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Abstract

We introduce a new class of higgs type complex-valued scalar fields U with Feynman propa-
gator −i/p4 and consider the matching to the traditional gauge fields with propagator −igµν/p2
in the viewpoint of effective potentials at tree level. With some particular postulations on the
convergence and the causality, there are a wealth of potential forms generated by the fields U ,
such as: by using U to construct a QED or a QCD theory,we can get an effective potential
including a Coulomb potential, a linear potential and a logarithmic potential, which could be
a source for the confinement effect; and, by using U to construct a gravitation theory, we can
get an effective potential including a linear potential to serve for the dark energy effect, and the
Newton’s gravity accompanied by a relativistic effect correction to serve the dark matter effect.
Moreover, for some limit cases, we can get some suppositions, such as: a nonlinear Klein-Gordon
equation could generate in the low energy limit; the gauge symmetry and a linear QED could
superficially generate in the weak field case; a fermion mass spectrum with generation structure
and a seesaw mechanism for gauge symmetry and flavor symmetry could generate due to the
multi-vacuum structure for a sine-Gordon type vector field induced by U .
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1 Introduction

As a very successful theory, the gauge field theory with the gauge invariance principle could be used
to solve a huge part of questions for people. Certainly, there are some challenges to the gauge theo-
ry: one class about the extension for methods of application, such as the ones for non-perturbative
problems; another class about the extension for new phenomenons, such as the ones for new particles
or dark matter/dark energy effects; with an inevitable old topic about the unification and renormal-
ization.

It’s just the linear potential from the non-perturbative results in lattice gauge theory [1] that
motivated us to consider a fourth order differential equations (D.E.). And, mathematically, a most
straightforward way on the extensions for new particles could be related to the higher order D.E.,
generally with a trouble on dealing with the redundant unphysical/noncausual degrees of freedom
(d.o.f) and an omittance/ignorance on the non-perturbative and unification problems. So, it would
be significant to modify the higher order D.E. framework to cover the three sectors mentioned above,
even with some man-made postulations or constraints. That is just what we have done in this paper.

In this paper, we have taken some postulations to construct our model within the 4th-order D.E.
framework, mainly for the convergence (renormalization) and a reasonble performance on matching
conditions of the model. For simplicity, we have concentrated our studies on the pro forma feasibility
of the model in the view of effective potentials at tree level.

The remainder of this paper is organized as follows: Sect. 2 is for the Lagrangian construction
for a linear potential; Sect. 3 is for the kinetics and the propagators from the Lagrangian; Sect.
4 is for the effective potentials generated from the Lagrangian, especially for the linear potential,
the Coulomb potential and the gravitational potential; Sect. 5 is for some interesting suppositions
uniquely occurring in our theory for some limit cases; Sect. 6 is for interpreting the causality in our
theory; and Sect. 7, the final section, is for our conclusions.

2 Lagrangian for linear potential

2.1 Framework: effective potentials at tree-level

We can get the classic non-relativistic (NR) potential forms from the amplitudes of the tree-level
2→ 2 scattering process for a perturbative theory, within the Born-approximation framework, for
instance, we can take [2]

(vertex)1 ⊗ (inner-line propagator) ⊗ (vertex)2 ⇔ V (1)

where the l.h.s is a part of the amplitude for a tree-level Feynman diagram, and the r.h.s is the
classic potential. So, conversely, we can build theories for potentials with a definite form through the
tree-level-correspondence, provided that the theories are perturbatively computable. For example, if
there were neither momentums nor coordinates in the Feynman rules of vertices, we would extract
different potentials with different inner-line propagators, such as:

linear potential ↔ 1

p4
,

Coulomb potential ↔ 1

p2
,

short-distance potential ↔ 1

pα
,with ∞ < α < 2. (2)
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2.2 Lagrangian

Firstly, we take a complex-valued scalar field U , a Dirac field ψ (and ψ̄) as the physical field degree
of freedom(d.o.f) 1, which have the transformation law under a U(1) global group element V as

U → V UV −1 = U , ψ → V ψ , ψ̄ → ψ̄V −1 . (3)

Secondly, in the method mentioned in Section 2.1, for a theory with a propagator form ∼ 1
p4

for

U , we write the Lagrangian of {U, ψ, ψ̄} as

L = LU + Lψ + LI , (4)

where the term

LU = Tr
{
−∂µ∂νU †∂µ∂νU − Λ4

U [(U + U †) + i(U − U †)]

+m4
UU

†U − λUΛ4
UU

†UU †U
}

(5)

is purely of the complex-valued scalar field U , the term

Lψ = ψ̄(i∂/−mψ)ψ (6)

is purely of the matter field ψ, and the term

LI = −αΛQα ψ̄
{
[(U + U †) + i(U − U †)]

}
ψ

−βQβ ψ̄
{
σµν∂

ν [(U + U †) + i(U − U †)]
}
γµψ

−ξ 1

M
Qξψ̄

{
σµν∂

µ[(U + U †) + i(U − U †)]
}
(i
←→
∂ νψ)

−ρ 1

M
Qρ ψ̄

{
∂µ∂ν [(U + U †) + i(U − U †)]

}
γµγνψ

−...(higher order 3-field terms)

−κQκ ψ̄

{
Λ2

M
[U †U ]ψ + Λ[U †i

←→
∂µU ]γµψ +

1

M
σµν∂

µ[U †i
←→
∂νU ]ψ

}
−...(higher order multi-field terms) (7)

is the invariant interaction term of ψ coupled to U under the transformations in (3) and the Lorentz
transformation. The application of σµν in the β term is to ensure a real-valued effective coupling in
the Feynman rule language, by recalling the reduction of −iσνµqµ → qν ; and γµγν in the ρ term is
to match the symmetric indices µν in ∂µ∂νU .

Thirdly, we give some postulations as the illustrations of the variables in the Lagrangian of (4)
as below.

1. ΛU is a constant of the dimension of mass, mU is the mass of field U , and λU is a dimensionless
constant; mψ is the mass of field ψ.

2. Each of the coefficients {α, β, ξ, ρ, κ, ...} takes a real number value for the sake of hermiticity;
and the notation “...” in (7) denotes terms for multi-field and higher-dimension operators .

3. For the parameters Λ and M , referring to Wilson’s scheme for renormalization, for the inter-
action Lagrangian terms we can propose the postulations as:
(i) each U (not ∂U) is tied with one infrared (I.R.) energy scale Λ;

1Discussions for the vector field Uµ, the tensor field Uµν , and the massive {U,Uµ} have also been finished by the
author, see Ref. [3].
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(ii) all the terms with higher-dimensional (D > 4) are suppressed by a ultraviolet (U.V.) energy scale
M .

For example, if we plan to construct a QED, a QCD or a gravitation theory with the U field,
then the variable Λ and M might be respectively set as

Λ = µIR ≃ {0,ΛQCD, 0},M = µUV ≃ {µEW , µGUT , µPlank}, (8)

where µIR is the I.R. boundary energy scales, i.e., { value≃ 0, the QCD scale ΛQCD ≃ 200MeV , value
≃ 0}, andM is the U.V. boundary for the theory, i.e., {the electroweak (EW) scale µEW ∼ 246GeV ,
the grand unification theory (GUT) scale µGUT , the Plank scale µPlank}, for a QED,a QCD and a
gravitation theory, respectively.

4. The variables Q{α,β,ξ,ρ,κ,...} can be seemed as a kind of reconstructed charges (RC), and they
are defined as

Q{α,β,ξ,...} ≡ YQ{α,β,ξ,...}, Y = ±1, (9)

where Y is the generator of the global U(1) group with eigenvalues ±1, and Qα is a generator of
some other global group (such as the electromagnetic U(1) group) corresponding to the current Jα,
with the definitions

Qα ≡ 1, Y ; Jα ≡ ψ̄ψ; (10)

Qβ ≡ TQ; Jβ ≡ ψ̄γµψ; (11)

Qξ ≡ Y ; Jξ ≡ ψ̄i
←→
∂/ ψ, ..., (12)

where Qα = 1 for neutral U (e.g. U for mediating a QED theory), Qα = Y for charged U (e.g. U for
mediating a QCD theory); TQ ≡ TQED, T

a
QCD, ..., is either the generator of the QED U(1) group for

constructing a QED theory with U , or one of the the generator of QCD SU(3) group for constructing
a QCD theory with U , etc.

Furthermore, if we define a kind of effective media field as

(AI)α ≡ −αΛQα · [(U + U †) + i(U − U †)], (13)

[(AI)β]µ ≡ −βQα · σµν∂ν [(U + U †) + i(U − U †)], (14)

[(AI)ρ]µν ≡ −ρ 1

M
Qα · ∂µ∂ν [(U + U †) + i(U − U †)], .... (15)

then the interaction Lagrangian terms in (7) can be remembered as

LI ≡ LRC = (AI) · J · Y. (16)

5. How to determine the value of Y and Qα? Here we define: if the momentum of U flows “in”
to the ψ̄Uψ vertex, then the charge at this vertex is Y = +1, motivated by an imagination that the
effective mass of ψ would become bigger by “eating” a nonzero vacuum expectation value ⟨U⟩; on
the contrary, if the momentum of U flows “out” of the ψ̄Uψ vertex, then the charge at this vertex is
Y = −1. Similarly for the Qα, Qβ and Qξ, e.g.:

(i) for Qα: in the case of a charged U for a QCD theory, in every physically allowed process, if
the Qα charge of U flows “in” to the ψ̄Uψ vertex, then the Qα charge variation for the “current”
Jα ≡ ψ̄iψj (with i, j the color indices) at this vertex is Qα = +1, the same as the value of Y ; on the
contrary, if the Qα charge of U flows “out” of the ψ̄Uψ vertex, then the Qα charge variation for the
“current” Jα ≡ ψ̄iψj at this vertex is Qα = −1, the same as the value of Y ; in the case of a neutral
U for a QED theory, the Qα charge variation for the “current” Jα ≡ ψ̄ψ at both vertices are defined
to be always 1;

(ii) for Qβ: even in the case of a neutral U for a QED theory, the Qβ charge variation for the
“electromagnetic current” Jβ ≡ ψ̄γµψ is not 1, but to be the QED “charge” TQED ≡ QQED;

(iii) for Qξ: even in the case of a neutral U for a gravitation theory, the Qξ charge variation for

the “momentum current” Jξ ≡ ψ̄i
←→
∂/ ψ is not 1, but to be Y ; etc.

6. To ensure the renormalizability, we need an extra postulation: all divergences can be removed
by introducing cutoff for the amplitudes or the phase-space parameters.
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2.3 On the (∂∂U)2 term for kinetics term

The traditional kinetic term
(∂U)2 and U †∂∂U

could not appear in our model, since it would give a term ∂∂U in the E.O.M so a propagator form
∼ 1/(p4− p2). However, due to the singularity (pole) structure, we can’t get the same results for the
two propagators, ∼ 1/(p4) and ∼ 1/(p4 − p2). Besides, if the E.O.M is not the form p̂4U = m4U ,
that might break a generalized “charge” symmetry. So, we could only take ∂∂U to construct the
kinetic term rather than ∂U .

For convenience, we would call the model for U defined with the (∂∂U)2 term for kinetics term
as a “P4 type”, and the traditional model for U defined with the (∂U)2 term for kinetics term as
a “P2 type”. Besides, our P4 type theory in the high-order D.E. framework is different from the
ones actually being a P2 type one [4].

It might be helpful for us to more easily understand the double partial term (∂∂U)2 for the
kinetics term, if we understand our U field as a classic continuum medium field. For the detail,
for the continuum medium field ϕ we have the continuity equation

∂µ∂νT
µν = 0, (17)

with the energy-momentum tensor defined as

T µν = (ρ+ p)uµuν + pgµν

=
∂L

∂(∂νϕα)
∂µϕα − gµνL

= (∂µϕ
†∂νϕ+ ∂νϕ

†∂µϕ)− gµν(∂αϕ†∂αϕ−m2ϕ†ϕ)

= ϕ†
[←−
∂ µ∂νϕ+

←−
∂ ν∂µ − gµν(

←−
∂ α∂

α −m2)
]
ϕ

= ϕ† [(i∂µi∂νϕ+ i∂νi∂µ)− gµν(i∂αi∂α −m2)
]
ϕ. (18)

Formally, to fully describe a field ϕ, one might need the ∂∂ · ∂∂ operator acting on the field.
Moreover, we can write the E.O.M in another form,

p̂4U(x) = [p̂2Φ(x)]2 = [p̂2Φ̃(x)] · [p̂2Φ(x)] , (19)

with the correspondence for Φ̃ to Φ here is just like a generalized version of the case that the anti-
particles ψ̄ associated with the particles ψ, which also arised from the treatment that the Dirac
equation was formally from the square root of the Klein-Gordon equation. Besides, we can see, if the
E.O.M is not the form p̂4U = m4U , then that might break a generalized “charge” symmetry between
Φ and Φ̃. We can denote that as

Φ(x) ∼ ⟨ψ̄ψ⟩ ⇒ K-G eq. = [ Dirac eq. ]2 , (20)

U(x) ∼ ⟨Φ̃Φ⟩ ⇒ U-eq. = [ K-G eq. ]2 . (21)

Then we can have the new E.O.M

p̂2Φ = m2
UΦ⇒ Φ = c1e

ip·x + c2e
−ip·x (22)

for the ordinary physical d.o.f, and

p̂2Φ̃ = −m2
U Φ̃, (tachyon/higgs) (23)

< −p̂2Φ̃ = m2
U Φ̃, (phantom) (24)
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for the so-called unphysical d.o.f: the tachyons in (23), with an imaginary number valued mass [5];
and the phantoms in (24), with a negative kinetic energy [6], respetively. The sign of the action
corresponding to the E.O.Ms in (23) and (24) are different, which is not negligible [7].

Although there exist acausal solutions for differential equations with orders higher than 2, 2 we
can just omit them by treating them as non-physical (or, frozen) d.o.f, or, treat them as effects of
hidden new degrees of freedom (existent but can’t be directly measured for some reasons, such as
being confined or spreading to the higher dimensions) beyond the standard model(SM) in particle
physics; the latter one case is just what we want to propose, as to be discussed in Section 2.4. We
will revisit this topic in Section 6.

2.4 U is a kind of higgs-type field!

The self-interaction potential of field U is

V (U) ≡ −m4
UU

†U + λUΛ
4
UU

†UU †U, (25)

so, according to the minus sign in the mass term, U is a kind of higgs-type field. And, for convenience,
in all this article for allowed cases we set

⟨U⟩ = 1. (26)

But we should remind ourselves that ⟨U⟩ could be very large even when the energy scale is very low,
that means, U with large ⟨U⟩ is a strong field!

For a higgs field U with a potential form in (25) plotted as the line-“b” in Fig.-1-(1), besides of the
angular component Uθ as the conventional field (the Goldstone boson), there is also a radial-direction
component 0 ≤ Ur ≤ +∞. Here, the most important point is, how to understand the Ur?

For a potential V (U) of the form as the line-“a” in Fig.-1-(1), which is defined only for 0 ≤ |U | ≤ 1
rather than for all the |U | < ∞ field configurations, we can not only treat the radial-direction
component Ur as a stable (physical) fluctuation around the stable vacuum |U | = 1 (minimum of the
potential V (U)), but also treat Ur as a 0 ≤ Ur ≤ 1 oscillating around the point |U | = 0 maintained
by the rebound from the potential barrier. Similarly, for a potential V (U) of the form as the line-
“b” in Fig.-1-(1), we can also understand the radial-direction component 0 ≤ Ur ≤ +∞ in two
viewpoints: Ur is a stable (physical) field d.o.f Uhiggs

r oscillating around the stable vacuum |U | = 1
(minimum of the potential V (U)), which could be seemed as the “traditional” P2 type excitation
of “higgs particle”; or, UP4

r is an unstable (unphysical) field d.o.f oscillating around the unstable
vacuum |U | = 0 (local maximum of the potential V (U)), which would “decay/collapse” as what
would happen in the more extreme two cases plotted as the line-“c” or line-“d” in Fig.-1-(1)).

However, we will just take the unstable (unphysical) UP4
r d.o.f as the real component in our

“untraditional” P4 type U field, with the purpose to design the U field to differ from the “traditional”
P2 type field. Thus, from now on, we need not give too many query to the sign of the mass term in
(5) any more. As discussed in Section 2.3, we can say: U is a kind of higgs-type field, and U does
have a nonzero VEV, however, the U field with E.O.M. p̂4U = m4U is really designed to be neither
a traditional higgs field with E.O.M. p̂2U = −m2U nor a phantom with E.O.M. −p̂2U = m2U , see
(23).

In a word, it should be emphasized that the choice for the sign of the mass term is very important
and crucial for our following work.

2Note, this kind of acausality is different from the acausality discussed in Ref. [8], which only occurs in the classic
mechanics case and can be removed in the framework of quantum mechanics through the uncertainty principle by
treating all the observable variables as operators.
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(1) (2)

Figure 1: Self-interaction potentials for the field U and A.

3 The kinetics

3.1 The equation of motion of the U field

By the Euler-Lagrange equation [9]

∂LU
∂U
− ∂µ

∂LU
∂(∂µU)

+ ∂µ∂ν
∂LU

∂(∂µ∂νU)
= 0 , (27)

from (5) we can get the equation of motion(E.O.M) of free field U,

−∂µ∂ν∂µ∂νU = −m4
UU + Λ4

U (28)

⇔ −p̂4U = −m4
UU + Λ4

U , p̂
µ = i∂µ , (29)

and the dynamical E.O.M for U , as

− ∂4U = −m4
UU + Λ4

U + αQΛ ψ̄ψ + ... . (30)

The appearance of term (U + U †) in (5) must be in the combination with the term U †U , by the
requirement for a stable vacuum, and, the role of term (U +U †) is to provide a shift for the position
of vacuum, as

V (U) = Tr
[
Λ4
U(U + U †)−m4

UU
†U

]
= −m4

U

[(
U − Λ4

U

m4
U

)† (
U − Λ4

U

m4
U

)
− (

Λ4
U

m4
U

)2

]
. (31)

3.2 The canonic commutator and propagator

Firstly, if we crudely copy the tradition of the quantization procedure for P2 type field theory, then,
according to the custom on the choice of “±” sign in classic Poisson bracket

[pi, xj] = −iδij , (32)

and its quantized version for scalar field[
U̇i(x, t), Ui(y, t)

]
= −iδ(3)(x− y) , (33)

we just need assign the canonic commutators below to quantize our model:[
∂2U̇i(x, t), Ui(y, t)

]
= −iδ(3)(x− y) (34)

others = 0. (35)
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Secondly, by inserting the “correlation function”, i.e., one version of the definitions of propagator
of U ,

DF (x− y) ≡ ⟨0|TU(x)U(y)|0⟩
= θ(x0 − y0)⟨0|U(x)U(y)|0⟩+ θ(y0 − x0)⟨0|U(y)U(x)|0⟩ (36)

into the E.O.M, we can verify

−(∂4 −m4 )xDF (x− y)
≡ (∂4 −m4 )x⟨0|TU(x)U(y)|0⟩ = +iδ(4)(x− y) . (37)

That means, DF (x − y) is really the “Green function”, i.e., the other version of the definitions of
propagator of U .

By setting ΛU = 0, from (37) or its corresponding form in the momentum space

−(p4 −m4
U)D̃F (p) = i , (38)

we can get the Feynman propagator in the momentum space, as

D̃F (p) =
−i

p4 −m4
U + iϵ

=
−i

(p2 +m2
U − iϵ)(p2 −m2

U + iϵ)
, (ΛU = 0), (39)

for mU ̸= 0, or

DF (U) =
−i

p4 + iϵ
, (ΛU = 0, mU = 0). (40)

So, the minus sign before the p̂4 operator in the E.O.M (29,30,37,38) is very crucial, which
represents the sign of the mass term in Lagrangian, and, without this “−1” factor, everything will
be different! After all, the U here isn’t the traditional scalar field, as we said in Section 2.4.

The position and residue of a pole in the propagator is crucial for the calculation results of the
amplitudes. For a general case, a contour integration in the p0 complex plan would be equivalent to
a complex integration

∫ +∞
−∞ dp0 +

∫ +i∞
−i∞ dp0, however, if we migrate the imaginary unit i in ip0 into

ix0 for the product ip · x in e−ip·x and treat ix0 as the temperature T , then, in a zero-temperature
field theory, we can omit effects of the two poles {iEU + ϵ,−iEU − ϵ}, with EU =

√
p2
U +m2

U the
energy of U . Besides, for the mU = 0 case, it’s much more convenient for us since we can reduce
the four simple-poles to just one quadruple-pole. For the mU ̸= 0 case, we have shown the results in
another work [3].

4 Effective potentials

p′
2

p2

p′
1

p1

q

p′
1

p1 p2

p′
2

q

(a) (b)

Figure 2: The Feynman diagrams for the leading order tree level processes, with (a) mediated by a
U and (b) mediated by a photon Aµ.
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At the beginning, we set the variables for the particles in the scattering processes shown in Fig.
2, as below:

p1 = (m,p1), p2 = (m,p2), (41)

p′1 = (m,p′
1), p′2 = (m,p′

2) . (42)

In the non-relativistic approximation, q0 = 0 (which is also called on-shell approximation), we have
the relations for kinetics variables as

q = p1 − p′1 ⇒ q2 = (p1 − p′1)2
(NR limit)
=======

q0=0
−|q|2 = −|p1 − p′

1|2, (43)

and

ūs
′
(p′)us(p) = 2mδss

′
, ūs

′
(p′)γµus(p)

(NR limit)
======= vµ2mδss

′
. (44)

4.1 Interaction I: coupled to intrinsic charges, Coulomb force?

Now, for the interaction term

Lαβ = −αΛQα ψ̄
{
[(U + U †) + i(U − U †)]

}
ψ

−βQβ ψ̄
{
σµν∂

ν [(U + U †) + i(U − U †)]
}
γµψ, (45)

which was extracted from the total interaction Lagrangian (7), by defining the couplings

α1,2 ≡ α(Qα)1,2, β1,2 = β(Qβ)1,2, (46)

and by using iσµνq
ν = −qµ, γµ → vµ from (44), we can write the corresponding amplitude for Fig.

2-(a), as3

iMa = ūs
′
i[−α1Λ− β1σµν(iqν)γµ]us ·

−i
q4

·ūr′i[−α2Λ− β2σαβ(−iqβ) · δµαγα]ur

= ūs
′
i[−α1Λ + β1qµγ

µ]us · −i
q4
· ūr′i[−α2Λ− β2qα · δµαγα]ur

= ūs
′
[−iα1Λ]u

s · −i
q4
· ūr′ [−iα2Λ]u

r

+[α2Λβ1(q · v1)− α1Λβ2(q · v2)] ·
−i
q4
· ūs′usūr′ur

+ūs
′
[iβ1γ

µ]us · −igµα
q2

· ūr′ [−iβ2γα]ur, (47)

where the indices in δµα are not controlled by the Einstein summation convention, and we have taken
the replacement

qµqαδµα → q2gµα. (48)

The use of the δµα in (47) could be understood by this reason: as there is only the single U field
exchanged in a 2→ 2 scattering process, once the µ-component of the momentum qµ of U is absorbed
into one vertex in the Feynman diagram, there must be the same µ-component of the momentum qµ

is emitted out from the other vertex in the Feynman diagram! Thus, by treating ∂µU ∼ Aµ as an P2
type effective media field as in (14), for which there is a propagator with the form of −igµα

q2
, we can

see, the last term in (47) is just of the form of an amplitude for a scattering process corresponding
to the Coulomb potential in QED, as shown in Fig.2-(b).

3For simplicity, here we can only consider the contributions from U1, and, for the contributions from U2, the result
just need a double.
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In the NR limit of q0 = 0, with the definitions

q · v1 ≡ λ1|q|, q · v2 ≡ λ2|q|, (49)

and the approximation γµγαgµα → γ0γ0g00 = 1, we can continue to get

iMa = −i
{
−α1α2Λ

2

|q|4
+

(α2β1λ1 − α1β2λ2)Λ

|q|3
− β1β2
|q|2

}
· ūs′us · ūr′ur, (50)

The amplitude iM should be compared with the Born approximation to the scattering amplitude in
non-relativistic quantum mechanics, written in terms of the potential function V (x): [2]

iM ∼ NR⟨p′|iT |p⟩NR = −iṼ (q)(2π)δ(Ep′ − Ep), q = p− p′, (51)

with

p = η2p1 − η1p2, p
′ = η2p

′
1 − η1p′

2, ηi =
mi

m1 +m2

, i = 1, 2. (52)

By dealing with the kinetics factors as 2mδss
′ → δss

′
and (2π)δ(Ep′ − Ep)→ 1, we can have

Ṽ (q) = −α1α2Λ
2

|q|4
+

(α2β1λ1 − α1β2λ2)Λ

|q|3
− β1β2
|q|2

, (53)

and the inverse Fourier transformation

V (x) = F−1[Ṽ (q)] . (54)

Then, we can get the potential

V (r) = +
α1α2Λ

2

8π
r − (α2β1λ1 − α1β2λ2)Λ

2π2
(log

r

r0
+ γE − 1) +

−β1β2
4πr

, (55)

with r0 = 1GeV −1 put by hand to balance the dimension, and γE the Euler constant. Moreover, by
applying (9,10,11, 46) to get4

(for QED:)

α1α2 = α2(Qα)1(Qα)2 = α2(Y · 1)1(Y · 1)2 = −α2, (56)

−β1β2 = −β2(Qβ)1(Qβ)2 = −β2(YQβ)1(YQβ)2
= −β2(Y1QQED1 )(Y2QQED2 ) = β2QQED1 QQED2 , (57)

α1β2 = αβ(Qα)1(Qβ)2 = αβ(Y · 1)1(Y QQED)2 = −αβQQED2 , (58)

α2β1 = αβ(Qα)2(Qβ)1 = αβ(Y · 1)2(Y QQED)1 = −αβQQED1 , (59)

with QQED just the electric charge in QED, and

(for QCD:)

α1α2 = α2(Qα)1(Qα)2 = α2(Y · Y )1(Y · Y )2 = α2, (60)

−β1β2 = −β2QQCD1 QQCD2 , (61)

α1β2 = αβ(Y · Y )1(Y Q
QCD)2 = αβ(Y2Q

QCD
2 ) = αβQQCD2 , (62)

α2β1 = αβ(Y · Y )2(Y Q
QCD)1 = αβ(Y1Q

QCD
1 ) = −αβQQCD1 , (63)

4It is very important to set Y1 = −1 and Y2 = +1 to match the Feynman rules used in Eq. (47)!
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with QQCD just the color charge in QCD, by combining with (46,56,57,58,59), the potential in (55)
will become

V (r)QED = −
α2Λ2

QED

8π
· r + αβΛQED(QQED1 λ1 −QQED2 λ2)

2π2
· log r

r0

+
β2QQED1 QQED2

4πr
, (64)

V (r)QCD =
α2Λ2

QCD

8π
· r + αβΛQCD(QQCD1 λ1 +QQCD2 λ2)

2π2
· log r

r0

−β
2QQCD1 QQCD2

4πr
, (65)

By recalling that we have performed the derivations in the framework of a collision process in the
center-of-mass frame, that is to say, p1 = −p2, by combining the on-shell approximation |p1| = |p′

1|,
we can indeed determine the relations

q · (p1 + p2) = (m1λ1 +m2λ2)|q| = 0,

q · (p1 − p2) = (m1λ1 −m2λ2)|q| > 0,

(q · p1)(q · p2) = m1m2λ1λ2|q|2 < 0. (66)

So, for the case of m1 = m2, we will have λ1 − λ2 > 0 and λ1 + λ2 = 0. As in (47), we can see
again, the last term in (64) or (65) is coincidentally for the Coulomb interaction in QED or QCD,
respectively!

Besides, there is a linear potential and a logarithmic potential in both (64) and (65). In (64), since
the infrared energy scale boundary ΛQED for the QED is about zero, the linear potential and the
logarithmic potential could be negligible; however, in some cosmological experiments, the linear and
the logarithmic term might give corrections to the electromagnetic observables such as the red-shift,
e.g., an indications of a spatial variation of the electromagnetic fine structure constant [10]. In(65),
since the infrared energy scale boundary ΛQCD for the QCD is about 200MeV , the linear potential
could be significant to serve as the major part of the confinement in QCD, while the logarithmic
potential could serve as a minor part of the confinement.

4.2 Interaction II: coupled to momentum, gravity?

Now we consider the interaction terms,

LI = −αΛQα ψ̄
{
[(U + U †) + i(U − U †)]

}
ψ

−ξ 1

M
Qξψ̄

{
σµν∂

µ[(U + U †) + i(U − U †)]
}
(i
←→
∂ νψ), (67)

which was extracted from the total interaction Lagrangian (7). By defining the couplings as in (46)

α1,2 ≡ α(Qα)1,2, ξ1,2 ≡ ξ(Qξ)1,2 (68)
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and by using iσµνq
ν = −qµ, qνqβδνβ → q2gνβ as in (47,48), we can write the corresponding amplitude

for Fig. 2-(a), as

iM = ūs
′
i

{
−α1Λ−

ξ1
M
σµν · (iqµ) · [i · i(p1 + p′1)

ν ]

}
us · −i

q4

·ūr′i
{
−α2Λ−

ξ2
M
σαβ · (−iqα) · δνβ ·

[
i · i(p2 + p′2)

β
]}

ur

=
−i
q4
·
{
−α1α2Λ

2 +
Λ

M
q · [α2ξ1(p1 + p′1)− α1ξ2(p2 + p′2)]

+
ξ1ξ2
M2
· qνqβδνβ · (p1 + p′1)

ν(p2 + p′2)
β

}
· ūs′us · ūr′ur

= −i ·
{
−α1α2Λ

2

|q|4
− Λ

M
·
[
(2α2ξ1q · p1 − 2α1ξ2q · p2)

|q|4

]
+

Λ

M
·
[
(α1ξ2 + α2ξ1)

|q|2

]
− ξ1ξ2
M2
· 4p1 · p2
|q|2

+
ξ1ξ2
M2
· 2(q · p1 − q · p2)

|q|2
− ξ1ξ2
M2

}
· 2mδss′2mδrr′ , |q| > 0. (69)

In the non-relativistic limit, with p1,2 = m1,2v1,2, and the definitions

q · v1 ≡ λ1|q|, q · v2 ≡ λ2|q|, (70)

we can get

q · p1 = m1λ1|q|, q · p2 = m2λ2|q|. (71)

Thus the non-relativistic effective potential in the momentum space will be

Ṽ (q) = −M

= −α1α2Λ
2

|q|4
− Λ

M
·
[
(2α2ξ1m1λ1 − 2α1ξ2m2λ2)

|q|3

]
+

Λ

M
·
[
(α1ξ2 + α2ξ1)

|q|2

]
− ξ1ξ2
M2
· 4p1 · p2
|q|2

+
ξ1ξ2
M2
· 2(m1λ1 −m2λ2)

|q|
− ξ1ξ2
M2

, |q| > 0. (72)

The last term in (72), − ξ1ξ2
M2 , is effective to a Feynman rule of a vertex for a four-fermion contact

term, so we will drop it in the non-relativistic limit due to the probability conservation law in the
non-relativistic quantum mechanics framework.

Then, by performing the inverse Fourier transformation V (x) = F−1[Ṽ (q)], we can get the
potential in the coordinate space (with |q| > 0 equivalent to a step function θ(|q|), γE the Euler
constant) as

V (r) =
α1α2Λ

2

8π
r − Λ(2α2ξ1m1λ1 − 2α1ξ2m2λ2)

M
·
[
− 1

2π2
(log

r

r0
+ γE − 1)

]
+
Λ(α1ξ2 + α2ξ1)

M
· 1

4πr
− 4ξ1ξ2p1 · p2

M2
· 1

4πr

+
2ξ1ξ2(m1λ1 −m2λ2)

M2
· 1

4π2ir
δ(r), (r > 0), (73)

with r0 = 1GeV −1 put by hand to balance the dimension. The last term of the δ(r) function in (73)
is from the 1

|q| term in (72), and it could also be dropped due to r ̸= 0. At last, with the values
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Y1 = −1, Y2 = +1, we have

α1ξ2 = αξ(Qα)1(Qξ)2 = αξ(Y · 1)1(Y · Y )2 = −αξ, (74)

α2ξ1 = αξ(Qα)2(Qξ)1 = αξ(Y · 1)2(Y · Y )1 = αξ, (75)

ξ1ξ2 = ξ2(Qξ)1(Qξ)2 = ξ2(Y · Y )1(Y · Y )2 = ξ2, (76)

by combining with α1α2 = −α2 in (56) and m1λ1 +m2λ2 = 0 in (66), we can get the potential form

V (r) = −α
2Λ2

8π
r − 4ξ2p1 · p2

M2
· 1

4πr
, r > 0. (77)

As expected, the linear potential also arises in (77) is the same as in (64), which could be correspond-
ing to the dark energy effects. And the second term in (77) is happily to be the Newton’s gravity
form! Besides, a potential term with form of −v2

r
included in the factor

p1 · p2 = p01p
0
2 − p1 · p2 ≃

m1√
1− v2

1

· m2√
1− v2

2

+m2
1|v1|2 (78)

with p2 = −p1 in the center-of-mass frame, can be treated as the one of the source of the dark
matter effects [11], which is just of a relativistic effects! Moreover, there will be an extra relativistic
corrections from the spinor basis us(p), by instead m to p0 in (44), as

ūs
′
(p′)us(p) = 2p0δss

′
, ūs

′
(p′)γµus(p)

(NR limit)
======= vµ2mδss

′
. (79)

Besides, we want to point out that, for a N -body system, potential terms in (77) will be additive
and they will be enlarged only by the factor (NQ1) · (NQ2), rather than (Nξ1)(Nm1) · (Nξ2)(Nm2).

5 Induced theories in some limit cases

5.1 Effects of the nonzero ⟨U⟩
Now that U is a kind of higgs field, it should show its higgs-like property. According to the higgs
mechanism, with the interaction term αΛ ψ̄Uψ in (7), the fermions will get a mass correction

△m ∼ αΛ⟨U⟩. (80)

If we set ⟨U⟩G = 1
L
≃ 10−41GeV as the gauge symmetry breaking energy scale of gravitation, with

L ≃ 1011l.y. corresponding to the size of the universe, and ⟨U⟩EW ≃ 102GeV as the gauge symmetry
breaking energy scale of electroweak interaction, we will get a lucky coincidence for the ratio of the
magnitudes of Newton’s gravity force FG and the Coulomb force FC ,

FG
FC

=

[
G
(me

e

)2 e2

r2

]
/

[
k
e2

r2

]
≃ 10−43 → ⟨U⟩G

⟨U⟩EW
(81)

where me is the mass of electron, k ≃ 9× 109(N ·m2 · C−2) is the Coulomb constant(in SI unit). If
this is true, we might say, the smallness of gravitation constant G comes from its small VEV ⟨U⟩G
(or the huge size of the universe).

Furthermore, if we set ⟨U⟩TC as the gauge symmetry breaking energy scale of the technicolor
(TC) interaction [7], and the ratio

⟨U⟩TC
⟨U⟩EW

≃ g2s
e2
≃≃ 0.12

0.012
= 100 (82)

will give us a value of ⟨U⟩TC ≃ 104GeV = 10TeV for the typical technicolor energy scale.
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5.2 Field U out a nutshell: generation of nonlinear Klein-Gordan equa-
tion

Here we need the self-interaction term of U , which could be written as

LI = −gUΛ2
UU∂µU∂

µU +m4
UU

2 . (83)

For a pure U -field system, if its kinetic energy is very small, down to p2 ≪ ΛUΛ (or, in the sense of
de Broglie wavelength, we can say, the system is “out of a nutshell”), then the kinetic energy term
could be dropped, then we can get a E.O.M for U according to the Euler-Lagrangian equation, as

gUΛ
2
U(∂U)

2 − 2gUΛ
2
UU∂

2U = m4
UU ⇒ (∂U)2 − 2U∂2U =

m4
U

gUΛ2
U

U . (84)

Apparently, that is a nonlinear 2nd-order D.E., so, we just call it “nonlinear Klein-Gordon equation”.
Particularly, for a special case, ⟨U⟩ ≫ U − ⟨U⟩ (i.e., the VEV large and the fluctuation small) and
⟨U⟩ ≫ ∂U (i.e., the VEV large and the kinetic energy small), we can get the “linear” Klein-Gordon
equation

− ∂2U =
m4
U

2gU⟨U⟩Λ2
U

U , (85)

and there should be the relation 2gU⟨U⟩Λ2
U = m2

U . As said for (26), we should remind ourselves that
⟨U⟩ could be very large even when the energy scale is very low!

In a Lagrangian, there should be both the kinetic energy terms and the potential energy terms.
However, there exists the freedom to choose which ones are the kinetic energy terms and which ones
are the potential energy terms, that depends the choice of the d.o.f of the system. This is a kind of
“kinetic-potential duality”.

5.3 The constraint U 2
1 + U 2

2 = ⟨U⟩2 in a weak field limit

5.3.1 U as a group element: the generation of gauge field Aµ

In the limit case of U2
1 + U2

2 = ⟨U⟩2,

U = U1 + iU2 = σ(x)e−iϕ(x) → ⟨U⟩e−igϕ(x), (86)

that is to say, U becomes a group element, and the superficial gauge symmetry of the Lagrangian
arises!

In (86), U1 and U2 are both P4 type field, and σ and ϕ are also both P4 type field; σ is purely
unphysical field (i.e.,tachyon/instanton/phantom), while ϕ is physical field, as said in Sect. 2.4. Is
the ϕ(x) really a detectable field? Mathematically to say, ϕ is a phase, and we can write

U ≃ ⟨U⟩e−igϕ(x) → ⟨U⟩e−ig[ϕ0(x)+ϵnµAµ(x)+ϵnµνAµν(x)+...] , (87)

that means, the P4 type ϕ field can be generated by many different fields rather than only one field
ϕ0(x).

If only the Aµ(x) field is nonzero in (87), then, with

ψ̄(U∂/U †)ψ → eψ̄A/ψ, (88)

as a 4-particle-coupling term becoming to a 3-particle-coupling term, we get the gauge interaction
term, with

β · ⟨U⟩2 = e . (89)
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Now, instead of the d.o.f. of ϕ(x), there exists a connection field (gauge filed) Aµ(x), induced by the
Maurer-Cartan 1-form of U(x) field. We name the constraint

U2
1 + U2

2 = ⟨U⟩2, Aµ(x) ̸= 0, ϕ0(x) = Aµν(x) = ... = 0 (90)

as “Light Constraint”, in the reason that it survive only the field Aµ with the light speed after
freezing the unphysical tachyon d.o.f. σ(x) in (86) with speed over the light.

However, when both U1 and U2 are excited, the contribution of the massless U field includes an
effect of a massless gauge field Aµ(x), see Fig. 2-(a). Now, as both the ψ̄∂/U †ψ term and the ψ̄Aµψ
term can generate the Coulomb potential, we would like to ask, is the gauge symmetry is necessary?
We will return this question in Sect. 6.

5.3.2 Multi-vacuum structure for sine-Gordon type vector field Aµ

1. Multi-vacuum structure for Aµ

If we write 5

U(x) = exp[−igϵnµAµ(x)] = cos[gϵnµAµ(x)]− i sin[gϵnµAµ(x)], (91)

then the potential term
V (A) ∼ U(A) + U †(A) = cos[(gϵ) · A], (92)

would mean that the dynamics for the field Aµ is of a sine-Gordon type (or, a kind of generalized
higgs type vector), see Fig. 1-(2). Thus, there might be many excitations for Aµ at different vacu-
ums (or, VEVs), with heavy masses in the large g cases( gϵ ≃ 1) and small masses in the small g cases.

2. Fermion mass spectrum with generation structure

Like the mass correction in (80) from U , with the term ψ̄A/ψ, the fermions can get a mass
correction from Aµ,

∆m ∼ αΛ⟨A⟩ ∼ αΛ
(2n+ 1)π

gϵ
, n = 0, 1, 2, ... . (93)

where the number n might lead the fermion mass spectrum to a generation structure. Even for the
same value of n, we can get the suppositions below:

a. if ∆m is the mass differences between the current quarks and the constituent quarks, then, by
setting

g ∼
(2n+ 1)αΛ

∆m · ϵ
O(Λ)∼O(ϵ)−−−−−−→ (2n+ 1)α

∆m
∼ 1 , (94)

with ∆m ∼ 1GeV and n = 0, we have α ∼ 1.
b. if g ∼ 0.01 for the E.W. interaction, then, ∆m ∼ 100GeV , corresponding to the possible heavy

fermions.

3. A seesaw mechanism for gauge symmetry and flavor symmetry

See Fig. 1-(2), with (92), for a vacuum at A = ⟨A⟩i, the potential could be written as

V (A ≃ Ai) ≃ −1 + (gϵ)2(A− Ai) + . . . , (95)

which means the mass of the excitation A′ = A − ⟨A⟩i is of order ∼ m = gϵ. So, we can get the
conclusions below:
(1) when g → 0,

a. A′
µ is nearly massless, so the gauge symmetry is restored;

5As said for (26), we should remind ourselves that ⟨U⟩ could be very large even when the energy scale is very low!
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b. the VEV ⟨A⟩i are of very different magnitudes, so, through (93), the fermion masses would be
also of very different magnitudes, including very heavy fermions; this is a kind of flavor symmetry
breaking for fermions;
(2) when g →∞,

a. A′
µ is massive, with the diagonal elements in its mass matrix being large, so the gauge symmetry

is broken;
b. since the unphysical d.o.f (i.e.,tachyon/instanton/phantom) σ in (86) was excited now, the

vacuum tunnelling (oscillating) effect would become strong, so the off-diagonal elements in the mass
matrix of A′

i become large, too; or, in another viewpoint, now it’s A′
µ that was frozen, and the tachyon

was the real d.o.f for mediating interactions; we can treat the tachyon massless or nearly massless
according to the absence of heavy bosons in a hadron;

c. the VEV ⟨A⟩i in the neighbour minimum are nearly equal, so, there would be a degenerate
for the fermion mass, or, we can say, the flavor symmetry for fermions would be restored; besides,
it’s now allowed for very small fermion masses through (93), which might be an underlying reason
for the feasibility of the “large Nc” or “large Nf” hypothesis for a real hadron, and for the possible
neutrino oscillation.

So, maybe this is a new kind of dynamical symmetry breaking/restoring mechanism, with a see-
saw for gauge symmetry and flavor symmetry.

5.3.3 Current to Field: from non-renormalizable to renormalizable

Besides the media field U , we can also treat the fermion matter field ψ as P4 type field. For
convenience, we choose a scalar matter field ϕ and take the scalar QED as an example to illustrate
our motivation.

If we treat the field ϕ as P4 type field, then the P2 type current of ϕ will become a P2 type field,
as

Jµ(x) = ϕ†i∂µϕ(x) → Φ†i∂µΦ(x) ≡ Aµ(x),
(P2 type field ϕ → P4 type field Φ)→ (Maurer-Cartan 1-from of Φ),

(P2 type current Jµ) → (P2 type field). (96)

It is reasonable for (96), since the only difference between a current and a vector field is that: a field
has a E.O.M, while a current hasn’t; for other things, they could be treated as the same.

Thus, with the Light Constraint in (90), the old P2 type (nonrenormalizable) 3-particle interaction
term will become a new 2-particle mixing term (which is also a kind of “kinetic-potential duality”),
as

LI = eAµϕi
←→
∂ µϕ→ eAµΦi

←→
∂ µΦ = eAµAµ = LK . (97)

Now the new d.o.f. will be Aµ and Aµ; and, the new 3-particle interaction term at leading-order will
be the old P2 type high-order interaction term ΦΦA ·A, which will be renormalizable. This method
could be a useful reference to renormalization of the chiral perturbative theory and the gravitation
theory.

5.3.4 Aµ back to excited U1 and U2: from non-perturbative to perturbative

Instead of the gauge field Aµ, the employment of the Wilson line U(y, x) and Wilson loop UP (x, x),
which are defined as [2]

UP (x+ ϵn, x) = 1− igϵnµAµ(x) +O((gϵ)2), (98)

UPij
(x, x) = 1− iϵ2gFij +O(ϵ3), (99)
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ensured the availability of lattice gauge theory. It is just this subtle hint that inspired us to consider
a field U , with a hidden correspondence of the Wilson loop UP ,

UP → U , (100)

rather than the gauge field A as a possible effective d.o.f., with the Light Constraint in (90)

gAµ = U(x)i∂µU
†(x), (U is a group element). (101)

Thus, as an inverse procedure, it is a useful try to solve the non-perturbative problem in stong
QED by defining a P4 type complex scalar field U = U1 + iU2 with U1 and U2 are both excited.

6 The causality in theory with high-order differential equa-

tions

Let’s go back to the causality problem mentioned in Section 2.3. As discussed in Ref. [8], in classic
mechanics there exist acausal solutions for dynamical equations with derivative orders higher than
2, however, this kind of causality breaking can be removed in the framework of quantum mechanics
through the uncertainty principle by treating all the observable variables as operators.

Here are the different expressions to causality in classic mechanics and quantum mechanics:
(a) in classic mechanics, the causality depends on the interval of the variables in the coordinate

space, i.e., whether the interval is time-like or not;
(b) in the Heisenberg picture for quantum mechanics, the causality depends on the “interval”

(defined by the commutator) of the variables (operators) in the algebra space, i.e., whether the “in-
terval” is time-like or not;

(c) in the path integral framework, the causality depends on the time-order operator inserted for
the Feynman propagators due to the retard potential boundary condition; etc.

However, in our P4 type field theory framework, we want to say, the causality arises with the
vacuum symmetry breaking, i.e., the causality can only be well-defined after the VEV of a P4 type
field is fixed. Some explanations are listed as below.

(1) In the limit of V (U) = −m4
UU

†U = +λUΛ
4
UU

†UU †U = 0 in (25), the fields U1 and U2 (or,
σ(x) and ϕ(x)) in (86) are both excited, and now, the higgs/tachyon/instanton/phatom effects are
excited completely, which will be reflected in the detectable world. Now we might introduce a kind of
symmetry between the inner region and the outer region of the light cone (i.e., between the time-like
region and the space-like region), denoted as the “Light Symmetry”.

(2) In the case of 0 < mU , λU ≪ 1, only the physical d.o.f e−ip·x survives as t → ∞, and their
residual effect can be detectable all the time; although the so-called nonphysical d.o.f e−p·x in (23,24)
are unstable, and their residual effect can be detectable until t → ∞ (no matter the momentum p
of field U is large or small; especially, they are fast-decay when p is large); besides, if we treat the
solution e−p·x as a stable solution in the imaginary time it or a semi-stable solution in the complex-
value time τ + it, then the time arrow (the causality) would become ill-defined.

(3) In the “Light constraint”, U2
1 +U2

2 = ⟨U⟩2, see (90) in Sect. 5.3.1, the gauge symmetry would
arise automatically, then, only the physical speed value c = 1 for the light would become well-defined;
as the “Light Symmetry” is broken, the light cone and the causality would become well-defined. On
the other hand, if the “Light constraint” is not rigidly satisfied, then the light speed would fluctuate;
generally, the “Light Symmetry” breaking process should be a dynamical process within finite time
interval rather than a instantaneous one.

By combining the expressions to causality, maybe we can introduce a new terminology called
“vacuum picture” to represent the“vacuum tunnelling dynamics”, and we can express the
causality in “vacuum picture” as that: the “interval” (defined by the inner product value eiθ) between
the two vacuum states in the vacuum tunnelling (before the vacuum symmetry is spontaneously
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broken) should be unitary (the phase θ is real). For instance, the inner product between any two
vacuum states in the “Light constraint” are unitary.

In a word, the “vacuum tunnelling dynamics” is the origin of the differences between our P4 type
field theory and the P2 type theories.

7 Conclusion

We have introduced a new class of higgs type complex-valued scalar fields U (“P4 type”) with a
fourth-order differential equation as its equation of motion, motivated by the linear potential in the
lattice gauge theory. The field U can generate a wealth of interaction forms with some postulations
on the convergence being taken. After getting a propagator of the form of −i/p4 from a (∂∂U)2

term in the kinetics term in the canonic quantization framework, by computing the amplitudes of
the tree-level 2 → 2 scattering processes mediated by the U field, we can get a wealth of classic
non-relativistic effective potential form within the Born-approximation framework, such as: (1) by
using U to construct a QED theory, we can get the Coulomb-type potential, with a negligible linear
potential and logarithmic potential as correction; (2) by using U to construct a QCD theory, we can
get the Coulomb-type potential, and a considerable linear potential to serve for the confinement,
with a logarithmic potential as the next-leading order corrections; (3) by using U to construct a
gravatition theory, we can get a linear potential to serve for the dark energy effect, and the Newton’s
gravity form accompanied by a relativistic effect correction of the form −Gm2v2/r to serve the dark
matter effect.

Moreover, for some limit cases, we can get some interesting suppositions, such as: (1) in a low
energy approximation of the dynamics of U , a nonlinear Klein-Gordon equation could be generated;
(2) in a weak field limit with a constraint U2

1 + U2
2 = ⟨U⟩2, U could become a group element, thus

the gauge symmetry could superficially arise, with a linear QED to be generated by relating the field
strength ∂U to the corresponding gauge field Aµ; (3) due to the multi-vacuum structure for a sine-
Gordon type vector field Aµ induced from U , a fermion mass spectrum with generation structure and
a seesaw mechanism for gauge symmetry and flavor symmetry could be generated, including heavy
fermions; (4) by generalizing the P2 type field to a P4 type one, the corresponding P2 type current
would become a P2 type field as a kind of “kinetic-potential duality”, which provides a possible
way for proposing a renormalizable gravitation theory; (5) besides, as an inverse procedure, with a
correspondence of the Wilson loop to the field U , by treating U instead of the gauge field Aµ as the
effective d.o.f, it is a useful try to solve the non-perturbative problem in QCD. So, the solution to
the non-perturbative problem in QCD and a renormalizable gravitation theory might be practicable
within our U field framework.

For the causality, in our P4 type field theory with high-order differential equations, we want to
say, the causality arises with the vacuum symmetry breaking, i.e., the causality can only be well-
defined after the VEV of a P4 type field U is fixed. In a word, the vacuum tunnelling dynamics is
the origin of the differences between our P4 type field theory and the P2 type theories.

On the framework of model-building itself, if the results in our calculations are even partly right
for the real physical processes, then it would be said that the P4 type theory is a more effective
and more general theory, by contrast to the the P2 theory. According to the redefinition for the
canonic d.o.f, e.g., from the coordinate to the wave function (x→ ϕ = eip·x) for the first quantization
in quantum mechanics, and from the P2 type field to the P4 type field (ϕ → U ∼ eiϕ) in this
paper, maybe we could ask, is there a principle about this redefinition of d.o.f (maybe we can call it
“exponentialization”)?
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