam,. c?

S[ra,(©)] = — mg.c.ds, + -+ = —f )
t; a

Sa,1

dt + -

In 1905, Einstein tells us that whatever the system: a set of material points (dynamically

characterised with a Lagrangien L ({ra}, {%})) or a field (dynamically characterised with the

Lagrangien A ((p,%—(f,g—(f)) we should have:

tz E*

LYW

dt + -

smgam]=—£

e oy drg oL *( . {dr;‘,}) . i
o WithE* =), T L ({rg}, | ) for a material point;
dat*

o orE*={[f <Z—ﬂ@/ﬁ — A*) dV* for a scalar field (for example).
at*

Where the quantities with a star * are relative to the reference frame associated to the mass center
K*. So E* is the internal energy.

Thus, every system has a centre of mass which has a Lagrangian, analogous to a material point with a

E* _,. . . .
mass M = = This is the famous law of Einstein.

1.2. The current proof

This law is well established since its first publication in 1905 and was re-demonstrated more clearly
after by other (Einstein himself, Von Laue ...). The simpler way (that the author know and read in
[Landau Lifchitz]), is to demonstrate that the momentum is a 4 vector.

Indeed, tanks to the stress energy tensor T of the system, we can always associate to it a 4-vector

PY(K*) = %f -Ufspace—time,l( T*dS, , where we choose the hyper-surface of integration as the

hyperplane of the reference frame K* (t* = cte).
In any frame ([Janssen & Mecklenburg]), PE(K*) can be written equivalently
i * 1 [ * *
PUK™) =2 11, cecime 6 (namx ™ (K™Y ) .mic(K ™) dx

where 1, (K™*) is an orthogonal vector of the hyperplane t* = cte of K* such that
n*, (K*) = (1,0,0,0) in K*.

Thus, the Lorentz transformations tell us:



. 1 . o1
Pi(K*) = - f W L LETTs8(e"). L' (K™ d*x* = L~ W T*r0(0, x*¥)dV'*
¢ space—tim ¢ x*xey*

So P(K*) = L', P*"(K*) where P*" (K*) = = ]

Space

T*70(0, x*%)dV*

But E* = fffspace T*90(0,x**)dV* and P**(K*) = 0 by definition of K*

So we have Pi{(K*) = (y%*,yf—;VK*/K), hence P = yf—;VK*/K >M=L

C2

That is to say, the 3-momentum of any system is the same as a material point:

. E
o withamassM = =
o andaspeed v = Vg, k.

2 remarks:

o PY(K™)is here relative to the particular time t* = 0 and is not a priori constant;

o Pi(K*) is not the only one 4-momentum since we can define a different one for each frame of
reference, P1(K), PL(K"), PL(K™) ..., all are associated to different hyperplane of simultaneity
linked to each possible (an infinity) frame of reference K,K’,K*...(see [Janssen & Mecklenburg]).

It exists a particular case where there is only one 4-momentum P': P{(K) = P{(K") = PY(K™)...In
[Landau Lifchitz] we know that (in a general field theory):

o if the system is locally conserved : the stress-energy tensor has a null divergence
0, T = 0;

o andif there is “nothing (other than gravitation field)” in infinite (in the sense of
convergence to infinity).

2 PY(K) = %f fffspace_tim ,KT”‘dSk is conserved and doesn’t depend on the

hyperplane of integration (thanks to the conservation law).

In a less general theorem (but more old) from Von Laue (cf. [Wang]) we can also say that if 3,7 = 0
(and nothing to infiny):

i 1 0 17 ¢ 1 ~
Pt = ;fffspaceT‘ dV is a 4-momentum & fof T2B qv=0

Space

1.3. Why (I am) searching another proof ?
The proof above does not use the Lagrangian directly but indirectly via the stress energy tensor.
However, the base of all dynamics in physics laws is (until now) always to start from the Lagrangien
of a system with the appropriate variables (including degrees of freedom). We should be able to
select the center of mass and the complementary degrees of freedom (which we called logically the
internal degrees of freedom since they are seen in the “hidden” K*). Unfortunately (for myself at
least...), | never found any proof using this point of view. With the current approach (even if it is
sufficient for physics) it is not clear, for me, how the centre of mass appears in the Lagrangian, in
parallel with the internal degrees of freedom. Indeed the Lagrangien is reconstructed only a

posterior, after to demonstrate that P, = y?VC (using the stress-energy tensor) (see [Janssen &

Mecklenburg]). So we don’t clearly see the passage:



e From an initial Lagrangien S[{r,(t)}] = fttlz L ({ra}, {%}) dtor S[{e(x,t)}] = %f ffa ((p,i—f,i—f) dQ

e To alagrangien of an apparent material point S[R.(t), ...] = — fttzyf—l:)dt + -
1 c

In this article, | propose, using directly the Lagrangien formalism, to give the proof, for a material
system (to present the method), for a field (scalar in order to simplified) and finally a system where

the two interact.



2. Material system free
2.1. The proof

We begin with the action principle for a set of particles:

t

Slra(®)] = f (o (T an

In this expression, we are using coordinates in a Galilean reference frame K.

The degrees of freedom are the vectors {r,}, and we integrate the expression between the plan H;
(t; = cte), and H, ( t, = cte’) in this frame.

We want now separate:

e theinternal degree of freedom {r,}, defined in the frame K*of the center of mass;

e from the external degree of freedom R, defined in the Galilean frame K.

So the degrees of freedom {r,}, are equivalent to the degree o freedom {rj, R, }.

Note 1: a plane t=cte is seen differently for different internal particle in the frame of the center of mass K*

Thanks to the relativist invariance we know that each terms of the action associated to a particle is invariant (L. dt =
Y.a —Mg. cds,). However in the frame K*, the border plan H; and H, are associated to different time for each particle (in
Einstein relativity the simultaneity is relative to a frame).

More explicitly, the Lorentz transformation said that a coordinate t’ seen in the frame K is expressed like

t'—t=y(t) ((t’* —tip) + @r)
With:

o y® =y(Vc®),
o Ve=Vigyk(t),

* : . - t dt
e andt, the time measured by a clockion C: t;y =

0y()

, in the frame K*(t) at the instant t (t'#t, a priori, since t’ is a generic coordinate of K but t defines the time of K for which
the center of mass has the speed V¢(t) ).

So aplane t’ = cte in Kis seen like a plane y(t) ((t’* - t;(t)) + IC—}r*> + t = ctein the frame K*(t) around t.

i
t'-t Ve .

Thus a particle at the position 17, see the plane t’ = cte at the instant t"™* = T " wTa +ton

This is the proof of the assertion in the title.

Note 2: measurement of a clock fixed on K*(t)

Around t (t given and constant), a clock in * of K*(t), and always in * , measures the duration time

_t'=t _Ve®
RGN
localised, by definition, in a different position than C: that is to say r*.

t" —tiw 7" between the event (ct7), 0*)K*(t)associated to Cin K*(t) and a certain event (ct", 7*)k.(r)

If we demand to this clock to measures now the duration between 2 events localised in its own position, the duration is
Ik g% _ t'-t  Ve® *) _ o _ (At’—o
now A(t™ —ti) = A(y(t) Sort) <=> (A" - 0) = o)

always in the same reference frame K*(t). More over r* = cte by definition of the 2 events considered.

— 0) since y(t), Vc(t), t are constant since we work



" At’ " dt’
So we have At'"* = —and dt'* = —

= for 2 infinitesimal events.
y(©) y(®

When we observe 2 events associated to a particle, we study the duration time between 2 hyperplanes t"* = ct of K*(t)
where the 2 successive positions of the particle occurred. The duration is always measured by a clock fix in K*(t). So we
can apply the relation above for the duration time associated to a particle:

dat

v i : P =dtt = —
particle a: dt; = dt e

Note 3 : On the Lorentz transformation

A more general Lorentz transformation is:

tg—t ty, —to tqg—t=y(t) ((t,’; —tH+ ’—jr;>
(T (t ) —R (t)) = L(t)( r ><:> ;
T Ta(ta) = Re(t) = c(t; = t)y (OB + 15+ (r = 1) 7. (Br2)

a

For a movement of K* along x, we have the special Lorentz transformation principally used in this article:

te—t=y(t) ((tg —tipy) + @.xé)
Xa — Xc = V(t)(c(t?i - t;(t))ﬁ(t) + XZ')

Now we express the action in the local frames K*(t):

SIra(e), RO = | L (e [0 e v ar

*
ta,l

. dt . .
Taking account dt* = — and returnig to the Galilean frame K we have:

y(©)
* * * dr;kl
{ta2) dt dr}, dt* t; L\ {rad iy(Vo) 7 R Ve
S = Lt p RV dt = dt
f{t’;,l} <{r“}’ {dt* dt } ¢ C) dt ft y(Ve)

So far, nothing new.

The important point to keep in mind is that we are not considering the variation of the internal

degree of freedom r, :

. . . * d *
e relative to the internal time t*of K*: d:’j;

. . . dr
e but instead relative to time t of K: %.

v(eafrvoby)
yVo)

That is to say, the Lagrangien considered is L' ({rZ}, {%rz‘} ,R¢, Vc)

using the most « natural » L ({TZ}, {Z_:'}}’ R, Vc) = L<{+V’{5t*})

, instead of

So, we can now calculate the momentum of the center of mass, with V¢ = V. x:




oo U(ufrooGs)
T
= i (b oo T s

\/1_7,%2 = _V(Vc)%
21 (b roo ) = 7, 200
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a0 )
v V(Vc) y(ve) aVc “
o010 [ w3
avey(ve) v c

aL*

-1/2
_y ary 2(175) oL
v, ay(vc)dra T Aa g v, a‘;:.é
1.v,
_Zdr;; 522 oL xCdrg 3y v, oL
T L dt v\ | pdr, - L dr ! (Obn ¢ o dry
a (1—7) datx ¢ at*
dry, Ve 1 dry Ve L
P.=L"({r.} V—)(—V—) 3
=1 (o frvoZH) (vwo TPl
dt*
Ve e dr, oL
=y %[ 1 () v T2 + ZV i
Ot
v dr, aL*
=y Zy :

i (oo 5)
dt*
= y(v)“ zai:f% — 1 (trad

dr,’;}) dry dru
*
P.=y—=V¢
c
dry oL* dry . .
where E* =Y ,—2 Ta —=—L ({r;}, {i}) is the internal energy
dt* 5dra de*
dat*

So we have our relation

E*
E™ is relative to the hyperplane t*=cte, the mass M = — is dealing with events ( the spatio-

temporal positions of the particles) simultaneous in the frame K* and not in the frame K. This
d
is well defined since t* = ft ‘

0y’

Fdt’
M=M(t*)=M J‘m

We see that we don’t need to talk about closed system hypothesis or to have a 4 vector momentum
to demonstrate it (we don’t even use the expression L.dt = )., —m,.cds,)

Finally, the Euler-Lagrange equations tell us that — (y Vc) =

9 '( * {ﬂ} )
6RCL {ra}; dt 'RC'VC




dar
We have to note, in the proof, the importance to freeze the right variable { = } (and not{

)i

order to have the good expression.

2.2. Momentum and energy
2.2.1. Momentum

. oL’ dr aL*
We can also notice that Py = —= = y;ma.d—t‘: ,s0P, = s ——=which is surprising but reassuring for
a a
dt dt*

the intelligibility of this quantity: this is the same as the one we would have in the frame of the
centre of mass K*.

. . «q [drs .
More over the total momentum P,,.4; associated to the Lagrangien L’ ({ra}, {%},Rc, VC) is

oL’ | oL . N L .
Piotal = Zad_r,*, to, = Y.a Pa + P, = P_ since by definition of K*: )., P, = 0. This is interesting
00— C
dt
since despite considering the internal variables on the same level as the mass center, we obtain as it

should the total momentum is the one associated to the mass center.

Proof:
ds, dsg dt* 11
Indeed L.dt = _Zama-Cdsa =L = _Eama Cd_ta = _Zama Cd_taﬁ Eama'czy_&]—/
drip? 1 (drg\? drin?
RGO - R N ) ary _ d,ﬂ

Buty,yé_y\jl o b o b 7 since —% y(V c)

] 1 F] 1 (ﬂ drg
Moreover—( ): = —at/ . _dt L

adr“ YYa g%ra | y? > V- Va
dt dt
11
So Pa Tdrg Za/mar C V- =Mmgy.C
Yar ¥
r
2.2.2. Energy
aL dry , oL
By definition the energy is: E = Za 4 —V.—-L
a dt ave
dt

We can re-express it as:

dra . , !
E=%qPg—"+P/V, — > since L ==

oL” dra E* AL _oar L
=Yaar 0ra dt ( C_z-Vc)Vc_? since Pq = —> = i

dt* dt dt*



_ 2
gdra dt y vale
a dt*
aLr* dr, L* E* oL dr, \1 oy
T Ladrgydtt traVe Sdradts yTra Ve
a dt* a dt*
2
B, E° E°_, E+y*z.V 1+ y2.p2 R
=—+tyZ.VSi=—+y=Z.VS = = =E"
14 c c 14 14 14
1— 6%+ p? 1
1= g2 1= B2 2
14 14 14
So we have, as it should:
E = yE*

2.3. The material system seen as a material point: the reduced action
We can write:

tz *
ST (e}, Re(0)] = f
t

({Ta} { } R, VC) dt
_ L 12

dry
Zpa'W+PC'VC_E dt
a
ta dra E*
:J Epa. (y 2Vc) vV, —yE*|dt
. dt
a
dra E*
P ——|dt
z “dt ]

.f ’
ty

zpaddtJrE(ﬂz ] f

14
So

ST (6}, Re(D)] = f

ZP dra _E°f
Ydt oy

If we ignore the final position of the internal degree of freedom, we have like a “spatial
Maupertuis principle” (instead of a temporal used in [Landau Lifchitz])

SS[ra ()} Ro(D)] + (Z P, 5r;> —0

H;

We can see that if all the internal momentum are constant, it exists a reduced action principle



t, *

So[R:(D)] = — J 7dt

ty

We can surely generalize it for closed systems with internal separable variables where we’ve chosen
well the variables with constant momentum. In this case, we see that for “stationary” system, in this
restrict sense, the center of mass dynamic is the same as a material point.

dry
dt
Lagrangien of the apparent material point with this reduced action (in the same manner we make

appear the virtual work theorem: § fttlz [ZaPg-dr — H[Pg, 1, |dt] + (o Pa. 674 )H =0 and
2

Note: my idea to consider the quantity { } comes initially from the willingness to make appear the

P, =cte=>§ fttlz Hp =cte,({ra })dt = 0).

Proof:
Indeed (do the same that [Landau lifchitz] but for space and not for time)):

8S[{ra(t")} R(O)] + (Z Pu-51‘2> =0
a H

2

t, t, E*
<=> 5f dZ[Pa.r;] +5f [——] dt + ZPa.cSr; =0
ty t |4
a a H,
ZPa.rfl
a

*

t, E
+5f [——]dt+ Zpa.5r; —0
t 14
H, a H.

2

<=>6

tap g
<=>94 [— —] dt =0
ty

2.4. The material system seen as a material point: the internal dynamic is known

As already written:
ty

SIra(t)} Re(D)] = f

dr,
0 1)
ty
ta dr;, E* ta drdr;, E*
- Pot="|de=| > yime. 2Tt - 2
Jtl [2 “dt oy Jtl [ Yala-qe"ae ~
a a

dt

We decide to say that we know the internal dynamic of the system.

That is to say we know the map:

. )
- o)



So, it results that the mass center is in the field of the internal degree of freedom{r}}. We can

.. el i dra
inject this information {r;(t*)}, {d?

(t*)} in the Action :

STt} Re(0)] = f (e, { } Re.Ve) dt
:Ltz Zyama Z:f a —E*)(/t*) dt]

{ ;,2} [ ;*1 . 2 * (4%
=f{t;} -Za:y;ma.%dral+ﬁj _E }(/t )d

. J{ {tZ'Z}df{t;H J ? E*](/t*)d

to1) ty

The least action principle can therefore be express with the following action:

t t * [ gk
§MHaEI}RO] = J Lt R Vo) dt = J B,
t

1 ty

. * * t dtr
Witht* =t (t)=f0m

It is important to not that we don’t know the expression of t* altough we know the internal dynamic

express relative to it. Indeed, knowing t* required to know V¢ sincet™ = f t) Whlch is absurd.

¥ (

Another proof: knowing t*, implies the weird consequence that E*(t*)dt* = f(t*). This would
suppress the only one term of the action...This is again absurd.

The least action principle tells us:

0 = 55" ratNR(O] = f -5 ( )dt =— f < ( )+ E*(t*)6—> dt
t 14 t 14 14

1

1

1
2| (19E*(t") at* 0y
=- L sve | + ET(t) =L 8 |dt
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9 1__ ¥k
© avey ycz
_1 Qe
9 0 Qv _1_ 22 _ 3k
© 6VY(VC)_6V( 2) T2, .3 e
(1-)
dt
at* 6ftdtl dydt _dyy _ 9y 1 _ gV 1

ave v doyen  av.ay  ovedy  ave y% =V y‘;}t’



1 dE*(t*)
av e
dat

# 0 a priori since t* depends on the

global dynamic.

= Jtz 19E(¢) 1 Vca +E(t)( V)av dt
- e, \Y at* Ccii]t/ c? c? ¢
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(mer==)
C

We have an effective mass

M (t) = M(t*)<

1L 1 dM(t*)
dV M(t*) dt*

)

dE*(t")
at*

Or the particular case where

We can develop the expression :

= 0 we recover the behaviour of a material point.
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dt
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2.5. A strong link between the Einstein law and the dilatation of time

Lo o V(D frooG)

C:

ove 0V y(ve)
= 1 (i froo ) aicy(lm ¥ y(ia -t (v o)

Since in special relativity, the space is isotropic (=the laws of a material system_in a homogeneous &
isotropic gravitational field are isotropic) y (V) depends only on the norm of V¢ or equivalently on
Vi
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Starting from P, = , the fact that the space is isotropic in special relativity

and without express explicitly y(v.), we have:

*

E
P, = Vc-yeff(vcz)c_z

2¢2 dy(v)
y(ve»? dve?

with y¢/7 (v,) =

And of course y(V.2) =




This is the expression of the 3-momentum of a material system without knowing explicitly the
relation between the dilatation of time and the speed of the mass center V..

Now using this general result, we want to know if the Einstein law is sufficient to obtain the right
expression of the dilatation of time y relative to V¢, that is to say the expression y (V%)

E* . . . . .
We start from == M. This expression means that the form of the impulsion of a system, with

internal energy E*, is the same of a material point of mass M verifying— = M.
Cc
But for a material point we have P, = V..y(V:*)M, so the Einstein law implies

E*
i M=y () = y(ve)
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So f—z =MwithP, =vV,.y(V M =>yV?) =

=z

We have the final result:
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Starting from P, = , the fact that the space is isotropic in special relativity

and without express explicitly y(v¢), we have the equivalence:

E*=Mc? <=> y(¥v2) =

With the definition

G-

= {the form of the impulsion of a system, with internal energy E*,

is the same of a material point of mass M verifying f—z =M. }




Hence the Einstein law is not only a necessary condition of special relativity (via kinematic and least
action principle), but also a sufficient condition for the dilatation factor expression y (V).

In this sense, this theorem shows that the dilatation of time and the Einstein law are strongly related.

So any proof of the dilatation of time, is a proof of the Einstein Law and inversely.

*

This can also be illustrated by showing that any empirical deviation of the Einstein law A= % —Mis

2
linked to a deviation of the Special Relativity relation ;2)2 =1- %
v(Vc
E* V2 v V2
ET_M:%M‘M=M<%—1>=M Z(C) N~
¢ yeIr(ve?) Y (ve?) 2c¢* dy(v®)
y(we)? dv?
V)3 1 1
re) =M 2 Ny~ 1| =M[1- V-2
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If we measures TR in function of ¥¢2, we can obtain an empiric law like
C

1

G = Zn=o(an® + &n)- Ivell™ with azf = (1,-1,0,0,0, ...)

1

> (I+e)+(=14&)vE+ 32, &, IVell®

VZ -2
=> [y;” = —1+228n vt

Then we have the following relation between the empiric deviation of the 2 law:

n
A
c? (sl -1+2 Zzsn. ||Vc||2"‘1> = (1 + M)
n=

Any deviation of the Einstein law is linked to a deviation of the expression of the dilatation of time :

n
A
2 -1 zz NIVA | z(1 —)
C<€1 + an lvell +M
n:
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y(ve?)? =1+g)+(-1+ 51)-VCZ + Z?lo=2 &n- ”Vcllzn

This is another way to express the link between the 2 laws.

2.6. Questions about the meaning of events and physical quantities used in the proof
2.6.1. The meaning of a speed

drly . . . . .
dr: since it combines 2 quantities that each relies to 2

different references frames: K* for dry and K for dt. It may be thought to be ill-defined, which would
break the demonstration.

There is a priori a problem with the speed

. . “ . .. dryg drg dt* .
In many textbook like in [Yvan Simon] we can “traditionally” write % = d:’jE , and according to the

. dat* 1 . 15
Lorentz Transformation = = with dt; = y.dt* and dt, = y=dx.
dt -y(dt*.'.gdx:l) dt1+dt2 1 y 2 y c a
dry dry dry

dt _dt1+dt2=y(

dt* + gdx;)
However we don’t use this textbook (or traditional) formula above in this article but another
instead (consequently dr, has also another meaning):

dr, dry dry

dt  dt; ydt*
So what the 2 expressions really mean, why are we using the second whereas the first ? and is there
any sense to use the second ? The latter question is important since my proof is totally based on it.

. . dry ary . .
a. In the first expression =2 = +, we are actually using the Lorentz transformation about
dat dt*+Edx},
y( c a)
the 2 same two events seen in 2 different Galilean Frames K and K*:

o o= (et o (t) = (et ma(t),
1

o a, = (C(tKI + dtKI)' ra’KI (tKI + dtKI))K* = (C(tl + (tz - tl))' Ta(tl) + dra(tl))K
1
Indeed, at the time t; of K we associate to the center of mass C, at the position x.(t;) . Any
coordinate (ct,q, xKI)K* of the local (current Galiean ) reference frame K* is related to that of K
1

(ct, x) g with the Lorentz transformation:

( fde
IC.t - C.tl = ytl' c tKI _J ]/_ +ﬁt1'(xKI _‘xC,KI)
0 t

ty d
X = xc(t1) = Ve, ((xzq ~Xeki) + Fey <t’“ B Jo _t>>

163
c.t—c.ty =y, (c(t,q - t(*;(tl)) + ﬁtl.x,q)
<=> i
x —xc(ty) = Yt (qu + ﬁtr (tKI - tC(tl)))
° té(tl) = fotlg the time seen from the clock in C;

* Xcgr = 0 by deciding that C is the spatial origin of the current K*.

* Vi té(tl), B:, are constants associated to the Lorentz transformation at the time t;.

So we simply apply this transformation for the 2 events:
e Onone hand:
dlc.t —c.ty) =(c.t —c.ty)g, — (c.t —c.ty)g, = (c.0)q, —C.t; — (c.t)q, +C.t; = c.dt
e Ontheotherhand: (c.t —c.ty)g, — (€.t — C.t1)q,=

= [ve,- (c(tis = téqey) + Be- xKI)]az = [ve,- ety = toee) + ﬂtl-xlq‘)]al




=Y, [(c(t,q’az - t,q'al) + B, - (x,q'az - x,q'al))] since y¢,, t¢ & By, are constant

=7Vt (cdt,q + ﬁtl.dx,q)
So we got what we expected |c. dt =y, (c. dtg: + ﬁtl.dx,(;)

. . . dar; dr;, dar,
b. Now what is the meaning of the second expression —2 = —2% = —2£ 7
dt ~ dt;  ydt*

The answer of the question need to clarify what we are actually doing in the reasoning of this article.
First, we start to suppose the knowledge of the movement of the center of mass C, for each time t of
K. This knowledge imposes the movement of the reference frame K* since we choose to define it

such that, around each time t, it coincides with the family of Galilean reference frame (K*(t))

teR
o inauniform rectilinear translation relative to K (with the speed of C: V¢ /k+);

o and having for spatial origin the position of C.
So we have parameterized the reference frame K* with the time t; of K with a map, say g:
g:t; = K*(t;) also noted K;'

Secondly, what are the events involved in the two frames ? We are studying a particle “a” of a

material system with C as its mass center. We can a priori think that, at the instant t; of K, since we

study an event (ctl, xa(tl))K , we have to study in K*(t;) the same event seen with the different
coordinate due to the direct application of the Lorentz transformation to (ctl,xa(tl))K ...Butitis

actually not the case.

Indeed, at the instant t; of K we apply the map g defined above and we observe in K*(t,) all the
elements which are simultaneous with the event associated to the spatio-temporal position of C:

(Ctllxc)K'

So contrary to the case 1), in the case 2): we are not studying the same event (the same spatio-
temporal position of the partcicle “a”) in two different frame but :
e Anevent (ctl,xa(tl))K in K;
e AndaneventE; = (c. tz(tl), xa,K;)K* in K*(t,) defined by its simultaneity with (ct;, x.) .
1

By the relativity of the simultaneity, this event E; in K*(t;) cannot be associated to the instant t; of
K. In fact, only the event (cty, x.) is analysed with the two reference frame K & K*(t;). So we
understand why we cannot use the expression of the case a).

In order to visualize the situation, we show below the schematic view of what we are truly doing.



Trajectory of the mass center C

Trajectory ofaninternal particle passingtowards eventsE, and E; :

*Notatt, &1, 0fK

*Butatt’, & t', of K defined such that E,=(ct’;, x',) =(ct™,, x* Je= (=(ct*, + cAt™®, x*, )k 1t

=>t, t, are only relative to the movement of Cin K,

This movement of C dictates a posteriori the hyperplanesin K* :

»t*; =t* simultaneous in K*(t,) to the event (ety ,Xepq)k

1%, =t + At*, simultaneousin K*(t,) to the event (ct; ,X¢ya )k

Where At* =(t,-t,)/y, i.e.(t;-ty)=y At* isthe time dilatation of a clock following the center
of mass C, seen by the set of clocks of K.

X2=X‘Xc(tzy

This schematic view use the 2 following expressions calculated in ANNEX:

x—xc(t;) cte

C.ltix .= x)=c.t; + v B,
° (xKlf—CtE)( ) t Bti yti'ﬁfi
i

¢ (. t(cthzcte)(x) =c.t;+ .Bti- (x = xc(8)) +

We also use the fact that, according to the definition of the reference frame of the centre of mass,
the orientation all the hyperplane of simultaneity of K*(t,) are (around t;):

o the hyperplanes tgr = té(tl)
o and all the other separated by dty: = :_t
t1

Indeed, thanks to the Lorentz transformation between the reference frame Kand K;" = K*(¢;)
c.t—c.tp =y (c(tKi* - té(ti)) + ﬁti.x,{;)
. , we have
x —xc(t;) = Ve (xKL-* + B, (tKi* - tC(ti)))

c.t —c.t; = v (cti; = teep) + Bexi)=> ¢t = ¢ty + v (c(tir — toey) + Bep*x;)

=> ‘c. Ly =ct y(ctgr) = ety +ve, (c(txr — toey) + B cte)|

Its results that relative to K, events situated, at rest, at the origin of K{ (that is to say C) and having

the time t- are observed at the time E(x s =0) (CtKi*) =ty + V¢, (t,q - tz(tl)).
1

This situation is of course relevant for the centre of mass C between the instant t; and t,:

" P
t —t1 = Ve, (tKZ* - tl,lq) <=> gy — o) = zyt .
1




This relation also relevant to all couples of events having the same position (at rest) in K*(t;). So, we
have the relation affirmed in 2) and showed in the picture above.

The particle event of the reference frame K* are also parameterized by the time ¢ of K

“un

Indeed, we can define for a particle “a” a map:

ga'ti 7 E¢, = (C- té(ti)Jxa,K{‘)K*
1

That is to say, at each time t; of K, we associate a frame K*(t;) , then the event E, associated to the
particle is the one localized in the hyperplane of K*(t;) which contain also C at the instant ¢;.

We are not saying that the particle “a” is seen at the instant t; in K*(t;) (a non-sense in relativity)
but instead it is associated to the instant t;_in the map g, sense: indeed, the hyperplane of
simultaneity of K*(t;) is parameterized by t;.

In order to more untangle these relation, we give just below the explicit expression of E; = E;, in K.
To insist in the fact that E; is parameterized by the time ¢;, | will always write it E;,.

2.6.2. What is the coordinates of E,, in K?
We suppose the knowledge of the trajectory of C and the internal particle “a” relative to K x, (t).

At t;, E¢, has the same plane c.t™ = ctg; than C which has the coordinate (ct:}(tl), 0*)1(1‘ =
(c. f;lj—:,o*)m in K*(ty).
Moreover at a given coordinate x of “a” in K we have:

C. t(c.t*zctz(tl))(x) =c.ty + B, (x — xc(81))

What can we choose forx ?

The expression was calculated for a particle “a” on the x-axis of K at a time of K where the function
x4 (t) is the x-coordinate associate to c. tet =ctie,) which different from t; with a certain duration
1

Aty. The time of K where E;, took place is :
c. t(c.t*:ctz(tl)) (xa(tl + At1)) = .ty + P, (xq(E1 + Aty) — xc(81))

We can notice that, knowing the trajectories x,(t) , x.(t) , At; is a solution of the equation:

Aty = % (xq(t1 + Aty) — xc(81))

o Ina particular case where x,(t; + At;) can be developed at the first order, the latter
equation is reduced to:

7. x
Atl(l) ~ Tl (xa(tl) + d_ta (t1)At1(1) - xc(tl))

Bt, dxq
<=>At;P[1-—=2
! ( c dt

(t1)> ~ % (xq(t1) = xc(t1))

& Xq(t1) — xc(t1)

<=>At1 = Atl(l) = c V
1—Be,—(t1)




o Ina particular case where x,(t; + At;) can be developed at the second order, the latter
equation is reduced to:

2
ﬁ dx d?x At, @
At @ ~ T ta A @ + dtz“ (t)). 12 — x,(t;)

B, d
<=>0=~ |2
2c dt?

<Q4Aa@>+{&%——u0—4]m<”+ﬁ“[aaa—qun

a 2 |% V,
<=>0~= 'thl ()| A, @" - [1 - ,Btl?a(tﬂ] AL @ + A, @ <1 - B, ?a(tﬂ)

We can try to solve it directly, using the standard solution of the second order equation, but it should
be not useful since the solution will not be applicable in the usual case where there is no
acceleration...However, there is another way to solve it with the perturbation ¢ of the first order

solution Atl(l): Atl(z) = Atl(l) +¢&
'B fl )2 @) _ A @D
(t )| At 9" — (Aty At D)1= By, —(tl)

V“Maﬂ

1-Bt, Ca(tl)

<=>At; @ — A, @D ~ £, ®’

Using Atl(z) = Atl(l) + ¢, we have:

Sz_fifZij_Ahux+@2= fh%qlﬂ

1.&?m> 1- B, 22 ()

ﬂtl aa( 1)]
2
<=>¢e= —V(Atl(l) +e2 4 25At1(1))
1=B, 7 ()

2
(Atl(l) +e2 4 2£At1(1))

V“Maﬂ

1-Bt, Ca(tl)

2
<=>gw~ ( 6, + 25At1(1)) with At; D > e

&%uﬂ &%uﬂ
1-B, ?a(tﬂ 1 Be, Y (t1)

uﬂ

<=> ¢| 1-206,P

%%mﬂ

1-p, ?a (t1)
%%uﬂ
1- ,Btl < 2 (t1)

<=> eg=

£, ®?

1-2A8,D



|G )

Bt, a Bt, a
: 5 a(l)] [5-% o)
=>cx —.Atl(l) 14246, ® ~

V. V.

1 _Btl?a(tl) 1 —ﬁtl?a(tﬂ 1 —ﬁtl?a(tﬂ.

A, D

Puta 1>]

1- B, ‘f* @

2
Atl(z) — Atl(l) + (1)

With A, = P Xalt)—xe(t))
¢ 1= Btl—(tl)

c

The traditional calculation gives:

a=[1-p, o] —aoleqan® <1 - ﬁtl%(ta)

<=>A=<1—ﬁtl%(t1))(1—ﬁtl( (t) + 2 (1)) 20t “)))

<=>§= (1 - Btl%(tl)) (1 - Btl%(tl + 2At1(1)))

A>0<=>1> [i‘tl—(t1 +. Atl(l)) which is always true

<1 ~B, e (tl)) + j (1~ BoVa(t)) (1 — B (e + 2At1“>))
Be, & (t1)

(1 ~B:, %(ta) - J (1 ~B:, %(ta) (1 B (L) + % . zmﬁ”))

=> At =

<=>At,® =

Be, 55 (t1)
Va
<1 ~bu 7“1)>[ 1=y (%) + % (1), 200,0)|
<=>At,? = - |1 + ¢ 7 |
ﬁtlTa(t1) l 1-— ﬁtl?a(tl) J

B, 22 () - ﬁtl%(tl)

(1 ~ e, %(q))

Be, 55 (t2)

aa
P Atl(Z):w[lijl %T—(tl).zmlm‘

<=>At,P ~ 1+17F

I+

a
P ?alftl) . At1(1)
1B 1)

(1 -, %(q))

<=>At,P =~ Fae, P + (11 1) -
Be, 2+ (t)

& xa(tl) - xc(tl)
€ 1-p, Yt

(1 -, %(tl))

ﬁtlaa(t1)

At, @ ~ At, @ =

~ AL ® +2




As explained, this solution relevant only when a,(t;) # 0

I will not use this one, | will use the first showed above.

The position where E;, takes place in K is therefore x, (¢, + Aty ):

.Btlaa
—[ @) At D%, and Ae, @ = £ Zal)—re()

1-Be, Ca(t1) ¢ 1= BtlT(fﬂ

With At, ~ A, +

We have finally:

Ee, = (- to(e,) Xa, Kl) = (c(ty + A, x,(t; + Atl))

with At; = ﬁtl (xq(ty + Aty) — x.(t1)), that we can call it the shift time : the time to wait after t;

o n

in order to have the event “the particle “a” arrives on the hyper plane of K*(t;) "

We can notice that:

o E. #(cty,..)k

o gaiti > Ep = (c.(t; + Aty), x, (t; + Ati))K
We clearly see that E; is parameterized by t; although it is not seen at this instant in K but at the
instant t = t; + At;.

Another interesting point is that, at the t, , the internal events that take place in K*(t;) are not of
the kind (c(ty), xa(tl))K but the “shifted” version(c(t; + Aty), x4 (t; + At1))K- That is to say the
internal events considered (spatio-temporal position of particle) will happen in the future (or the
past, depending the position compared to the mass centre). The weird consequence (another one of
relativity...) is that the internal energy and so the mass, is relative to the future and the past of the
material system (and also field as we will see below).

2.6.3. What is the difference of coordinates of the particle for infinitesimal interval dt,
seeninK?
With the same reasoning, we have at the instant t, just after t;:

Ee, = (c. tC(tz)!xaKz) = (c(ty + Aty), xq(t, + Atz))

- [3tzaa(t2)] 12 1 Be, xq(ta)—xc(ts)
With At, = At~ + Atz( ) and Atl( ) = Ptz Xaltz)—Xc(ts

1-B1,78(t) ¢ 1=, 8 (ty)

So by doing the simple algebraic difference in K, we have:
E¢, — B, = (c. (8 + Atp), x4 (8 + Atz))K — (c. (&g + Dty), x4 (81 + Atl))K
_ to+ Aty
= (C. (tz - tl) + C(Atz - Atl), [xa]t1+At1)K

. tr+ At _
With [xa]21 a2 = Xq(t2 + Aty) = x4(t; + Aty)




When (t, — t;) tends to dt (no 2™ degree), we have:

o PBt, =P, + ((Z_Btt)tl (t; — t1)

o At =At+(t,—t,) (%At)
131
With:

|Fte ““(tl)]
1-Be, Ca(tl)
o At 1) — & Xq(t1)— xc(tl)

¢ " 1-p, T8(ty)

2
l¢) (iAQ) = (At W + Aty m=1 Bf1aa )
dt ty dt

2
o At ~ A, + At @

2¢ 1—-/3t1

to+ At

Moreover [xa]t1+ A

= xq(t; + (£ — t1) + Aty) — x4(t; + Aty)

dAt
= Xgq <t1 + (6, —t1) + Aty + <_dt ) (ty — t1)> — xq(t; + Aty)
ty

dAt
=X, <t1 + Aty + (t, — tq) [1 + (E) D — x,(t; + Aty)

1

dx dAt
= xo(t+ )+ () ) |1+ (S) |- ralh + 26
d ti+ Aty dt %1

dx, [ daty |
t+ Aty i
Xaltisaey = (2 = t0). ( dt >t1+At1 1t ( dt )t1

t At
=>E,, —E, = (c. (t, — ty) + c(At, — Aty), [xa]tjjAtj)K

(t, —t) + (dAt) (ty — t1), (ty — t1). (dx ) <1 + (dAt) )
=|c.(t; - cl—— —t1), . —
2" U at )., 22—t b =)\ e oty dt ).,
-t )(1 N (dAt) > <1 1 (dxa) )
=C. - —_— . )~
2 dt /¢, c\dt /e vae, )
>E,, —E (t,—t )(1 + (dAt) ) (1 ! (dx“) )
= —_— = C. —_— —_— . =l —
o Th 2 dt /¢, c\dt /e sat, /),

With:

K

[3t aa(tl)]

1- B, 2(ty)

o At @ — & xq(t1)- xc(tﬂ
¢ 1= ﬁtl—(tﬂ

c

2
o Aty ~Ae D + £,

= xq(ty + Aty) — xq(ty + Aty) = x4(t; + (t; — ;) + Aty)

—x,(t; + Aty)



a4 _4d ¢)) (1?1 _BriGa
o (thtl)t =2 (At1 + At )

1
1 2c 1_Eﬁt1Va

We can use this difference of events in order to calculate the speed of a particle “a” with these 2
events, we have:

tEtz - tEt]_ t1.K 1+ (%)
ty

The speed associated to the 2 events E;, & E;_ is actually different than the one associated to the
speed measured by K in the standard way. It is of course different to study in K 2 events observed at
the instant t; & t; + dt than the 2 others at t; + At; & t, + At,.

We recover the standard speed at a given time t when:
e The particle is sufficiently close to the mass centre C :>At1(1) =0

2
e the relative position of the particle and Ciis constanti<Atl(1) i%) =0;
dt 2c I_E'Bflvﬂ-

o the speed of C, the speed and the acceleration of “a” a are constanti<i Bfla“ > =0.
dat \ 2c 1—;/3t1Va

2.6.4. What is the difference of coordinates of the particle for infinitesimal interval dt,
seen in K*
The first event is:

— — * —_—
Etl - (Cta(tl)'K;’xa(tl)’KI)KI - (th(tl)' xa(tl)'KI)K* - (C. tl + C.Atl, xa(tl + Atl))K
1
Remark: we use the expression X, K; A5 We have explained above that the events in K*(t;) are

parameterized via the map g..
(c.ty +c.Aty) —c.ty = vy, (c (ta(tl)'KI — té(tl)) + rBtrxa(tl).KI)
xq(ty + Aty) — xc(8) = Ve, (xa(tl),l({ + Be,- (ta(tl),l({ - tZ‘(tl)))
<=>
c (ta(tl),K{ - té(tl)) =7, ((C- t; + . Aty —c.ty) — e, (xa(t1 + Aty) — xc(tl)))
Xag ki = V- (xa(tl + Aty) — xc(t) = Be,-(c.ty + c. Aty —c. tl))
<:>{ta(t1),1q =Yty (ﬁtl- (xa(ty + Aty) —xc(81)) — B, (xa(ty + Aty) — xc(t1)))
Xag ki = Yty (xa(ty + Aty) = xc(t1) = B, c. Aty)

<=>{ c (ta(tl).KI - té(tl)) =0 => asitshould
Xagyki = Vty- (xq(ts + Aty) — xc(t1) — B, Bt,-xa(ty + Aty) — xc(t1))

(taul)'KI - tC(tl)) =0

x . Xa(ti+ Aty)—xc(ty) _ Aty
A(tq)K1 Vi, Bt v,

According to Lorentz

<=>

We use At; = % (xq(t; + Aty) — x.(t1))



The second event is:

EZ = (Cta(tz)'K;' xa(fz)’Kg)KI = (C. tz(tz)’ xa(fz)'KZ*)K* = (C. (tz + Atz), xa(tz + AtZ))K

2

But, in point of view of K{ we have also

E; = (C-ta(tz),KI'xa(tZ),K{)KI = (C-tz + B, (Ka(t2) — x(¢2)), xa(tz))K

Remark:

o Inthe notation tag,,k; We have to note the small change: this is the event in the

hyperperplane of K*(t,) parametrized at t, but seen by an observatory in the frameK™(t;).
O C.tag ki # L,y @prior

¢ (tag ki = téen) = Ver- (€ (t + Bty) — .ty = B, (xalty + Aty) — xc(t1)))
Xag, ki = Vt;- (xa(tz + Aty) — xc(t1) = Be,- (c. (t, + Aty) —c. t1))

€ (tag i = teceo) = Yore (0 (o + Al = .ty = By (o + B2) = xe(t2) = (1) + x:(12))

=V, <C- (t; +Aty) —c.ty — 02_:55 = B, (—x.(t1) + xc(tz))>

= th-(C- ty +c. Aty —c.ty — cﬂﬁt —(t, - tl)&VC(tl))
sz 1 4

At
=V, (C- (t; —ty) +c.At, — Cﬁ_tzﬁtl —(t; - t1).3t12)
2

2
e s (1) o (122

because At, = At; + (t, — t1) (%Atl)
t1

and Atz = % (xa(tz + Atz) - xc(tz))

B, + (t; — t1)
B, + (%)tl (t; —t1) re’

! 1, (d dp 1 (-1 dp
Bt <%)t1 -t = ,3_t1 + (ﬁ (}))X:Btl (d_tt)tl (t; —ty) = ﬁ_tl + (F)X:ﬁtl <d_tt)t1 (t; —t4)

11 (dp,
= ,3_t1 - ?12 (E)tl (tz —t1)

1 1 /dp (t, — ty)
=Ve,-C| Atp | 1= By, <E_ F(d—;)t (t; — t1)> + %
1 ty 1 1

~ 1 /dB, (tz —t1)
=Ye, € <At2 <.8_t1<E>t1 ;- t1)> + Ve? >

1 /d t,—t
=y, C. <At2 ﬁ_tl(%)tl (t; —ty) + -t) Zyt12 1)>

(tz —t1) 1 (dp;
+ y:..c. At —(—) (t, — t;)
Y, b 2 B, \dt Jy, 2o

= }/tl.C. Atz 1-

=C.



t, —t d 1 /d
L Zytl ) +yec (Atl +(ty — t1)< At1> 1>ﬁ—t1(%)tl (t, — t))

« (tz - tl) C.Atl dﬁt
C (ta(tz)ll(: - tC(tl)) = C. + ytl. ﬁ (E)tl (tz - tl)

K#*not Galilean yt1 t

But, since we use at each time a local Galilean frame, there are non acceleration for this frame (the condition for
Bt _
— 0

the use of Lorentz transformation): ( )
at /¢, Galilean

. (t; —t1)
C (ta(tz)'KI - tC(fl)) = C. yt

1

Xag,y ki = Yty (xa(tz +Atp) = x(t1) — ﬁtl- (c.(ty + Aty) —c. tl))
=Yy, (xa(tl + (8, — t) + Aty) — x(t1) — Be,- (. Aty + c. (¢, — tl)))

=Yty (xa <t1 +(t —t) H At + (t,— ty) ( d Atl) ) —x(t) — B, <At1 +(t, — tl) Atl > Bt,- (C- - tl)))

ty

=Y, |%a <t1 + Aty + (¢, — t1) <1 + (:tAtl) )) = x.(t1) = B¢, € <At1 +(t, —ty) <1 + At1 ))]
d d
. At —ty) <1 + (EAtl)t ) = xc(t1) = Be,.C <At1 +(t, —ty) <1 + (EAtl)t ))]

= Yoy Xty + D) = x,(6) + Va(ty + At). (6 — ) <1 + (%Atl)t ) — Bo,.cAty — B¢t — ) <1 + (%Atl)t >]

~ Aty d

=Yy, <Cﬁ_t1 — Br,.chty + (6, — ty). <1 + (EAq)tl) [Va(ts + Aty) = Be,. c]>
1-8,.° d

= Vt,- <CAt1 <%> + (&, — ty). <1 + (EAﬁ)tl) [Va(ty +Aty) - ,Btfc])

=7, <cAt1 31 + (t, — t,). <1 + (% Atl)t1> [Va(ty + Aty) — ﬁt1-0]>

=y, (t, — ty). <1 + (%Atl)t >.c (E (t; + Aty) - ﬁtl)

xa(t1+ Atl) xc(tl) CAtl
Yty ﬁtl-Ytl

d
=Y, |Xa(ts + Aty) + (Exa)

Because Xag,) ki =

The expression of the

d v,
xa(tz)'KI - xa(tl),K{ = ]/tl (tZ - tl)' <1 + (E At1>t1> -C (? (tl + Atl) - ﬁt1>
(t; - t1)
C.——

Ve

¢ (ta(tz)'lq - tC(t1)) =

1

2.6.5. What is the expression of the speed in K and K*and what are their relation (velocity
addition formula)?

Using the expression above, we calculate different speed for different frame.
o Relative to the internal frame K*(t;)



Xae)Ki ~ YaeKi

d
Ye, (62 — ty). (1 + (E

Atl)t1> c [% (t, + Aty) - B, |

tage, ki ~ Lagey) ki

(t, = t1)

£

1

O

<=>

X * —X *
a(tz),Kl a(tl),Kl

t -t
Uep) K1 Aey)Ka

. (1 + (i“)tl) (Valty + Aty = Ve(tD)

O

=>

X * —X *
Ay K1 Taey)Ka

t2—t1

d
=, (1 +(5a

t)ﬁ). (Va(f1 + Aty) — VC(tl))

o A new velocity addition formula

<=

] XE, —X A
Since < ) = Yl 80 e have
Etz_ Et1 tl,K 1+(E)tl
Xac K~ Xag. ) Ki d
(t2) K1 (£1) "1
P — tf(” (ge4) )'(Va(“ a0) = Velt)
) Ki — tage) K "
d fo —xEt d
— ytlz <1 + (EAtl) > <ﬁ> <1 + (EAtl) > - Ve(t1)
t1 E, Ety t1.K E
d XE,. — XE d
=y 21+ (=) )| 2—=2 L+ \0n) |- Ve(t)
t, dt 1 t —t dt ! e
t1 Et, Ety t1,K E
t * —t *
oK1 ey K Eep Py :
s = (2578) (14 (e
Yt (1+(5At1)t1) Et, " "Bti /4 t

xEt —xEt
Etz Etl tl,K

X * X *
ag, Ki1-"aK;

t * —t
aty)K1 “agey)Ka

\ 2 d
" |Vc(t1)]/t1 (1+(5At1)t1)

(1), )

<=>

xEtz _xEtl
tEtz _tEtl

X * =X *
at,y)K1 a(f1)'K1\
t *x—t * |Vt

at)K1 a)Ka / 1

- Vc(tl)(1+(%m1)tl)

>t1,K

(H(%Atl)“)z

o Asecond new velocity addition formula

Since

X * —X *
atyyK1 ey Ka

= Vi, (1 + (%At)tl)

tra—t1

X * =X *
ait,)K1 Tay)K1

<=>

2~

Ytq (1+(%At)t1)

(Va(ty + A8)) = V()

+ Ve (ty) = Vo (ty + Aty)



XE¢, “¥E¢ Vo (t i+ Aty)
We use now: <#> — Zallat 8%)
K

- dAt
t -t -
Etz Etz 1+( at )tl

XE;, ~XE 1 Taey)Ki ey K
— t2 t _ ty—t1
t2 M2/ k e, Ve \M @),

X * —X *
Uty K1 a1 K1)

1 d
+V(t <1+ —At )
s <xst2 —xEt1> _ ( ta—tq Jres c(t1) (dt )t1
B - 2
dAt
t1.K (1+(dt)t1)

tEy, ~tEy,

With
Btiag
(G)] 2
Aty =~ At +[2C—At €]
P g Taey
o At,® = Pty xa(t)—xe(t1)

4
¢ 1—/31&17‘1@1)

a _4a ) (%1 Bty
© (thf1>t1— (Af1 + Aty

T
at 2¢1-2Bt,Va

2.6.6. Conclusion about the proof
We can conclude that although during the proof we use a particular duration of time dt; = ydt™, it
is well defined as | try to convince the reader in this paragraph 2.6. We should carefully take care to
the events implied by this way of reasoning.



3. Free field

Now, | will repeat the same method for a field theory (a scalar field ¢ for simplify), and again:

The important point to keep in mind is that we are not considering the variation of the internal

degree of freedom ¢* :

*

dp*
ot*’

*

e relative to the internal time t* of K* :

. . . 9
e but instead relative to timet of K : a(i .

So without comments, we have successively:

d¢ acp
stocson =2 [] 4o 22 2)ao
fﬂj <p a(f*,RCVC dQ* fUﬂ/l* *a*,yaq; RC,VC)dV*]dt*
am (p* a(p .ldt
Ul 3

ap”
) (o

with L' {0}, (35}, () reve| = 2 (I 47 (07,5 v % Re Vi) Y

Sl (et R = [ 1[0 {5

So we can calculate the 3-momentum as:

_ oL dp* 0¢* .
Pczavc avc[ fff "o ot RC"’C)”W]
W’l ' *”’ at v avcy y avc ' r*”’ ot ' ReVe)dV
L 00" 097
fﬂ/l S5 B RC,VC>dV

—y(vo) )

* *

acp
+1W"’ Vﬁ (2% )
y v, ) Vo o e e
a *
But 3 =y C) 6t a(f*
a(yaz;i*) 99" 9y _ d¢” -szz dp* -1 Ve 1 00" Ve 3
And — ot ov. — ot o, —77(—25)—3/2—7:




Pe=[[[ 4 (0750 v o v v (v w0 %)
c
a(P Vc 3 d . . a(p* a(p* .
ij at c? (a(p*)/l ((p ’?’W;RCJV(;) av
at*
= CZVHJA (go oY ¢ ,Rc,Vc)dV (-1)

+fﬂ (%Oa(&)/l* (fP (?;p* o )dV*

ar R

_Ve (09" 09 ) e W"’i 0 *<*EE ) :
ylfff/l (p, oY 30 JRo, Ve | AV (—1) + at*a(%)/l (p,(,jr*,m_*,Rc.Vc dv
at*
fff 3 7 & — o+ |av

So we have again:

*

PCZV?VC

where E* = [[[ <at* o ) - A*) dV* is the internal energy (associated to the
at*
hyperplane t* = cte)

We see that we don’t need to talk about closed system hypothesis or to have a 4 vector to
demonstrate it (we don’t even use the expression of any density Lagrangien).

The Euler-Lagrange equations tell us that — (y Vc) = a—RcL' [{(p*} {a(pj} {afp } R, VC]

. . . . dp* a
We have to note, in the proof, the importance to freeze the right variable & (and no
to have the good expression.




4. Interaction between a field and a particle
We consider the simplified action:

S[ra(®), (0 (x, O} ZF(Z [—ma Cd a_ € dsago(ra,t) )dt+ ”ﬂ (p,aa"’ Z‘f do

a

So we have also:

5= [(S[-(ne o) S a2 [[[ 4052 50 an

€a & 5 ] dt
—\mg+—=o"™m).c"——
(2[ ( aT2¢ ) y§m>ym
dpKe  dpKe dt
fl:—[ff/ll(‘ﬂ< Ko Ky ~xY ot ch, Vc<p>dVK‘p:|y
@

Where we have specified the quantities relative to:

e the frame K, of the center of mass C, of the field ¢ ;

e the frame K, of the center of mass C,, of the material points.

S [{rhm(e5m), Re,, (6}, {p¥o (x*o, t%0)}, R, ()]
t, der
:f L <{r§m}{ a },Rcm,vcm, t) dt

o 2] 22

So in this form, we can calculate the dynamic of the center of mass of one system and the other.
We can see that each system is not free at all, but we have again:

EXm
PCm = y(VCm) 7 ch
Ko

ch, = V(Vcw)i_zvc(p

EKm EXe
SOMm ZT'M(/’ = =

With the same method we can consider any set of systems.



5. Conclusion

We have a way to demonstrate the famous Einstein formula E'=Mc? directly from an appropriate
Lagrangien function selecting the correct variable.

L*({TZ},{Y(VC)%}'RC,VC)
y(V¢)

Instead of L ({ra}, {%}), we use L' ({r;}, {%},Rc, Vc) =

Instead of L' [{(p}, {Z_‘P}{Z_f}] we use L/ [{(p*}, {%}{%}RC Vc] _ fffA*(<p*,%_<fj’:"’a_“’;,Rc,vc)dV*.

. oL’ E*
In the two cases we’ve calculated directly that P, = P y?Vc
C
Some remark:

1) Asimple Lorentz transformation, shows that the 3-momentum is actually the one associated
to P{(K*) = %f fffspace_time TH§(nymxtx™). dn (K*) d*x, so it is a part of a 4-vector.Thus,

among all the 4-momentum P!(K), PY(K"), PL(K*)... the Lagrangien method selects P{(K™).

2) Since we have defined the mass center in K*, it allows us to associated to it a true event (the
center of the frame) which doesn’t change from a frame K to another K’, by the relativity of
simultaneity. In consequence, we can show (not here) that the internal energy, so the mass,
is an invariant in our case (like for a material point).

It will be interesting to derive the stress-energy tensor with our method, in order to show how the
internal degrees of freedom generate the pressure like the formula (35,2) of [Landau-Lifchitz].
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6. Annex

We want to draw the K* axis seen by K, that is to say the different axis in function of the x axis.

c.t—c.ty =Yy (c(tKi* - tZ(tL-)) + ,Bti.x,(;)
x—x(t;) = Yt (xKi* + .Bti- (tKi* - té(m))

o InK, the equation of a static point in K* (xKl_*:cte) in function of x, that is to say

c. t(xK;_f=cte) (x) is

. X —xc(t) Xk
Bti'yti lgti
x — xc (&) 1 2 x — xc (&) XK}
=———— =X Ve, 7 (L= B, ) = -
ﬁti O ﬂti( ‘ ) ﬂti yti'ﬁti
x —x:(¢; X
ct=ct;+ e(h) _ %
ﬁti yti'ﬁti
_ _ x—xc(t;) K . _
=>[c. t(xK,{:K) x)=c.t; + ﬁ—t, - m at time t=t;
. . x—xc(t;) .
So the equation of xg:=0is c.t; _\(x) =c.t; + —== attime t=t;
i (xK;f—O) Be;
Between x.(t;) and x.(t;), the variation is at should:
Xc(t)=xc(t1) _ Ve(ty).(t2—t1)
.t t —c.t t = = =c.(t, -t
¢ (xK;:O)(xC( 2)) — ¢ (szzo)(xC( 1) Br, B, c.(tz —t1)

o InK, the equation of (t*=cte) in function of x, that is to say ¢. t(tr=¢ (%) is
{c. t—c.t; =Yy, (c(tKi* - tZ(tL-)) + ,Bti.x,(;)
x—x(t;) = Yt (xKi* + .Bti- (tKi* - té(m))

c.t—c.t; =Yy (C(th-* - tZ'(tl-)) + ﬁti.x,{;)

el - té“”))

=Yt C(tK{‘ - tZ(ti)) + Bt;(
Vi

Yti
- xc(ti)> _ ot~ teap)

. x — x.(t;) .
c.t—ct; =Yy, (c(tK; — toey) + By ——— = B> c(tx; — tc(q)))

+ B (x = xc(t:))

yti yti

X
= yti' ((1 - ﬁtiz)c(tKi* - té(tl)) + ﬁti'

c(ty: — toce,
c.t = c. ti + ﬁti' (x — xc(ti)) + ( Ki C(tl))

yt i




And in particular

*

(k-t

C
C-tcte=i)(X) = €.t + Br. (X — xc(8:)) + ”

)

(t)

c. t(ctKlf:cg(ti))(x) = c.tp + B, (0 — xc(8))




