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Abstract

There are tens of self-proclaimed proofs for the Riemann Hypothesis and only 2 or 4 disproofs

of it in arXiv. I am adding to the Status Quo my very short and clear evidence which uses the

peer-reviewed achievement of Dr. Solé and Dr. Zhu, which they published just 4 years ago in a

serious mathematical journal INTEGERS.
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I. THE PAPER STRATEGY

It is known that the Riemann Hypothesis is true, if either the Robin inequality [1]

σ(n)

n
≤ eγ ln lnn =: u(n) (1)

holds, where σ(n) is the sum of divisors of n, e.g. σ(6) = 1 + 2 + 3 + 6, γ ≈ 0.577 is Euler’s

constant, or the Lagarias inequality [2]

σ(n)

n
<
Hn + exp(Hn) ln(Hn)

n
=: U(n) , Hn = γ + lnn+O(1/n) . (2)

holds. Eqs. (1) and (2) are equivalents of the Riemann Hypothesis. If one or even both

inequalities are proven to be true, the Riemann Hypothesis is true.

A. “One page” Proof

If one of the equivalent formulations of the Riemann Hypothesis is showing the Riemann

Hypothesis false, then all equivalent formulations of Riemann Hypothesis show that the

Riemann Hypothesis is false. Because, u(n) < U(n), the Robin formulation allows situation,

where Riemann Hypothesis is shown to be false, whereas the Lagarias formulation still shows

the Riemann Hypothesis to be true. To avoid this contradiction the Robin formulation must

show the Riemann Hypothesis to be true for any n.

Other words: if Robin inequality is violated, then the Riemann Hypothesis is false, which

means that mathematics allows the

u(n) <
σ(n)

n
< U(n) .

However, that is not allowed, because if the Riemann Hypothesis is false, then due to

Lagarias inequality must be σ(n)
n

> U(n). We came to contradiction, thus, the σ(n)
n

< u(n)

always holds. And so, the Riemann Hypothesis is true.

B. The evidence using Dr. Solé and Dr. Zhu result

Numerical tests on the Robin inequality have shown that Eqs. (1) and (2) both hold for

any needed 5041 < n < N , because U(n) > u(n). Today the unchecked area of n is given

by n ≥ N = exp(exp(26))� 1.
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Dr. Solé and Dr. Zhu have proven [3] that for large numbers of n one has

u(n)− σ(n)

n
≥ −β(n) , (3)

where β(n) ≥ 0 is a certain but unknown function which, if non-vanishing, is monotonically

decreasing and β(n) = 0 for n → ∞. The inequality (3) holds in any case, even if the

Riemann Hypothesis is false.

From Eqs. (2) and (3) it follows that the Riemann Hypothesis is true, if

β(n) + u(n) < U(n) , (4)

which I call “Martila inequality”. Following from this inequality, for large n I am showing

that the case β(n) = C/nx, x > 0 and x 6= 0, where C ≥ 0 is an arbitrary constant, satisfies

the Martila inequality. This discovery means, that if β(n) is an analytical function, or it can

be expressed using Taylor series expansion (for small ε = 1/nv, where v > 0, e.g. v = 0.3),

then the Riemann Hypothesis is true. In general, if for large n the β(n) < β0(n), where

β0(n) + u(n) = U(n) , (5)

The Riemann Hypothesis is true.

II. PRIOR RESEARCH RESULT

Because the 2018 paper of Dr. Zhu [4] is not published in a peer-review journal (for 4

years) and is very complicated, it could contain a fatal mistake. For this reason, I do not

start with the final result called “The probability of Riemann’s hypothesis being true is

equal to one” but rather with the starting information of the papers [3, 4] (one of the papers

is peer-reviewed), where is proven (cf. Theorem 2) that for the “limit inferior” one has

lim
n→∞

inf d(n) ≥ 0 , (6)

where d(n) = D(n)/n and D(n) = eγ n ln lnn − σ(n). Hereby the Riemann Hypothesis

holds true, if lim
n→∞

inf D(n) ≥ 0.

The main problem of the available Riemann Hypothesis proofs is a possible fatal mistake

somewhere in the text. If text is complicated enough, the mistake is practically impossible

to find. The final result of Ref. [4] comes from too many theorems (theorems 1, 2 and 3
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in Ref. [3]), so the risk of having a mistake is very high. However, I will demonstrate that

it is enough to hope for the validity of Theorem 2 in Ref. [3], i.e. I can prove the Riemann

Hypothesis even without Theorems 1 and 3. Recall that the Riemann Hypothesis has been

shown to hold unconditionally for n up to N = exp(exp(26)), as written in Refs. [3, 5].

Thus, it is enough to check the Riemann Hypothesis for the region n � 1. Therefore, we

do not need Theorem 3, because it is a trivial fact Dr. Zhu is proving that if D(n) ≥ 0

for n > N � 1, the Riemann Hypothesis is correct. Also, we do not need Theorem 1, as

Theorem 2 already says that Eq. (6) holds.

III. MY PROOF

Today the unchecked area of the Riemann Hypothesis is located at extremely large values

n > exp(exp(26)) (including the unlimitely large n). From Eq. (6) I conclude that for large

n� 1 one has
D(n)

n
≡ eγ ln lnn− σ(n)

n
≥ −β(n) , (7)

where the continuous monotonic function −β(n) ≤ inf d(n), and β(n) = 0 for n → ∞. On

the other hand, the Riemann Hypothesis is true, if for every n > 1 one has [2]

σ(n)

n
<
Hn + exp(Hn) ln(Hn)

n
, (8)

where the harmonic number is

Hn = γ + ln(n) +K(n) , (9)

where K(n) > 0, and K(n) = 0 for n → ∞. Inserting Hn from Eq. (9) into Eq. (8), one

obtains
σ(n)

n
< eγ ln(γ + ln(n)) +R(n) , (10)

where R(n) > 0. From Eqs. (7) and (10) follows that the Riemann Hypothesis is true, if for

large n one has

β(n) + eγ ln lnn < eγ ln(γ + ln(n)) +R(n) . (11)

The inequality (11) is satisfied, if

0 ≤ β(n) ≤ β0(n) , (12)
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but is violated if β(n) > β0(n). Let us find the violation threshold β0(n). From Eq. (11)

one has

β0(n) = eγ ln(γ + ln(n))− eγ ln lnn+R(n) = eγ ln([γ/ ln(n)] + 1) +R(n) . (13)

I am citing from the end of Ref. [3]: “For instance, one cannot rule out the case that D(n)

behaves like −
√
n when n→∞, which would not contradict the fact that liminfn→∞ d(n) =

0.” This points to my function β(n) = (C
√
n)/n = C/

√
n, where C ≥ 0, e.g. C = 1.

Because holds C/
√
n < β0(n), the Riemann Hypothesis is true for such case [6]. And in

order to avoid the contradiction with the Robin inequality (which is D(n) ≥ 0) we have to

assign C = 0.

Moreover, β(n) = C/nx ≥ 0 results in C = 0 by the same analysis [7] for all fixed powers

x > 0, x 6= 0, e.g. x = 0.25. That means that if there exists a Taylor series expansion for

β(n) for large n (using the small ε = 1/nv with v > 0), the Riemann Hypothesis is proven.

But because β(n) can be described by monotonic decreasing function, it is well justified that

it has a non-zero derivative (when formally the n are taken to be continuous) somewhere

in the first Taylor terms. If β(n) would be exponential and, therefore, non-analytically

approaches zero rapidly, Eq. (12) is still satisfied, exp(−n)� 1/
√
n.

In particular, if exists such x that

nx β(n) = 0 , n→∞ , (14)

the Riemann Hypothesis is true.

IV. DISCUSSION

A. Is N large?

A journal referee might say some nonsense like “what if N = exp(exp(26)) is very small,

i.e. maybe N ∼ 1?” to reject the paper. I disagree! Ref. [3] tells us, that the area where

n > M with M → ∞ is decisive. I mean, if the Riemann Hypothesis is wrong, it must be

shown wrong at n → ∞. Therefore, you can replace the N with any fixed M � N in my

analysis.
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B. Inequalities are true together

If Robin inequality is violated at some n = n0, then it is certain, that both inequalities

(Robin and Lagarias) are violated at some nh. However, because of this certainty, we must

be certain as well to violate them both at the n0. In the hypothetical situation, where Robin

inequality is violated for several finite ni, but the Lagarias one is violated only for infinite

nL →∞, the Lagarias inequation has lost the meaning of equivalent formulation of Riemann

Hypothesis, which is not possible. In another situation, where Robin inequation is violated

only in one single point n0, the Lagarias one must be violated at this point as well. Thus,

if the Riemann Hypothesis is wrong, both ones must be violated together.
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