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Abstract

There are tens of self-proclaimed proofs for Riemann Hypothesis and only 2 or 4 disproofs of

it in arXiv. I am adding to the Status Quo my very short and clear evidence which uses the

peer-reviewed achievement of Dr. Solé and Dr. Zhu, which they published just 4 years ago in a

serious mathematical journal INTEGERS.
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I. PRIOR RESEARCH RESULT

Because the 2018 paper of Dr. Zhu [1] is not published in a peer-review journal (for 4

years) and is very complicated, it could contain a fatal mistake. For this reason, I do not

start with the final result called “The probability of Riemann’s hypothesis being true is

equal to 1” but rather with the starting information of the papers [1, 2] (one of the papers

is peer-reviewed), where is proven (cf. Theorem 2) that the for the “limit inferior” one has

lim
n→∞

inf d(n) ≥ 0 , (1)

where d(n) = D(n)/n and D(n) = eγ n ln lnn − σ(n). Hereby the Riemann Hypothesis

holds true, if lim
n→∞

inf D(n) ≥ 0.

The main problem of the available Riemann Hypothesis proofs is a possible fatal mistake

somewhere in the text. If text is complicated enough, the mistake is practically impossible

to find. The final result of Ref. [1] comes from too many theorems (theorems 1, 2 and 3

in Ref. [2]), so the risk of having a mistake is very high. However, I will demonstrate that

it is enough to hope for the validity of Theorem 2 in Ref. [2], i.e. I can prove the Riemann

Hypothesis even without Theorems 1 and 3. Recall that the Riemann Hypothesis has been

shown to hold unconditionally for n up to N = exp(exp(26)), as written in Refs. [2, 3].

Thus, it is enough to check the Riemann Hypothesis for the region n � 1. Therefore, we

do not need Theorem 3, because it is a trivial fact Dr. Zhu is proving that if D(n) ≥ 0

for n > N � 1, the Riemann Hypothesis is correct. Also, we do not need Theorem 1, as

Theorem 2 already says that Eq. (1) holds.

II. MY PROOF

Today the unchecked area of the Riemann Hypothesis is located at extremely large values

n > exp(exp(26)) (including the unlimitely large n). From Eq. (1) I conclude that for large

n� 1 one has
D(n)

n
≡ eγ ln lnn− σ(n)

n
≥ −β(n) , (2)

where β(n) = 0 for n→∞. On the other hand, the Riemann Hypothesis is true, if for every

n > 1 one has [4]
σ(n)

n
<
Hn + exp(Hn) ln(Hn)

n
, (3)
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where the harmonic number is

Hn = γ + ln(n) +K(n) , (4)

where K(n) > 0, and K(n) = 0 for n → ∞. Inserting Hn from Eq. (4) into Eq. (3), one

obtains
σ(n)

n
< eγ ln(γ + ln(n)) +R(n) , (5)

where R(n) > 0. From Eqs. (2) and (5) follows that the Riemann Hypothesis is true, if for

large n one has

β(n) + eγ ln lnn < eγ ln(γ + ln(n)) +R(n) . (6)

The inequality (6) is satisfied, if

0 ≤ β(n) ≤ β0(n) , (7)

but is violated if β(n) > β0(n). Let us find the violation threshold β0(n). From Eq. (6) one

has

β0(n) = eγ ln(γ + ln(n))− eγ ln lnn+R(n) = eγ ln([γ/ ln(n)] + 1) +R(n) . (8)

I am citing from the end of Ref. [2]: “For instance, one cannot rule out the case that D(n)

behaves like −
√
n when n→∞, which would not contradict the fact that liminfn→∞ d(n) =

0.” This points to my function β(n) = (C
√
n)/n = C/

√
n, where C ≥ 0, e.g. C = 1. The

following holds true: If C/
√
n < β0(n)[5], the Riemann Hypothesis is true. And because

the Riemann Hypothesis is shown now to be true (for the case that D(n) acts like −
√
n), in

order to avoid the contradiction with Robin’s inequality for validity of Riemann Hypothesis

(which is D(n) ≥ 0) we must assign C = 0.

Moreover, β(n) = C/nx ≥ 0 results in C = 0 by the same analysis for all fixed powers

x > 0, x 6= 0. That means that if there exists a Taylor series expansion for β(n) for large n

(using the small ε = 1/nv with v > 0), the Riemann Hypothesis is proven. But because β(n)

is a monotonic slowly decreasing function, it is well justified that it has a non-zero derivative

(when formally the n are taken to be continuous) somewhere in the first Taylor terms. If

β(n) would be exponential and, therefore, non-analytically approaches zero rapidly, Eq. (7)

is still satisfied, exp(−n)� 1/
√
n.

Moreover, I can show that if the function f(n) tends to infinity, there exists an x such

that
nx

f(n)
= 0 , n→∞ . (9)
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Proof: if x = 0, the statement is true. However, it could be violated for x > 0. Therefore,

looking at x as definite numbers, the actual condition for the violation is given by x > S > 0.

Therefore, if 0 ≤ x ≤ S the theorem (9) is true.

III. DISCUSSION

A journal referee might say some nonsense like “what if N = exp(exp(26)) is very small,

i.e. maybe N ∼ 1?” to reject the paper. I disagree! Ref. [2] tells us, that the area where

n > M with M → ∞ is decisive. I mean, if the Riemann Hypothesis is wrong, it must be

shown wrong at n → ∞. Therefore, you can replace the N with any fixed M � N in my

analysis.
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