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       A Probabilistic Approach to some Problems of Number Theory 

 

    Gregory M.  Sobko 

    

   Abstract. Some classical questions and problems of Number Theory, like the 

Goldbach conjecture [1], distributions of twin- and primes and primes among 

arithmetic sequences, are addressed here from an entirely probabilistic point of 

view. We discuss the concepts of ‘randomness’ and ‘independence’ relevant to 

number-theoretic problems and interpret the basic concepts of divisibility of 

natural number in terms of probability spaces and appropriate probability 

distributions on classes of congruence. We analyze and demonstrate the 

importance of  Zeta probability distribution and prove, in particular, theorems 

stating the equivalence of probabilistic independence of divisibility by coprime 

factors, and the fact that  random variables with the property of independence of 

coprime factors must have Zeta probability distribution.  

Multiplicative and additive models with recurrent equations for generating 

sequences of prime numbers are derived based on the reduced Sieve of 

Eratosthenes Algorithm. This allows to interpret such sequences as realizations of 

random walks on set of natural numbers  and on multiplicative semigroups  

generated by set of prime numbers , representing paths of stochastic dynamical 

systems. The H. Cramér model for probability distribution of primes is modified as 

a  generalized predictable non-stationary Bernoulli process with dependent terms, 

which are asymptotically pairwise Bernoullian, and applied to analyze  the 

sequences of primes generated by appropriate random walks. This leads to study of 

prime numbers distributions among arithmetic sequences (classes of congruence) 

based on expectations and variances for occurrences of primes not  exceeding   in  

arithmetic sequences. We illustrate this by computer calculations supporting the 
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conjecture of the uniform distribution of primes among congruence classes for 

each given prime . With an intense use of Zeta probability distribution it seems 

possible by using the modified Cramér’s model to prove the Goldbach conjecture.  

The solution to the Twin Primes problem and more general -primes distribution 

problem for consecutive prime numbers is also suggested in this paper. We discuss 

some limit theorems related to distribution of primes and their residuals. More 

specifically, we provide a continuous-time description of the distribution of 

counting function of primes  in terms of diffusion approximation of 

non-Markov random walks.  

       

                                                    PREFACE 

“Any great quest demands courage. It is a voyage into unknown with 

no guaranteed results…Our lives also have this quality of a quest, the 

attempt to resolve some fundamental but ill-posed question. In 

working on a mathematical conjecture, life’s ambiguities solidify into 

a concrete problem…  

This is one reason that working on mathematics is so satisfying.  

In resolving the mathematical problem, we for a while at least, 

resolve that large, existential problem that is consciously or 

unconsciously always with us…” 

(William Byers, How Mathematicians Think, Princeton University 

Press, 2007) 

 

“…Mathematics is the art of giving the same name to different 

things…The only facts worthy of our attention are those which 

introduce order into this complexity and so make it accessible to us”. 

(Henry Poincaré, The Value of Science, Random House, Inc., 2001. 
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“Using randomness to study certainty may seem somewhat surprising.                  

It is, however, one of the deepest contributions of our century to 

mathematics in general and to the theory of numbers in particular.” 

(Gérald Tenenbaum, Michel Mendès France, The Prime Numbers and 

Their Distribution. AMS, 2000) 

 

Number Theory is a precious and an inexhaustible source of problems, ideas 

and methods that inspire the development of mathematical sciences starting 

from the dawn of human civilization. This work is dedicated to some classical 

questions and problems of Number Theory that I have attempted to address 

from an entirely probabilistic point of view by using quite elementary 

methods. To approach Number Theory issues we have to discuss existence and 

representation of probability spaces and probability distributions relevant to 

divisibility problems, prime factorization, distribution of prime numbers, the 

Prime Number Theorem. The work is focused on a special role of Riemann 

Zeta probability distribution (associated with Zeta function) on the set  of 

natural numbers and on some modifications of the famous Cramér’s model of 

probability distribution of primes [2,9 ].  

A detailed analysis of Riemann zeta distribution and its connections to 

Number Theory are presented by Gwo Dong Lin and Chin-Yuan Hu in [11] 

and by many other authors. This work has a number of inevitable intersections 

with other studies, though I tried to avoid common places.  

We discuss the divisibility problem of a ‘random number’  in terms of 

statistical independence to show that the statement of Mark Kac [ 4, p. 53] that 

“primes play a game of chance” does not carry only a metaphorical meaning, 
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but also has a strict mathematical sense, assuming that ‘random number’  

follows a specific probability distribution. 

With certain intense use of Zeta probability distribution, we approached some 

of old classical problems in Number Theory like the strong form of Goldbach 

problem and the Twin Primes problem (the last generalized to the 

-primes distribution problem for consecutive prime numbers),  and the 

distribution of prime numbers among arithmetic sequences. 

Sequences of natural numbers in this work are considered as realizations of 

paths of multiplicative random walks with independent increments on  

(generated by random variables  followed Zeta distribution), while prime-

valued sequences are represented as realizations of additive random walks with 

dependent increments on .  We denote here  the set of prime numbers. 

       Better foundations for the Cramer’s model in this work is provided by    

       considering the sequence of valued random variables   

         as a  generalized predictable non-stationary Bernoulli  

       process with dependent terms.  As it is shown in Theorem 3.1,  the sequence       

      in the modified Cramér’s model is asymptotically pairwise Bernoullian,  

       that is  , where , ,       

        ,  and .  

       The sequence of random variables  is such that   is a  

       realization of the random sequence ,  representing primes  for some  

        in the main probability space .  The assignments of probabilities  
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ξ(νn )( )n∈! 0,1( )-

ξ(vn ) =
1 if vn ∈P
0 otherwise

⎧
⎨
⎩⎪

ξk( )k∈!

max
N<k<l

Pkl − Pk ⋅Pl = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

P ξk = 1{ } = Pk P ξk ⋅ξl = 1{ } = Pkl

Xn = ξk
k=1

n

∑ V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = O 1
lnN

⎛
⎝⎜

⎞
⎠⎟

νn( )n∈! νn(ω ) = pn ∈P

νn( )n∈!
ω ∈Ω Ω,F ,P( )
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       in the Cramér’s model was originally motivated by the Prime Number    

       Theorem  [10, p.133], where  the counting function of  primes on   is given   

       by the asymptotic formula ,  which leads to the  

       heuristic assumption about the probability  

       By assuming that each random variable  in the sequence follows 

       Riemann Zeta probability distribution ,  where      

        is Riemann zeta function,  we prove that     

       (Theorem 2.2) . Then, as it follows from the   

         Merten’s  2nd theorem [  , pp. 18-19],  we have the asymptotic expression: 

       ,            

        where   ,  denotes Euler’s constant.  

          

       Given that a random variable  follows Zeta probability distribution 

       we discuss the following issues: 

1) probability distribution of exponents  in the prime factorization 

; 

P νn = pn{ } = P ξ(n) = 1{ } = 1
lnn

, P νn ≠ pn{ } = P ξ(n) = 0{ } = 1− 1
lnn

,

!

π (x) = 1
p∈P∩[2,x]
∑ ∼ Li(x) = dt

ln t2

x

∫

P p∈[x −1,x]{ } ∼ dt
ln tx−1

x

∫ ∼
1
ln x
.

νn νn( )n∈!

Ps ν = n{ } = n−s

ζ (s)
, n∈!, s >1

ζ (s) = n−s
n∈!
∑ , s >1,

Ps ν ∈P|ν = n{ } = 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

P ξ(n) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ = e−γ

1
2
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

c
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1.12292 18968c
eg

= » γ

ν

Ps ν = n{ } = n−s

ζ (s)
, s >1, n∈!,

α (ν , p)

ν = pα (ν ,p)
p∈P
∏
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2) a multiplicative model of random walks ,where 

 ,   on semigroups  

generated by  

all primes  and by a limited set of primes , respectively. 

3) probabilistic interpretation of  Riemann Zeta function in the 

derived formula , where  is in the domain of 

convergence of   and  is a characteristic function  of a 

random variable  with probability distribution 

  ; 

4) independence of divisibility of  by coprime factors as a necessary and 

sufficient condition for probability distribution of to be a Zeta Riemann 

distribution; 

5) improvement of Cramér’s model represented as a non-stationary 

asymptotically pairwise Bernoulli process on the reduced Eratosthenes 

Sieve algorithm and Mertens theorems to approximate prime distribution 

function . 

6) By using the Dirichlet characters for a finite abelian group 

  and the corresponding characteristic functions, 

we discuss distribution of primes among arithmetic sequences and 

asymptotic distribution of residuals . We prove 

(Theorem 4.2) that for a sequence  of independent random 

integers (not necessarily equally distributed),  the residuals of sums 

ν(k +1) = ν(k) ⋅ξ(k +1)

ν(0) = 1 ξ(k) = pk
α (ν (k ),pk ) (k = 1,2,…) S(P) and S(PN )

P PN = p∈P | p ≤ N{ }
ζ (z) = n− z

n∈!
∑

ζ (z) = fλs (t) ⋅ζ (s) z = s+ i ⋅ t

ζ (z) fλs (t) = E ei⋅t⋅λs{ }
λs ( s >1)

Ps λs = − lnn{ } = 1
ns ⋅ζ (s)

(n∈!)

ν

ν

π (x)
x
as x→∞

Gp = Z p = Z / p ⋅Z( ), p∈P,

r = mod(ν , p) = ν⎡⎣ ⎤⎦ p , p∈P

1 2, , , ,nn n n! !
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 are asymptotically uniformly distributed on 

, and components of the vector of residuals 

are asymptotically independent random variables. 

     Then,  for  arithmetic sequences  and      

     set  of  primes in these sequences (Theorem 5.1) we   

     show that  in probability, where random variable  has                       

     a uniform distribution on . 

7) Proving that every  is an infinte set for all even values of ), 

where  is the set of primes 

(that is prime numbers . 

Notice that  is the set of twin-primes. Assuming the Cramer’s 

assumption of independence of consecutive primes, supported by the fact 

that the sequence in the modified Cramér’s model is asymptotically 

pairwise Bernoullian, we prove that every  is an infinte set for all 

even values of ) . 

8) By using similar arguments, we approach the strong Goldbach conjecture 

and try to ‘solve’ the puzzle in the framework of probability theory,       

by using the modified (see above) H. Cramér’s assumption of 

independence of primes occurred in the sequence of natural numbers . 

We consider the so-called Goldbach function  that denotes the 

number of presentations of an even integer in the form: where 

are prime numbers (called G-primes). A choice of a  for 

[ ]( )

1

n
n

i pp
i

n n
=

é ù =ë û å

Gp , forevery p∈P

( )1 2 ( )( ) , ,r r r rp nn =
!

"

Cpr = n = k ⋅ p + r | k ∈!{ }, 1≤ r ≤ p −1,

Ppr = Cpr ∩P \ p{ }

νn⎡⎣ ⎤⎦ p →ν0 ν0

01,2,…, p −1{ }

DPd d ≥ 2

DPd = p | p and p + d  are consecutive primes { } d-

p such that p and p + d  are consecutive primes)

DP2

ξk( )k∈!
DPd

d ≥ 2

!

G(2m)

2m = p + ′p

p, ′p  G-prime p
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every  is considered as a realization of  for a random 

variable  with Zeta probability distribution.  We have then,  

where .  The calculations for the available range of  values 

show that the number of representations  of an even integer in the 

form where are primes, increases when  increases and 

becomes larger for the larger values of . A prime number , ,  

we call a - prime if there exist an even number  and a prime 

number such that . The set of all -primes for a given 

 we denote .  The main results of this section are stated in  

Theorems 7.1 and 7.2. The most critical question for the Goldbach strong 

conjecture is whether the probability that for ‘sufficiently large’ values of  

 all sets  are not empty, or equivalently,  is this true that  

       .  Let  be a set of  

all -primes, that is prime numbers  such that .     

Assume that each random variable  in the sequence of independent     

random variables  follows Zeta probability distribution:  

     and .   

    Then, as a sequence of asymptotically independent Bernoulli     

    variables implies the following properties of Goldbach function.   

    : 

                    (1)   

m ≥ 3 G(2m,ν )

ν 2m = ν + ′v

ν ∈P,  ′ν ∈P ν

G(2m)

2m = p + ′p p, ′p  m

m p∈P p ≤ m

Gm 2m ≥ 6

′p ∈P 2m = p + ′p Gm

m GmP

m > M ≥ 3 GmP

P G(2m,νm ) =|GmP |  > 0{ }
m=M

∞

∩
⎧
⎨
⎩

⎫
⎬
⎭
→1 as M→∞ GmP for  m ≥ 3

G p, ′p ∈P p + ′p = 2m

νm

νm{ }3≤m

P νm = n{ } = n−s

ζ (s)
  (s >1) γ m(νm ) =

1 if νm = n∈GmP
0 otherwise

⎧
⎨
⎩⎪

γ m(νm ){ }m≥3

G(2m,νm ) = γ m(νm )
n=3

2m−3

∑

P G(2m,νm ) = 0{ } = P γ m(νm ) = 0 |νm = n{ }
n=3

2m−3

∩
⎧
⎨
⎩

⎫
⎬
⎭
→ 0 as  m→∞.
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                    (2)   

                     (3)     

 

Due to Lemma 3.2, the sequence in the Cramér’s model is 

asymptotically pairwise Bernoullian, so that 

                         as  for all .       

The last property implies that in the formula  we have 

all random variables ,  not necessarily independent but 

asymptotically linearly uncorrelated.   Then,  . 

9) Given a sequence  of prime numbers indicators as a non-

stationary time series, we evaluate covariances (and correlations) between 

for arbitrary  , and consider two situations in the 

study of correlations between : (1) are close enough to 

each other; (2)  are separated from each other by ‘long’ intervals. 

In both cases computer calculations show the low values of range for the  

sample correlation coefficients:

 

10)  Finally,  a continuous-time description of the distribution of counting 

function of primes  is obtained in terms of diffusion 

approximation of non-Markov random walks. In this chapter we consider 

P G(2m,νm ) = 0{ } < e
− 2m−6
ln2 (2m)

m=3

∞

∑
m=3

∞

∑ ≈ 6.00236

lim
M→∞

P G(2m,νm ) =|GmP |  > 0{ }
m=M

∞

∩
⎧
⎨
⎩

⎫
⎬
⎭
→1 

ξk( )k∈!

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = O 1
lnN

⎛
⎝⎜

⎞
⎠⎟

Dn = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

n > N

G(2m,ν ) = γ m(n)
n=3

2m−3

∑ > 0

γ m(n) , N ≤ n ≤ 2m - 3

lim
m→∞

P GmP ≥1{ } = 1

ξ(n) | n∈!( )

ξ(k)  and  ξ( ′k ) k  and ′k

ξ(k)  and  ξ( ′k ) k  and ′k

k  and ′k

Range of a sample correlation coefficients R = cor
!
ξi ,
!
ξi+1( )⎡

⎣
⎤
⎦  (i = 1,2,...,n−1) for n = 100 

consecutive m = 104-intervals of allocation of primes < 106 :  0.03776633≤ R ≤   0.09711712.

π (n),  n∈!,
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the sequence as a realization of a random walks 

generated by the recurrent equation     

where , . Here  are assumed to be 

random variables with Zeta probability distribution. 

We consider a stochastic process approximation of non-Markov random 

walks  such that , with  

restricted to the interval of discrete ‘times’ :   

                                   .     

  We denote    a partition of an interval  into   

            subintervals,  such that  . 

  The closed interval of real numbers  is mapped to the     

  interval   by an increasing continuously differentiable function     

  such that  where         

  and   stands for the Eulerian logarithmic integral .   

            Then,  and for  (the inverse of ) we have     

  . Denote  and assume that  and for each     

   choice of  a positive integer can be taken such that  .      

  Here a sequence of random variables    is interpreted as a path     

  of a walking point  that belongs to a measurable space  at    

π (n){ }n∈! π (n,ω ){ }n∈W
π (nk+1)−π (nk ) =η(nk+1)

η(nk ) = h min(
!r (nk )( ) nk = ν k (ω ) vk{ }k∈!

π (n,ω ){ }n∈W π (n,ω ) = π n( )  π :! ×Ω→ !∪ 0{ }
Nmin = n0 < n1 <!< nK = Nmax

π Δ (tk ) = π (nk ,ω ) | Nmin ≤ nk ≤ Nmax{ }
Δ = 0 = t0 < t1 <…< tK = 1( ) 0,1⎡⎣ ⎤⎦ K

K
ln Nmax( )→ 0 as Nmax →∞

Nmin ,Nmax⎡⎣ ⎤⎦ ⊂ !

0,1⎡⎣ ⎤⎦ ⊂ !

τ (x) τ (Nmin ) = 0, τ (Nmax ) = 1 τ (x) =

dt
ln tNmin

x

∫
dt
ln tNmin

Nmax

∫
=

Li(x)− Li(Nmin )
Li(Nmax )− Li(Nmin )

Li(x) Li(x) =
2

x

∫
dt
ln t

tk = τ (nk ) τ −1 τ nk = τ
−1(tk )

(k = 1,2,…,K ) Δtk = tk − tk−1 Nmin →∞

Nmin K Δ = max
1≤k≤K

Δtk → 0

π Δ (tk ) = π (nk )

( )ktp D
Xk ,Bk( )
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  each ‘instant of registration’ .  Theorem 9.1 states that 

  transition probabilities  ,      

  where  ,  of the defined above non-Markov sequence of      

  random walks converges weakly to the transition  

  probabilities of the diffusion process  given by the stochastic integral 

                                     ,  

            where      

          ,    

          ,  

           as .   

The sequence of vectors  created by consecutive    

 primes and the residual values , allows an interesting 3D 

presentation. In each pair   vector of primes  represents a 

‘radial’ component, while the vector of residuals , due to its natural 

periodicity, represents a ‘circular’ component. As a result, we represent the 

sequence of consecutive primes  numbers with the corresponding residual 

values  on the complex 

plane as a 3D helix. 

 

The key issue in the probabilistic analysis in a number-theoretic framework 

remains an enigmatic connection between deterministic nature of integer 

tk

{ }1 1 1 0 0( ) | ( ) , ( ) , , ( )k k k k kP t E t x t x t xp p p pD D D D
+ - -Î = = =!

!
xk = (x1,…,xk )∈"

k

π̂ (t)

π̂ (t) = m̂(s)ds+
0

t

∫ σ̂ (s)dw(s)
0

t

∫

m̂(t) = c
ln τ −1(t)( ) , σ̂ (t) =

1
2
⋅ m̂(t) ⋅ 1− m̂(t)( ), c = 2

eγ
, 0 ≤ t ≤1,

τ −1(t) = x , Nmin ≤ n ≤ Nmax , τ (Nmin ) = 0, τ (Nmax ) = 1 c = 2
eγ

≈1.122918968

 with  the Euler's constant γ = 1
mm≤n

∑ − lnn+O 1
n

⎛
⎝⎜

⎞
⎠⎟

,γ ≈ 0.577215664

Δ = max
1≤k≤K

Δtk → 0, Nmin →∞

( ) ( )( ), ( ) , 2,3,p n r n n =! !
"

n mod( , )r n p=
! !

!p(n), !r (n)( ) !p(n)
!r (n)

exp 2 , mod( , ) , ( 1,2,3, )
1

k
k k k k

k

rz p i r n p k
p

p
æ ö

= × × = =ç ÷-è ø
!

C
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sequences related to prime numbers and their apparent complicated 

(‘unpredictable’ or ‘chaotic’) behavior interpreted as ‘randomness’.   

  The concept of ‘randomness’ is in the focus of numerous philosophical and 

mathematical studies and discussion. It follows different interpretations among 

physicists, engineers, biologists, specialists in information technology, 

computer scientists, and of course, mathematicians, as outlined by Edward 

Beltrami in [6 , p. 92].   

An apparently ‘random’ patterns of some sequence of integers are naturally 

related to their ‘complexity’ or ‘predictability’, which leads to the concept  

of ‘algorithmic randomness’. 

Due to this concept, complexity of a binary string can be measured by the 

length of an algorithm (written itself in as a binary string), which can generate 

the given binary string. To reproduce a string of maximum complexity 

(interpreted as ‘algorithmically random’), we need an algorithm which length 

is comparable with the length of the given string. Given a natural number , 

one can use the Eratosthenes algorithm to calculate  the count  of all 

consecutive prime numbers  not exceeding . To find out whether 

 is a prime number would require not more than  division operations 

for all primes . This means that the sequence of consecutive primes has 

a ‘recursive memory’ of the size , and a ‘recursive complexity’ of a 

prime sequence can be estimated, due to the Prime Number 

Theorem [12, 22], as .   

Quite deterministic nature of prime numbers, due to the complexity of the 

generating algorithm, is mimicking ‘randomness’, and allows apply some of 

probabilistic instruments to analyze number-theoretic problems. 

n

π (n)

p1, p2 ,…, pπ (n) n

n π ( n)

p ≤ n

π ( n)

p1, p2 ,…, pπ (n)

π n( ) ∼ 2 n
lnn
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It was hardly possible to make this text self-contained and I presume that a 

reader would have prerequisites based on university courses of Algebra, 

Calculus, Mathematical Analysis and Probability Theory, and (what is the 

most important) the curiosity and interest in both Number Theory and 

Probability.  

Notice that all computer calculation results demonstrated in this work are 

performed  with R and Matlab scripts created by the author, and I take full 

responsibility for any possible inaccuracies or mistakes. I tried to follow the 

style which combines traditional theoretical and computational approaches as 

stated in [22]: “Discussion – Definition – Theorem – Algorithm – Example”. 

 

 Gregory M. Sobko 

 San Diego, California 
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1 . Stochastic Predictable Sequences, Prime Numbers  

     and Riemann Zeta Probability Distribution 

 

Let  denote the set of natural numbers and  the set of all primes.  Our major 

assumption follows the amazing Cramér’s idea  [ 9 ] to represent a sequence of 

prime numbers as a realization of a random sequence of integers with an 

appropriate choice of their probability distributions. Pursuing this idea we address 

two problems:  

1) the choice of an adequate probability distributions  for each ;   

2) stochastic relationship among all in the sequence.  

We need several definitions [ 7 ]. 

Definition 1.1 

Let  be random variables defined on probablity space  and 

  a  generated by . We have: 

,  and for each , random variable  is  -measurable.  

Then,  the sequence  is called a stochastic sequence.  

A stochastic sequence is called predictable if for each  there exists 

 such that   is -measurable. A pedictable sequence we can write 

as .  

Predictability of a stochastic sequence = means that for each 

 the probability distribution  of  is compeletly determined by (depends 

! P

νn | n∈!( )

Pn νn

νn

νn | n∈!{ } Ω,F ,P( )
Fn =σ ν k |1≤ k ≤ n{ } σ -algebra ν k |1≤ k ≤ n{ }
Fn ⊆ Fn+1 ⊆!⊆ F n∈! νn Fn

νn ,Fn( )n∈!
νn ,Fn( )n∈! n∈!

k = k(n) < n νn Fk (n)

νn ,Fk (n)( )
n∈!

νn ,Fn( )n∈! νn ,Fk (n)( )
n∈!

n∈! Pn νn
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on) values taken by some  (or all) veriables   , where .  That is, 

in terms of conditional probabilities,  

 for all  .    (1.1) 

Notice that general stochastic sequences include classes of sequences of 

independent as well as dependent random variables like martingales, Markov 

chains, etc. 

In Number Theory we are interested in recursively defined sequences of numbers, 

generated by certain recurrent relations, mostly nonlinear. From probabilistic point 

of view, such recurrent relations generate  sequences of dependent random 

variables. The problem of dependence of events and random variables in the 

framework of  Number Theory had been dicussed in some detail in the monograph 

of Mark Kac [4]. As M. Kac underlined in [4], the concept of independence 

“though  of central importance in probability theory, is not a purely mathematical 

notion”, and it appears quite naturally in Statistical Physics. He mentioned that 

“the rule of multiplication of probabilities of independent events is an attempt to 

formalize this notion and to build a calculus arount it”. By using informal 

language, the concept of independence is stated in [14] as follows: “Two events are 

said to be independent if they have ‘nothing to do’ with each other”. To decide 

whether a ‘randomly choosen’ (odd) integer  is a prime number, we subject  

to a divisibility test, according to the Eratosthenes algorithm. Then, the events 

 (‘  divides  ‘) and  ( ‘  divides  ‘ ) for   do not 

depend on each other logically or statistically, and should be considered as 

independent for a ‘reasonable’ choice of probability distribution of random 

variable  .  As we demonstrate below, such a choice is provided by Zeta 

probability distribution 

ν1,ν2 ,…,ν k (n) k(n) < n

Pn ν ∈A |Fn−1{ } = Pn ν ∈A |Fk (n){ } A∈Fn

ν > 2 ν

A = pi \ν{ } pi ν B = pj \ν{ } pj ν i ≠ j

ν
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,        (1.2) 

Both dependence and independence of ‘events’ in Number Theory are results of 

complicated recurrent nonlinear relations between terms of numeric sequences,  

which can generate a  ‘dynamical chaos’, imitating pseudo-randomness in the long 

run behavior of such (theoretically) purely deterministic sequences. The precise 

prediction of behavior of terms in the sequences demands for ‘big’ numbers almost 

infeasible calculations caused by expanding memory of prehistory of their 

evolution. To make a study feasible and overcome “the curse of dependence”,  

researchers in this area typically suggest heuristic assumptions that terms in a 

 are independent, or asymptotically independent, or uncorrelated, or 

‘weakly’ dependent, in a certain sense.                                                                                                                                                            

The basic fact is that the set of prime numbers  is a recursive set [ 18 ].  

We can prove this by using an indicator function  of set . We need to 

show that the function  is recursively defined. (1) Initial step: let 

. (2) Inductive step: if  is the smallest number such that  

(symbol   means ‘does not divide’) for each  , then , otherwise 

. Notice that such number  exists. (3) Closure step: Only numbers  

obtained in steps (1) and (2) satisfy condition .   

It holds true that if a function is recursively defined then it is unique [18 ].   

We can explain the above statement concerning the recursive definition of prime 

numbers as follows.  Occurrence of  a prime number  in the sequence of 

consecutive natural numbers  depends on the values of reminders 

 for all primes  , due to the Sieve of Eratosphenes Algorithm [5]. 

Actually, this requirement can be relaxed: we need to consider only divisibility of 

P νm = n{ } = n−s

ζ (s)
  (s >1) n∈!

νn( )n∈!

P

IP :!→ 0,1{ } P

IP

IP (2) = 1, IP (3) = 1 n > 3 n ! k

! k ≤ n IP (n) = 1

IP (n) = 0 n n

IP (n) = 1

n = p∈P

n = 2,3,4,…{ }
r = mod(n, p) p ≤ n
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by all primes . The proof of this statement (attributed to Fibonacci)  

follows below. 

 

 

Lemma 1.1 

A natural number  is prime if and only if  is not divisible by of any prime 

numbers ,  оr, equivalently, if  for all primes . 

Proof. 

If we assume that  is a composite number with no primes  that divide , 

then  should be divided by primes  both greater than  , and therefore 

also divided by their product But this would imply that , which is 

impossible. 

This means that if  is not divisible by any of prime numbers , then  

itself must be a prime number. 

Q.E.D. 

The above discussion implies that the sequence of consecutive primes can be 

considered as a realization of a predictable stochastic sequence , 

where  for all  . 

One of the most challenging problems of Number Theory is the distribution of 

primes in the set  of natural numbers. The sequence of consecutive prime 

numbers  may look like a path of sporadic walks  given by  

a random sequence of natural numbers  where randomness of 

each term  is determined by the choice of elementary event  due to a 

probability distribution  defined by a probability space .  Primes in  

n p ≤ n

n ≥ 5 n

p ≤ n r = mod(n, p) ≠ 0 p ≤ n

n p ≤ n n

n ′p1 and ′p2  n

′p1 ⋅  ′p2 . ′p1 ⋅  ′p2 > n

n p ≤ n n

νn ,Fk (n)( )
n∈!

k(n) = n n > 3

!

2,3,5,7,11,…( ) ω :!→ P

ω = ν k (ω ) | k ∈!( )
jn wÎW

P Ω,F ,P( )
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 for each  can be represented  by the indicator function 

 as a sequence of binary-valued variables    

(see the Table 1.1 below). 

This can be directly observed in the sequence of prime numbers below :             

                 

Table 1.1 

 

                  

    

 

 

 

 

 

 

 

In Number Theory we are interested in recursive sequences of numbers, generated 

by certain recurrent relations, mostly nonlinear.   Let be a probability 

space, where  is a set of all  -valued sequences,  is a -algebra generated by 

the algebra of cylinder sets in  , and  is a probability measure on . From 

( )1 2, , ,jw n n n= ! ! ν k = k

IP (n) = ξ(n) ξ(n) =
1 if n∈P
0,  otherwise
⎧
⎨
⎩

  for  n∈!

100

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97( )

Ω,F ,P( )
Ω ! F σ

Ω P Ω,F( )

 The sequence  of sequential primes among natural numbers from 1 to 100 

represented by values of n such that variables : 

0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0  

0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 

    

ξ(n) |1≤ n ≤100( )
ξ(n) = 1 if n is prime

                  

0 2 3 0 5 0 7 0 0 0  11 0 13 0 0 0 17 0 19 0 0 0 23 0 0  

0 0 0 29 0 31 0 0 0 0 0 37 0 0 0 41 0 43 0 0 0 47 0 0 0  

0 0 53 0 0 0 0 0 59 0 61 0 0 0 0 0 67 0 0 0 71 0 73 0  

0 0 0 79 0 0 0 83 0 0 0 0 0 89 0 0 0 0 0 0 0 97 0 0 0 

 

The sequence consecutive primes νn = n ⋅ξ(n) separated  
by zeros standing  on the place of  composite numbers :
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a probabilistic point of view , see [17] , a recursive sequence , in a 

more general setting, can be viewed as a realization of a stochastic (or random) 

process   where is  interpreted as “discrete time” set (if ) or 

as “a continuous time” set (if ). For every  random variables  

are  - measurable functions , such that  for 

any  . In other words, each mapping  is a homomorphisms of -

algebra into -algebra .  The set  is considered  as a one-parametric group ( 

or ) or as a one-parametric semigroup ( or ). The set in a measurable 

space   is called a state space of the  process  , where     

                                     .    

In what follows we restrict our analysis to the case of the discrete time set     

                                     .  

This is convenient to identify an elementary event  with a path (or trajectory) 

, and the probability space  with its canonical 

realization  where a probability measure  is detetermined on all -

dimensional cylinder sets  for

 ,   

by the assignment of probabilities  .  

 Following H. Furstenberg in [16] , we consider the recurrence as a central 

number-theoretic phenomenon to be studied. Then, we introduce a measurable 

dynamical system  as follows.  Set  is a one-parametric semigroup 

(if   ) or a group (if   of transformations  acting on   

ν(n) | n∈!{ }

ν = ν(t) | t ∈T{ } T T ⊆ !

T ⊆ ! t ∈T ν(t) = ν(ω ,t)

X ,B( ) / Ω,F( ) ν t( ) :Ω→ X ν(t)( )−1 A( )∈F

A∈B ν(t)( )−1 σ

B σ F T

Z ! Z+ !+ X

X ,B( ) ν = ν(t) | t ∈T{ }
ν ∈X T = X

t∈T
∏ , BT = ⊗

t∈T
B

T = Z + = !∪ 0{ }
ω ∈Ω

ω (t) ≡ ν(ω ,t) = x(t)∈X , t ∈T Ω,F ,P( )
X T ,BT ,PX( ) PX n

Ct1,t2 ,…,tn = x ∈X T | xt1 ∈A1,xt2 ∈A2 ,…,xtn ∈An( )
Ak ∈B,k = 1,2,…,n; (t1,t2 ,…,tn )∈T

n ,n∈!

PX (Ct1,t2 ,…,tn ) = P ν(tk )
−1(Ak )

k=1

n

∩
⎧
⎨
⎩

⎫
⎬
⎭

X ,B,θ( ) θ = θt( )t∈T
T ∈!∪ 0{ } T ∈!) θt X ,B( )
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such that: 

        1.   is a measurable function on the direct product , 

2.  (if ), 

3.  (a semigroup property of transformation compositions). 

In the framework of Probability Theory we consider basic sequences     

as realizations of -valued random variables traditionally called Bernoulli 

variables.  

To avoid pure heuristic justification of probabilistic ,conclusions, we try to conduct 

our discourse entirely in the framework of Probability Theory.  This means that,  

prior to discussion of dependence issues related to sequences like 

, we  should introduce random variables  with the 

corresponding probability distribution  defined on -algebra of events  

(generated in our context by all subsets ). 

We assume that a binary-valued sequence , where   

representing primes is a realization of  a non-stationary sequence of possibly 

dependent  Bernoulli variables, by postulating probabilities  

   

              .      (1.3) 

 

The major challenges in the study of such sequences are evaluation of in (2) and 

analysis of dependence of random variables  included in the 

sequence.  The problem of dependence of events and random variables in the 

framework of Number Theory had been discussed in some detail in the monograph 

of Mark Kac [4]. In number of works authors tried to avoid a rigorous probabilistic 

θtν = ν(ω ,t) F / B- Ω×T

θ0ν = ν(ω ,0) 0∈T

θt+s = θt !θs

ξ(n) | n∈!( )
0,1( )

( )1 2, , ,jw n n n= ! ! ν j :Ω→ !

Pj σ Fj ν j
−1(A)

A⊆ !

ξ(n) | n∈!( ) ξ(n) =
1, if  n ∈P
0, otherwise
⎧
⎨
⎩

,

P ξ(n) = 1{ } = pn ,P ξ(n) = 0{ } = 1− pn  where 0 < pn <1

qn

ξ(n) | n = 1,2,…( )
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approach based on the concept of sigma-additive probability measures and the 

corresponding probability spaces, and considered instead so-called ‘density’ 

measures, which are additive but not sigma-additive. As M. Kac underlined in [4],  

the concept of independence “though of central importance in probability theory, is 

not a purely mathematical notion”, and it appears quite naturally in Statistical 

Physics. He mentioned that “the rule of multiplication of probabilities of 

independent events is an attempt to formalize this notion and to build a calculus 

around it”. Moreover, the notions of statistical (probabilistic) independence and 

dependence of events have been sometimes confused with the mathematical 

(functional) or logical dependence.  Both dependence and independence of 

“events” in Number Theory are results of complicated recursive nonlinear relations 

between terms of numeric sequences, which can generate a ‘dynamical chaos’, 

imitating pseudo-randomness in the long run behavior of such (theoretically) 

purely ‘deterministic’ sequences. The precise prediction of  behavior of terms in 

the sequences demands almost impossible calculations based on expanding 

memory of prehistory of their evolution. To make a study feasible and overcome 

‘the curse of dependence’, a typically suggested heuristic assumption is that terms 

in are asymptotically independent, or uncorrelated, or ‘weakly’ dependent 

in a certain sense. In the framework of modified Cramér’s model  we show that the 

sequence of dependent random variables  is asymptotically pairwise 

Bernoullian (that is asyptotically pairwise independent) in a sense that we are 

going to discuss below.   

 

Surprisingly, in many discussions of probabilistic interpretations of Number 

Theory problems, some authors use ‘by default’ an approach as in the following 

sentence [1]:   “Assume that we choose number  at random from  to .  

ξ(n)( )n∈!

ξ(n)( )n∈!

X 1 n
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Then  …”    

The above sentence, due to its ambiguity, raises the following comments and 

objections. 

1) When one chooses number  ”at random”, it is presumed that the 

probability distribution of is known (at least theoretically). The formula 

  tells us that the probability distribution is assumed to 

be uniform on the sequence of integers . Here 

 is a counting function of number of primes not 

exceeding  . If the probability distribution of  is not uniform on the  

interval of integers  , then, in a statistical framework,  

can be interpreted not as a probability but rather as a relative frequency of 

occurrences of prime numbers in the interval . One of goals in our study 

is to construct a probabilistic model for the “statistical” distribution of 

primes given by the observed frequencies . Notice again the obvious 

fact that a discrete uniform probability distribution does not exist on an 

infinite support, that is on infinite subsets of  (including itself). 

2) The following analysis is about divisibility of  by a prime  .  

Denote  a set of all multiples of number . As mentioned above, the 

probability   does not exists if  is evenly distributed on .  But 

the problem can be easily resolved if one refers the probability  

to the class   of integers in   congruent    

modulo .  There are exactly congruent classes modulo :  

, which make a partition of  . 

Prob(X  is prime)=
π (n)
n

X

X

( )Prob(  is prime) = nX
n

p

{ }1,2,3, ,n!

{ }( ) # |n p p np = Î £P

n X

[1,n]= 1,2,…,n{ } ( )n
n

p

[1, ]n

( )n
n

p

N N

ν p n£

p ⋅N p

P ν ∈ p ⋅!{ } ν N

P ν ∈ p ⋅!{ }
Cp,0 = n | n = k ⋅ p,  k ∈!{ } ! 0

p p p

Cp,r = n | n = k ⋅ p + r;0 ≤ r ≤ p −1;k ∈!∪ 0{ }{ } !
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Then, we can define a probability distribution   

on   such that .  Equal probabilities to randomly 

choose a class of congruence for a number  given by   for all 

 , imply  .  Particularly, we have , so that 

                 .          (2.1.22)   

Considering ,  we assumed that random variable   can take  

any value within .  The value of the probability can be different from 

 if we impose some limitations on , say, if we assume that 

. For arbitrary  and a given probability distribution of , an event 

  may not belong, in general, to the algebra of events created by the 

partition of  into  congruence classes   , and it 

would be impossible to assign a probability value to the event 

, where we denote .  

Since  is a finite set, we can define a uniform probability distribution  

on this set, but the agreement of this distribution with the assumption  

 would depend on the choice of , specifically, on 

divisibility of  .  

For example, if , we have  and 

.  

P Cp,r( ) = qp,r (r = 0,1,2,…, p −1)

{ },0 ,1 , 1, , ,p p p pC C C -! qp,r = 1
r=0

p−1

∑

ν P Cp,r( ) = qp
r : 0 ≤ r ≤ p −1 P Cp,r( ) = 1p Cp,0 = p ⋅!

P ν ∈ p ⋅!{ } = P Cp,0( ) = 1p
P ν ∈ p ⋅!{ } ν

p ⋅N

P ν ∈ p ⋅!{ } = 1p ν

ν ≤ n n∈! ν

ν ≤ n{ }
N p { }, | 0,1,2, , 1p rC r p= -!

{ },0 [1, ]pX C nÎ Ç [1,n]= k | k = 1,2,…,n{ }
[1, ]n

{ },0
1[1, ]pP C n
p

Ç = n

byn p

3 and 20p n= = { }3,0 [1,20] 3,6,9,12,15,18C Ç =

{ }3,0
6 1[1,20] 0.3
20 3

P C Ç = = ¹
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For  we have  so that 

. 

3) Independence of divisibility of random number  by different primes is 

determined by the  choice of probability distribution of . As it had been 

noticed by Mark Kac in  [4], “primes play a game of chance”. He pointed 

out to the obvious fact that  to be divisible by both primes  and    is 

equivalent of being divisible by . This mean that if  for any 

positive integer  , then, since  ,   we have       

   because  .                 (2.1.23) 

          Mark Kac was not able to establish and use the independence of divisibility      

          events in terms of a probability theory since he used a density set functions  

         ,  where  , which is additive but not  

         -additive.   

  

Definition. 1.1 

We call a probability distribution   multiplicative or completely 

multiplicative if for all  we have: 

   , where ,                  (2.1.24) 

is a multiplicative, or respectively, completely multiplicative function, 

 

such that  is a convergent series. 

 

3 and 21p n= = { }3,0 [1,21] 3,6,9,12,15,18,21C Ç =

{ }3,0
7 1[1,21] 0.333
21 3

P C Ç = = = !

ν

ν

ν p q

p q× { },0 1
mP C

m
=

m ,0 ,0 ,0p q p qC C C× = Ç

P Cpq,0{ } = P Cp,0{ } ⋅P Cq,0{ } 1 1 1
p q p q

= ×
×

d A( ) = lim
n→∞

A(n)
n

A(n) = A∩[0,n], A⊂ !

σ

Pf  on !

A⊆ !

Pf X ∈A{ } = 1Z f (n)
n∈A
∑ f :!→ (0,1]

Z = f (n)
n∈!
∑
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As we show below, independence of divisibility of random number  by different 

primes can be guaranteed if   has a multiplicative probability distribution defined 

above. 

Each prime number determines a partition of the set  into  classes of 

congruence modulo .  We show below that a 

randomly chosen value   with the multiplicative distribution  is divisible by 

natural  with probability  .  For  the probability         

is Zeta probability distribution, and random  with Zeta distribution is divisible  

by a prime number  with probability  so that for each , 

                                      (2.1.25) 

Each natural , due to the Fundamental Theorem of Arithmetic, can be 

represented in the unique form 

                                                                   (2.1.26)  

where .  Formula 

(2.1.26) is called a canonical representation of  where  are called 

multiplicities of prime factors of .   

 Thus, the probability that does not divide equals   .  

In general,  the event  in (5.1) means that  divides  but  does 

not divide  :  

      (2.1.26) 

X

X

p ! p

{ },:    ,  where 0,1,2, , 1p rp C r pÎ -!

ν Pf

m f (m) f (n) = 1
ns

 (s >1) Pf  on !

ν

p
1
sp pÎP

{ } { },0 ,0
1 1 , 1s p s ps sP C P C
p p

n nÎ = Ï = -

n

n = p1
a1 p2

a2! pk
ak = pj

α j

j=1

k

∏

p1, p2 ,…, pk  are distinct primes, and a1,a2 ,…,ak are natural numbers

n a1,a2 ,…,ak

n

p n Ps α (ν , p) = 0{ } = 1− 1
ps

α (ν , p) = k{ } pk n pk+1

ν

{ } 1 1( , ) 1 , 0,1,2,3,
k

s s sP p k k
p p

a n
æ ö æ ö

= = × - =ç ÷ ç ÷
è ø è ø

!
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and we have  

.             

 

Sum  counts the total number of prime factors (with multiplicities) 

in the prime factorization of  . Here are parameters of : 

                 . 

 

Assume now that there is a vector , which components are  

different prime numbers, and we consider a multiplicative semigroup  with 

unity, generated by components of vector   and  . 

For any  we have where  . 

By using computer simulation, we can generate  pseudo-random variables 

 , where each    has a geometric distribution with 

parameter  and then, simulate a ‘pseudo-random’ number with 

.   

Further we consider a multiplicative semigroup  generated by all primes not 

exceeding   , that is   . 

 

 

 

( )
( )2

1 1( , ) ; ( , )
1 1 1 11

s s s

s s s ss

p p pE p Var p
p p p pp

a n a n
- -

- -

æ ö æ ö
= = = = ×ç ÷ ç ÷- - - -è øè ø-

ϕ(ν ) = α (ν , p)
p∈P
∑

( , )p

p

pa nn
Î

=Õ
P

ϕ(ν )

Es ϕ(ν )⎡⎣ ⎤⎦ =
1
ps −1p∈!

∑ ,Vars ϕ(ν )⎡⎣ ⎤⎦ =
ps

ps −1
⎛
⎝⎜

⎞
⎠⎟
⋅ 1
ps −1

⎛
⎝⎜

⎞
⎠⎟p∈!

∑

( )1 2, , , Np p p p=
!

" N

( )S p!

!p 1{ }

n∈S( !p)
1

j
k

j
j

n pa
=

=Õ α j > 0 for all j (1≤ j ≤ k), k ≤ N

N

α j =α ( pj ,ν ), 1≤ j ≤ N α ( pj ,ν )

1

jp 1

j
k

j
j

pan
=

=Õ

k = k(ν ) ≤ N

S(PN )

N PN = P∩ p ≤ N | p∈P{ }
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THEOREM 1.1.  

If  is a multiplicative probability distribution on  and  is a random variable 

such that 

   where ,  , 

 then  

1)  For any natural  random event  of occurrence of a random number  

divisible by   has probability . 

2)  for any two mutually prime numbers  and , random events  and  of 

occurrence of  divisible by both  and by , respectively, are -

independent events: . Since 

 we have, equivalently, 

   

Proof. 

For we have:   

   since ,        

and .    Then,  implies  

 

Q.E.D. 

                

The following theorem states that the assumption that the probability distribution 

  is ‘complete multiplicative’ (with an appropriate choice of function ) is  

necessary and sufficient condition for such distribution  to be Zeta distribution. 

Pf ! ν

Pf ν ∈A{ } = 1Z ⋅ f (n)
n∈A
∑ A⊆ ! f :!→ (0,1]

2m ³ E ν

m Pf (E) = Pf (Cm,0 ) = f (m)

m1 m2 E1 E2

ν 1m m2 Pf

Pf (E1∩ E2 ) = Pf (E1) ⋅Pf (E2 )

1 2 1 21 ,0 2 ,0 1 2 ,0, andm m m mE C E C E E C ×= = Ç =

Pf (Cm1,0∩Cm2 ,0 ) = Pf (Cm1,0 ) ⋅Pf (Cm2 ,0 )

m = m1 ⋅m2

Pf Cm,0( ) = 1Z f (m ⋅ k) =
k∈!
∑ 1

Z
f (m) ⋅ f (k) =

k∈!
∑ f (m) = f (m1) ⋅ f (m2 )

1
Z k∈N
∑ f (k) = 1

Pf Cmi ,0( ) = 1
Z k∈N
∑ f (mi ⋅ k) = f (mi ) (i = 1,2) Cm1⋅m2 = Cm1 ∩Cm2

Pf (Cm1,0∩Cm2 ,0 ) = Pf (Cm1⋅m2 ,0 ) = Pf (Cm1,0 ) ⋅Pf (Cm2 ,0 )

Pf  on ! f

Pf
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THEOREM 1.2. 

Let  be a random variable with values in   with probability distribution      

                                       ,    (2.1.28) 

where ,  and  is a convergent series. 

The series  takes a form of the ‘Euler product of the series’ [12, p.230]:  

1)   if  in (2.1.28) is multiplicative, then   

           

2)   if  in (2.1.28) is a completely multiplicative function such that 

, then 

                                

 3)    the probability distribution  is a Riemann Zeta distribution    

       for any choice of . Further we denote   .                         

Proof. 

1)  Let be a semigroup of all integers generated by , 

. 

Due to the Fundamental Theorem of Arithmetic,  

    

Then, if  is a multiplicative function, we have   

                   

ν !

Pf ν ∈A{ } = 1Z f (n)
n∈A
∑

f :!→ 0,1⎡⎣ ⎤⎦ A⊆ ! Z = f (n)
n=1

∞

∑

Z = f (n)
n=1

∞

∑

f

Z = f (n)
n=1

∞

∑ = 1+ f ( p)+ f ( p2 )+!⎡⎣ ⎤⎦
p∈P
∏

f

0 < f ( p) <1 for all p∈P

Z = f (n)
n=1

∞

∑ = 1
1− f ( p)p∈P

∏

Pf

Pζ (s) ν = n{ } = n−s

ζ (s)
, n∈!, 1s > Pζ (s) = Ps

S(PN ) PN ∪ 1{ }
PN = p | p ≤ N , p∈P{ }

n = pα (n,p)

p∈P*
∏ ,  where α (n, p) ≥ 0,α (n, p) =

aj > 0 if  paj | n and paj+1
! n

0, otherwise

⎧
⎨
⎪

⎩⎪

f

Z = f (n)
n=1

∞

∑ = f ( pα (n,p) )
p∈P
∏⎡
⎣
⎢

⎤

⎦
⎥

n=1

∞

∑ = f ( pk )
k=0

∞

∑⎡
⎣
⎢

⎤

⎦
⎥

p∈P
∏ = 1+ f ( p)+ f ( p2 )+!⎡⎣ ⎤⎦

p∈P
∏
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2)  In the proof above we have used the multiplicative property of function .  

If  is completely multiplicative, we have .  Then, we can write 

 and the above equality takes a form: 

  

Notice that the right-hand sides of the above equalities are convergent infinite 

products,   since the left-hand side is given by the convergent series.   

3)  Notice that for any  we have , where  . 

Since   , we have                       

Denote ,  .Then,    

 

For any natural   we denote the event “  divides “ as  and the 

opposite event “ “ as . The probability that a prime 

number  divides  is  and the probability that  does not divide 

  is .  The probability that the number  divides  and does 

not divide is given by the formula  

    

Then, by virtue of Theorem 2.3 and the canonical factorization of , we have 

                      (2.1.29)     

Summation of both sides of (2.29) results in the formula: 
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, which implies: 

 ,    (2.1.30) 

provided that  is such that the infinite product and the infinite sum in the 

above formulas are both convergent.  Completely multiplicative function 

 satisfies the functional  equation , known as one  

of ‘fundamental’ Cauchy functional equations and due to Theorem 3, p.41 in [13],  

for positive  has the most general solution of the form .  

Obviously, in our context is a completly multiplicative arithmetic  

function and for this choice of    is Zeta function which generates 

Zeta distribution   

                            . 

Q.E.D. 

Remark 1.1.               

The problem with the choice  for is that it leads to the divergent 

harmonic series  .  To avoid the situation with the series divergence, we 

follow the steps of Euler [3] by restricting values of . Zeta function  

 is well known to be directly related to the probability distribution of 

prime numbers. 

   

This motivates the choice of Zeta distribution.   If   divides , then 
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and so on.  An odd number  is prime if and only if it does not divide all primes 

less than or equal to :  

                  (2.1.31) 

Since for  we have  . 

In particular,  , and .  

Then, the probability of.    is calculated as  

 

  =      

 In general, for any natural number  , we have 

 ,  

that is 

                                                      (2.1.32) 

Formula (2.1.32) may provide some probabilistic interpretations of Riemann Zeta 

function. 

If  has Zeta probability distribution, then the probability that  for certain  

results in a prime number  is evaluated as 

       (2.1.33) 
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Taking into account the recursive dependence of the sequence of prime numbers 

 with the memory size  , we have the identity of the events 

 , which means that an odd number   is prime if and only  

if  any prime  does not divide . Formally:    

 .   

This implies:  

    (2.1.34) 

Since , we have 

  . 

We could compare the last probability with the frequency estimate  or  

with the Cramér’s model prediction  ,  though, dependence of probability  on 

parameter  makes the above formulas much harder to interpret. As we know, 

one can circumvent divergence of  for   by using the analytic 

continuation of  on  the complex plane ,       as suggested by Riemann.  

Meanwhile, as we have mentioned above, the use of Incomplete Product Zeta 

function (IPZ)  defined as a partial product of ,    
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of   for  . 

LEMMA 1.2. 

Let be a semigroup of all integers generated by ,  

. 

Then,  

             . 

Proof. 

Notice that for any  we have , where  . 

Since   , we have . 

Q.E.D.  

We consider now the corresponding probability distribution  , , and find the 

probability of an odd to be a prime number in the set of numbers  

generated by primes not exceeding : 

    (2.1.35)   
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2. Multiplicative and Additive Recurrent models for Primes 

 

The famous Harald Cramér’s model [2,3] describes the occurrence of prime 

numbers as a sequence of independent Bernoulli variables with probabilities  

.     (2.1) 

In what follows, we provide  rigorous arguments in support of some aspects of 

Cramér’s model, especially related to the values of probabilities ,  and then 

analyze dependence of  in the sequence .  As we have 

discussed above,  appearance of  a prime in the sequence    

are dependent events determined by the prehistory . 

Obviously, if  , then  since      is an even number. 

Even if we restrict values of  by odd numbers , still divisibility  

of  by the previously occurred  primes would depend on the prehistory 

 Therefore, the sequence of consecutive primes and the corresponding 

Bernoulli variables  cannot be interpreted as occurrence of independent events 

in the sequence, or as a realization of  a Markov chain with a constant size of 

‘memory’, because for each   the size  of the ‘memory’  increases 

in the sequence with . We analyze the sequence of prime numbers 

 by using multiplicative and additive models.   

In any kind of a model, we will be using the equivalent canonical realizations    

                           so that  .  

The transformations , are   -measurable.  

We define  the transformations by . 
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A multiplicative model is based on the canonical representation of primes  

[5, p.18]: 

   where      (2.2) 

and is concerned with the questions of divisibility of  integer-valued random 

variables by integers,  and with their connection with the Zeta probability 

distribution: 

   , for any subset .     (2.6) 

For the multiplicative model of the dynamical system representing (5),   

where , we define     

,  

where .  

See (9) in more detailed discussion. 

Additive models  are useful in problems related to counting of various types of 

integers in .  In additive models dynamical systems are defined by the equations:  

 ; ,  

where definition of the ‘updating’ term determines the specifics of the 

model, as illustrated below.  First, we consider the function , counting the 

number of primes less than or equal to . For this case, the updating term  

is defined by the formula (1.3). 

Second, we denote the number  of  -primes. A prime  is called a -prime 

if the gap between and its consecutive prime equals , that is  and 

there are no primes between and .  

Third, for all  we consider the number  of Goldbach -primes, or -

primes, which are such primes  that a difference  is again a prime number.  
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In the first situation we use  recurrent equations: 

        (2.7)  

It is well-known that the connections between additive and multiplicative 

properties of numbers are extraordinarily complicated, and this leads to various 

difficult problems in Number Theory.  We start from the division algorithm  

[5, p.19].  Given integer  there exists a unique pair of integers 

. In this equation,  if and only if  

divides .  We derive here a recursive formula generating a sequence of prime 

numbers:  For any prime number  and a natural number  , 

consider a function  of residuals (remainders) such that 

where  .  Consider a vector of consecutive 

prime numbers such that  .  Index  

determines here the value  for the number of primes  less than or equal to 

 so that . For each coordinate  of vector the   we 

determine the residual value    and consider the 

vector of residuals .  Notice that, due to the Sieve Algorithm, 

for an integer  to be prime it is necessary and sufficient that the all coordinates 

  of the ‘reduced’ vector of residuals  such that  be different 

from zero.  Thus, the events are equivalent.  

See calculations below in the Table 2.1. 
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Table 2.1.  The recursive sequence of primes driven by their residuals 

        

2  1      

3       

       

  

  

6  

  

7 4 
   

8 4 
   

9 4 
   

10 4 
   

11 5 
  

12 5 
   

13 6 
   

      

30 10 
   

31 11 
   

    

We evaluate   assuming that a random integer follows Zeta 

probability distribution. To assign a probability value to a set   (“all multiples 

of number  ”), we should refer it to the class  of integers in 

 congruent   modulo  so that  .   There are exactly  congruent 

n π (n) !p(n) = p1, p2 ,…, pπ (n)( ) !r (n) = mod n, !p(n)( ) = r1,r2 ,…,rπ (n)( )
( )2 ( )0

2 ( )2,3 ( )1,0

4 2 ( )2,3 ( )0,1

5 3 ( )2,3,5 ( )1,2,0

3 ( )2,3,5 ( )0,0,1

( )2,3,5,7 ( )1,1,2,0

( )2,3,5,7 ( )0,2,3,1

( )2,3,5,7 ( )1,0,4,2

( )2,3,5,7 ( )0,1,0,3

( )2,3,5,7,11 ( )1,2,1,4,0

( )2,3,5,7,11 ( )0,0,2,5,1

( )2,3,5,7,11,13 ( )1,1,3,6,2,0

! ! ! !

( )2,3,5,7,11,13,17,19,23,29 ( )0,0,0,2,8,4,13,11,7,1

( )2,3,5,7,11,13,17,19,23,29,31 ( )1,1,1,3,9,5,14,12,8,2,0

P ν ∈P |ν = n{ } n

m ⋅!

m Cm,0 = n | n = k ⋅m, k ∈!{ }

! 0 m Cm,0 = m ⋅! m
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classes modulo :   , which make a 

finite partition of . Then, for each integer  we can define a probability 

distribution on  :   

    and      

Theorem 2.1 

Let  be a random variable with  Zeta probability distribution    and  

       (2.8) 

 its canonical rеpresentation.  

Then, each  random variable  in (8) has a geometric probability distribution 

with a parameter  :  

       ,     (2.9) 

We have then, 

                               . 

Variables    are independent  for all primes   as 

well as factors  for all  in the canonical factorization 

.  

Proof. 

Denote  events  and , respectively. 

We have:     

   since . 
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Notice that   

Therefore, 

  . 

Denote  the event  ( ). Then, for  we have    

                          , 

 .       

Similar,  

 . 

If   are co-prime numbers, then  , that is , 

and   , which holds true for any two different primes 

 . This proves independence of  for different primes , 

as well as independence of factors  for all  in the canonical 

factorization .  

Q.E.D. 
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A random variable  with Zeta distribution  

represents a random walk  on a multiplicative semigroup   
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generated by the extended set of primes .  

The walk on is defined recursively as follows:   

  (2.10)  

Here random variables  , due to Theorem 1, follow geometric 

probability distributions (9)  with parameters    , respectively.  

The sequence  is a finite walk on  with independent 

multiplicative increments  such that  , and 

,  where  is the least prime number that divides . 

Proof. 

Formulas (1.7) and (1.9) imply:   

Since and all , due to Theorem 1, are independent random 
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were i = 1,2,…,n,  so that  ν(n) = η(i)
i=1

n

∏  for all n :  1≤ n ≤κ (ν ) ν(n) = ν  if  n =κ (ν )

P ν = m{ } = 1
pi
s

⎛

⎝⎜
⎞

⎠⎟i=1

κ (m)

∏
α i

⋅ 1− 1
pi
s

⎛

⎝⎜
⎞

⎠⎟i=1

∞

∏ = 1
ms

⋅ 1
ζ (s)

m = pi
α i

i=1

κ (m)

∏

m = pi
α i

i=1

κ (m)

∏ ≥ pmin( )κ (m) pmin ≤ pi i :  1≤ i ≤κ (m)

κ (m) ≤ log pmin m
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Theorem 2.3 

Let  be  the Heaviside function    ,

 and 

 = .  

If a random variable  has Zeta probability distribution and ,  then 

for each    the following statements hold true: 

              (2.11) 

    

Proof. 

 Theorem 1 implies 

        

Notice that the event   can be expressed in the form of conditions   

.      (2.12) 

By using the Heaviside function    , we can write the recursive  

equation (4.6) for  in the form:   

           

or, equivalently,         

h : R→ 0,1{ } h(x) =
1  if x > 0
0 if x ≤ 0
⎧
⎨
⎩

r(ν i ) = mod(ν , pi ),
!r (ν ) = r(ν i ) |1≤ i ≤ π ν( )( )

!ρ(ν ) = min !r (ν )( ) min
i
r(ν i ) |1≤ i ≤ π ν( )( )

ν ξ(n) = h !ρ(n)( )
n∈!

(1) Ps ν ∈P|ν = n{ } = Ps h !ρ(ν )( ) = 1{ } = 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

(2) Ps ξ(n) = π (n+1)−π (n) = 1|π (1) = 1{ } = Ps h(ρ(ν ) = 1{ } =
p≤ n+1
∏ 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟

Ps ν ∈P |ν = n{ } = Ps p ! ν{ } |ν = n
p≤ ν
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= Ps p ! ν |ν = n{ } = 1− 1

pi

⎛

⎝⎜
⎞

⎠⎟i=1

π ( n )

∏
p≤ ν
∏

p≤ ν
∩ p ! ν{ } |ν = n

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

mod(ν , p) > 0 | p∈P⎡⎣ ⎤⎦{ }
p≤ ν
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= ri > 0{ }

1≤i≤ π (ν )
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= min ri |1≤ i ≤ π (ν )⎡

⎣
⎤
⎦ > 0{ }

h(x) =
1  if x > 0
0 if x ≤ 0
⎧
⎨
⎩

( )np

π (n+1) = π (n)+ h min
p≤ n

mod(n, p) | p∈P{ }⎛
⎝

⎞
⎠
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                               (2.13) 

which controls the occurrence of prime numbers in the sequence of all integers 

   For a random number  with Zeta probability distribution, vector  

of residuals  is a vector with independent random  

components   distributed within congruence classes  for all 

 . For  to be prime, this is necessary and sufficient that  should 

not be divisible by  all of primes , which means that 

 . Denoting , we 

have: 

            

                        (2.14)     

Therefore, by letting  , we obtain 

                             (2.15) 

Probability of  a random  to be a prime number in the interval    

for all   is given by the formulas:    

                      ,    

                          (2.16)  

Examples.  

       with . 

π (n+1) = π (n)+ h min
i≤ n

ri | ri = mod(n, pi ){ }( ) = π (n)+ h min(!r (n)( )

n = 3,4,5,6,… n

!r (ν ) = r1(ν ),r2(ν ),…,rκ (ν ) (ν )( )
rk (ν ) = mod(ν , pk ) Cpk ,rk (ν )

k :  1≤ k ≤ π (ν ) n ν

p n£

min !r (ν ){ } = min ri(ν ) |1≤ i ≤ π ν( ){ } > 0 ξ(n) = h
!ρ(n)( )  (n = 1,2,3,…)

Ps ξ(n) = π (n+1)−π (n) = 1|π (1) = 1{ } = P h(
!ρ(n) = 1{ }

= Ps min (r (n) > 0{ }{ } =
1

ζ (0)
⋅
p≤ n+1
∏ 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟

1
ζ (0)

=
p≤ n+1
∏ 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟

1s®

Ps ξ(n) = 1|π (0) = 0{ }→ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

ν [2, ]n

n ≥ 5

P ν ∈P|ν ≤ n{ } = P h
!ρ(ν )( ) = 1{ } = 1− 1

p
⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

P ξ(n) = 1|min min(ρi |1≤ i ≤ π ( n)( ) > 0{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

1)  ν = 108 = 1⋅22 ⋅33 ⋅50 ⋅70! α (108, p) = 0  for all  p > 3
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We have:   

  with  

We have: . 

In the above setting, the number  in example 1) represents the path: 

                              

The number  in example 2) represents the path:   

                           

By setting  for all  ,  we can calculate probability

  of any given value .    

In example 1): 

 

  

In example 2): 

  

 

Notice that, in general, in the formal expression        

the product involves a set of all prime numbers.  In the above expressions  

α (108,2) = 2,α (108,3) = 3;κ (108) = 2

2)  ν=110=2 ⋅30 ⋅5⋅70 ⋅11⋅130 ⋅170! α (110, p) = 0  for p = 3, 7, and all  p >11

α (110,2) = 1,α (110,5) = 1,α (110,11) = 1; κ (110) = 3

0

108 ( )
i

ix
¥

=

=Õ

1→ 22 → 33→ 50 → 70 →!

110 = ξ(i)
i=0

∞

∏
0 0 0 01 2 3 5 7 11 13 17® ® ® ® ® ® ® ®!

P ξ( j) = pj
α j{ } = 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟

α j

pj ∈P

{ }P nn = n∈!

Ps ν = 108{ } = 1
22s

⋅ 1− 1
2s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1
33s

⋅ 1− 1
3s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

7s
⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

11s
⎛
⎝⎜

⎞
⎠⎟
! 1− 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟!

= 1
22s ⋅33s

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏ = 1
108s

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏

Ps ν = 110{ } = 1
2s

⋅ 1− 1
2s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

3s
⎛
⎝⎜

⎞
⎠⎟
⋅ 1
5s

⋅ 1− 1
5s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

7s
⎛
⎝⎜

⎞
⎠⎟
⋅ 1
11s

⋅ 1− 1
11s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

13s
⎛
⎝⎜

⎞
⎠⎟
! 1− 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟!

= 1
2s ⋅5s ⋅11s

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏ = 1
110s

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏

Ps ν = n{ } = 1
ns

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏
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the ‘probability’  depends on a parameter   

,          (2.17) 

The probability distribution (5.6) is called Riemann Zeta probability distribution. 

To cope with the divergence of the infinite product  ,                

we consider    where ,  and define the probability  as a function 

of  a parameter .  Meanwhile, there is another way to cope with divergence of  

 for .  We can do so by introducing a sequence of incomplete (or 

partial) Riemann Zeta functions. We define the incomplete product Zeta function 

as a partial product in the multiplicative presentation of  for   

                                                       (2.18)                                    

Remark 2.1. 

Since  , we have a convergent additive partial presentation of : 

  .       (2.19) 

Here  is a multiplicative semigroup of all integers generated by 

, where .   Notice that  is an infinite set  

generated by a finite set .  Then, we consider the corresponding probability 

distribution  , , given by the formula: 

Ps ν = n{ } s :

{ }
1

1 1 11
( )s s s s

j j

P n
n p n s

n
z

¥

=

æ ö
= = × - =ç ÷ç ÷ ×è ø

Õ n∈!, s >1

1

1 11 1
j pjp p

¥

= Î

æ ö æ ö
- = -ç ÷ ç ÷ç ÷ è øè ø

Õ Õ
P

= ζ (1)

1

1( ) s
n

s
n

z
³

=å 1s > Ps

s

1

1( ) s
n

s
n

z
¥

=

=å 1s £

ζPN (s) ζ (s) s ≥1:

1( ) 11
N

p N
s

s

p

z
£

=
-

ÕP

1

1− 1
ps

= 1
ps

⎛
⎝⎜

⎞
⎠⎟k=0

∞

∑
k

ζ (s)

0 ( )
( )

N
N

sk s

k n Sp N

s p nz
¥

- -

= Î£

é ù= =ê úë û
å åÕP

P

( )NS P PN
∗ =

{ }1N ÈP { }| ,N p p N p= £ ÎP P ( )NS P

PN
∗

,s NP 1s >
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       (2.20) 

Since   , we have . 

The probability  of  to be a prime number in the set of numbers  

(generated by primes not exceeding ) can be calculated by the formula: 

  

        (2.21) 

The convergence of the infinite series is guaranteed by (2.18)  

and (2.19).  In general, from the probabilistic point of view, every finite path on the 

monoid set can be identified with a randomly chosen natural number   

by assuming that it has a probability distribution  

   such that  . 

 

 

 

 

 

 

 

 

 

Ps,N ν = n{ } = 1
ns ⋅ζPN (s)

, n∈S(PN ), s > 0, N ∈!

1

( )

1 1( ) 1
N

N

s s
n Sp N

s
p n

z
-

Î£

æ ö
= - =ç ÷

è ø
åÕP
P

{ },
( )

1
N

s N
n S

P nn
Î

= =å
P

Ps,N n S(PN )

N

{ },
1is prime| ( ) = 11( )

1

N

N

s s

p p N s
s N N s

p N p N
s

p N

p p
P S p

s p
p

n n
z

- -

Î £ -

£ £
-

£

æ ö æ ö
Î = = × -ç ÷ ç ÷

è øè ø
-

å å
å Õ

Õ
P

P

P

( )
( )

N
N

s

n S
z nz -

Î

= åP
P

S P*( ) = ! ν

P ν = n{ }, n∈!, { }
1

1
n
P nn

¥

=

= =å
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3. Asymptotics of a generalized Bernoulli process and  

    the Cramér’s model of prime numbers distribution 

 

Definition 3.1 

A sequence of -valued random variables  defined on probability space 

 which terms are not in general independent and dentically distributed we 

call a generalized Bernoulli process. We have: 

  . 

Probabilitstic approach to distribution of prime numbers in  is addresed in the 

Harald Cramér’s model [2,3]. The Cramér’s model describes the occurrence of 

prime numbers as a special case of  a Bernoulli process given by a sequence of 

independent Bernoulli variables  with probabilities        

                               

or equivalently,   

                         , .   

  

The above formulas, due to the Merten’s 1st and 2nd theorems [2, p.15],  have  

the asymptotic expression: 

,             (3.1)   

where   .   

We consider all values  of   in (17) by choosing arbitrary large natural . 

 

0,1{ } ξk( )k∈!
Ω,F ,P( )

P ξk = 1{ } = Pk ,P ξk = 0{ } = Qk , Pk +Qk = 1, k ∈!
!

ξ(n) | n∈!( ), where ξ(n) = ξ(νn ),

P νn ∈P{ } = 1
lnn

,   P νn ∉P{ } = 1− 1
lnn

,

P ξ(n) = 1{ } = 1
lnn

,   P ξ(n) = 0{ } = 1− 1
lnn

where n ≥ 2

P ξ(n) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ ≈ e−γ

1
2
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

c
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1.12292 18968c
eg

= »

n > N N
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As we pointed above,  the Cramér’s assumption about independence of terms in the 

sequence   is not quite accurate. The more realistic and adequate 

approach would be  to consider the sequence of consecutive primes represented by 

and , respectively, as  stochastic predictable sequences of 

dependent random variables.    

Actually the sequence of random variables in the Cramér’s model is asymptotically 

Bernoullian (and asyptotically pairwise independent) in a sense of Definition 3.1 

given below.  Meanwhile,  the demand  for idependence of terms in the sequence 

 and in could be  be relaxed in the Cramér’s model, due to the 

version of the Central Limit Theorem (CLT) for dependent  random variables.  

This version of  CLT tracks back to the S.N. Bernstein’s ideas. In rather general 

terms its generalization is proved in [ 19 - 21] for random walks on differntiable 

maniforlds and Lie groups.  We provide here the formulation of this theorem  

given in [ 17 ] as the most adequate for the goals of this article. 

First, we discuss, following M. Loèv [19], asymptotic behavior of a generalized 

Bernoulli process.   We have for  mathematical expectation  and 

variance . 

Let’s denote   Then .   Since  , we have      

.  Then,  

 and .  

This implies:  

=  , 

ξ(n) | n = 1,2,…( )

νn( )n∈! ξ(n) | n = 1,2,…( )

νn( )n∈! ξ(n)( )n∈!

ξk E ξk{ } = Pk
V ξk{ } = Pk ⋅Qk

Xn =
1
n

ξn.
k=1

n

∑ E X{ }n =
1
n

Pk
k=1

n

∑ ξk( )2 = ξk

E ξk( )2{ } = E ξk{ }, E ξk ⋅ξl{ } = P ξk ⋅ξl = 1{ } = Pkl

E Xn{ }( )2 = 1n2 Pk
2 + 2 Pk ⋅Pl

1≤k<l<]≤n
∑

k=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
E Xn( )2{ } = 1n2 k=1

n

∑Pk + 2
k<l
∑Pkl

⎛

⎝⎜
⎞

⎠⎟

V Xn{ } = E (Xn )
2{ }− E Xn{ }( )2 1

n2
PkQk + 2

1≤k<l≤n
∑ (Pkl − Pk ⋅Pl )

k=1

n

∑⎛⎝⎜
⎞
⎠⎟
= 1
n2

V (ξk )+ Dn
k=1

n

∑
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where  .   

If terms in  are pairwise independent, then 

 and  which implies  . 

Thus,  can be viewed as a cummulative measure of pairwise independence of 

terms in a Bernoulli process .  Denote: 

 .   

 Notice that 

                               where  .       

We consider below a slightly different measure  that shows how close a 

Bernoulli process  is to a classical Bernoulli ssequence of independent 

equally distributed random variables. 

Then,   and    

Since  = ,  we have     

                                                     (3.2) 

where  .   

In the classical Bernoulli scheme witn independent identically distributed terms 

,  we have , 

due to independence and equal distribution of terms in the sequence , 

so that .  This implies and . 

Dn =
2
n2 1≤k<l≤n

∑ (Pkl − Pk ⋅Pl ) =
n(n−1)
2n2

2
n(n−1)

Pkl −
2

n(n−1)
Pk ⋅Pl

1≤k<l≤n
∑

1≤k<l≤n
∑⎛

⎝⎜
⎞
⎠⎟

ξ(n)( )n∈!
Pkl = E ξk ⋅ξl{ } = E ξk{ } ⋅E ξl{ } = Pk ⋅Pl Dn = 0 V Xn{ } = 1

n2
V ξk{ }

k=1

n

∑

Dn

ξ(n)( )n∈!

P1(n)=
1
n

Pk
k=1

n

∑ and P2(n) =
2

n(n−1)
Pkl

1≤k<l≤n
∑

Dn =
n−1
2n

P2 − P1,2( ) P12 =
2

n(n−1)
Pk ⋅Pl

1≤k<l≤n
∑

dn

ξ(n)( )n∈!

E Xn( )2{ } = 1n2 Pk + 2 Pkl
k<l
∑

k=1

n

∑⎛⎝⎜
⎞
⎠⎟
=
P1 − P2
n

+ P2 E Xn{ }( )2 = P1( )2

V Xn{ } = E (Xn )
2{ }− E Xn{ }( )2 P1 − P2

n
+ P2 − P1( )2

V Xn( ) = P1 − P2n
+ P2 − P1( )2 = P1 − P2n

+ dn

dn = P2 − P1( )2

ξk( )k∈! Pkl = E ξk ⋅ξl{ } = P ξk ⋅ξl = 1{ } = P ξk = 1{ } ⋅P ξl = 1{ } = Pk ⋅Pl = P2

ξk( )k∈!
dn = P2 − P1( )2 = P2 − P2 = 0 dn = 0 V Xn{ } = 1

n2
V ξk{ }

k=1

n

∑
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This means that the value of  is a measure of a deviation of the sequence 

from a classical Bernoulli scheme.  

 

Definition 3.1 

We call a sequence of -valued random variables defined on probability 

space  asymptotically pairwise Bernoullian if  as .  

This means that for sufficiently large  variables  are asymptotically 

independent for all . 

 

Lemma 3.1 

For asymptotically Bernoullian sequence we have   so that    

                          as  . 

Proof. 

Due to (5),  .    

Since ,   and  ,    

we have .  

This implies . 

Q.E.D. 

Keeping in mind approximation (17),  we restrict the sequence by 

considering  its  ‘tail’ of the original seqience for sufficiently large .   

 

dn ξk( )k∈!

ξn( )n∈! 0,1{ }
Ω,F ,P( ) max

N<k<l
Pkl − Pk ⋅Pl → 0 N→∞

N ξk ,ξl

l > k > N

ξn( )n∈! Dn → 0

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ → 0 n→∞

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = Dn

Dn =
2
n2

Pkl − Pk ⋅Pl( )
k<l≤n
∑ Pkl − Pk ⋅Pl( )

k<l≤n
∑ ≤ n(n−1)

2
max
N<k<l

Pkl − Pk ⋅Pl

Dn ≤
2
n2

⋅ n(n−1)
2

⋅ max
N<k<l

Pkl − Pk ⋅Pl → 0

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ → 0

ξk( )k∈!
ξk( )k>N N
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Theorem 3.1 

The sequence in the modified Cramér’s model is asymptotically pairwise 

Bernoullian, that is , where , , 

and  

      as  for all .             (3.3) 

Proof.   

 Indeed, , . Then, since  for all 

 ,  we have  and   as  . 

This implies  for all                  (3.4) 

Q.E.D.  

In the Cramér’s model represents the number of primes among  

terrms in the interval  of the sequence and  is a 

relative freqiency of primes for these terms.  predicted by the imprved model.  

In the Table 4 below, we demonstrate how well       approximates relative 

frequencies of primes   in the improved Cramér’s model     as increses 

from to . 

 

             

 

ξk( )k∈!

max
N<k<l

Pkl − Pk ⋅Pl = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

P ξk = 1{ } = Pk P ξk ⋅ξl = 1{ } = Pkl

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = O 1
lnN

⎛
⎝⎜

⎞
⎠⎟

Dn = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

n > N

P ξk = 1{ } = Pk P ξk ⋅ξl = 1{ } = Pkl Pkl − Pk ⋅Pl < Pk ≤
1
lnN

N < k < l ≤ n max
N<k<l

Pkl − Pk ⋅Pl ≤
c
lnN

→ 0 Dn = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

N→∞

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = O 1
lnN

⎛
⎝⎜

⎞
⎠⎟

n > N

π̂ N n( ) = ξ(k)
k=N

N+n

∑ n

(N ,N + n]
π̂ N (n)
n

= 1
n

ξ(k) =
π̂ N (n)
nk=N

N+n

∑

E π̂ (n)
n

⎧
⎨
⎩

⎫
⎬
⎭

π (n)
n

ξk( )k≥3 n

101 109
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 Table 3.1.  Comparison of probabilities y   

                                and  frequencies  

 

 
 

 

 

Relative 

frequency 

 of primes in 

intervals   

  0.33333333 0.400000 00 

 0.22857143 0.25000000 

 0.15285215 0.16800000 

 0.12031729 0.12290000 

 0.09621491 0.09592000 

 0.08096526 0.07849800 

 0.06957939 0.06645790 

 0.06088469 0.05761455 

 0.05416682 0.05084753 

 

 

Consider now the Generalized Law of Large Numbers for a general Bernoulli 

process as it stated in[ 18 ] and apply it then to the improved Cramér’s model 

. 

Theorem 3.2 

Let   and   be a relative freqiency of primes the 

interval .  Then, the Generalized Law of Large Numbers holds true: 

P ν ∈P|ν ≤ n{ }
π (n)
n

Natural n
{ } 1is prime | 1

p n

P n
p

n n
£

æ ö
£ = -ç ÷

è ø
Õ

( )n
n

p

[1, ]n

101

102

103

104

105

106

107

108

109

ξk( )k∈!

ξ(k) =
1 if  k ∈P
0 otherwise
⎧
⎨
⎩

π̂ N (n)
n

= 1
n

ξ(k)
k=N+1

N+n

∑

[N ,N + n]
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                .    

 (21) 

 If  , 

then the  Generalized Strong Law of Large Numbers holds true: 

                 (3.5) 

Proof.   

Due to [ 25 ], we apply the following Propositions: 

1. The Generalized Bernoulli Theorem that for every :    

holds true for a Bernoulli process if and only if .  

2. The Generalized Strong form of  Bernoulli Theorem that   

holds true if   .    

We show here that these propositions asymptotically hold true for tails of  

the Cramér’s model   For a tail of  the Cramér’s model we have: 

 

 

Then,                       

Notice that      implies  . 

P
π̂ N (n)
n

− E
π̂ N (n)
n

⎧
⎨
⎩

⎫
⎬
⎭
> ε

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
→ 0 as N ,n→∞

dn.N = 2
n(n−1)

P (k ∈P)∩ (l ∈P){ }− 1
n

P k ∈P{ }
k=N

N+n

∑⎛
⎝⎜

⎞
⎠⎟N≤k<l≤N+n

∑
2

= O 1
n

⎛
⎝⎜

⎞
⎠⎟

P
π̂ N (n)
n

− E
π̂ N (n)
n

⎧
⎨
⎩

⎫
⎬
⎭
→ 0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1 as  N ,n→∞

ε > 0 P Xn − E Xn{ } > ε{ }→ 0

ξk( )k∈! dn = P2 − P1( )2
→ 0 as n→∞

P Xn − E Xn{ } → 0{ }→1

dn = O
1
n

⎛
⎝⎜

⎞
⎠⎟

ξk( )k≥N
ξk( )k≥3 . ξk( )k≥N

P1,N (n) = E
π̂ N (n)
n

⎧
⎨
⎩

⎫
⎬
⎭
= 1
n

E ξ(k){ } = 1n P k ∈P{ }
k=N+1

N+n

∑
k=N+1

N+n

∑ = 1
n

1
ln kk=N+1

N+n

∑ ∼
dt
ln tN

N+n

∫ = Li(N + n)− Li(N )

P2,N (n) =
2

n(n−1)
E ξ(k) ⋅ξ(l){ }

N≤k<l≤N+n
∑ = 2

n(n−1)
P (k ∈P)∩ (l ∈P){ } ⋅

N≤k<l≤N+n
∑

dn.N = 2
n(n−1)

P (k ∈P)∩ (l ∈P){ }− 1
n

P k ∈P{ }
k=N

N+n

∑⎛
⎝⎜

⎞
⎠⎟N≤k<l≤N+n

∑
2

dn.N ≤ max
N≤k<l≤N+n

P (k ∈P)∩ (l ∈P){ }( ) < 1
lnN

dn,N → 0 as n,N→∞
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This implies   

Then,  and (9) holds true. 

If,  in addition , , then (10) holds true. 

Q.E.D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dn,N → 0  as  N ,n→∞

P
π̂ N (n)
n

− E
π̂ N (n)
n

⎧
⎨
⎩

⎫
⎬
⎭
> ε

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= O 1

lnN
⎛
⎝⎜

⎞
⎠⎟
as n,N→∞

dn,N = O 1
n

⎛
⎝⎜

⎞
⎠⎟
as n,N→∞
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       4. Asymptotic Distribution of Residuals  

 

Notice that the vector function  is periodic with a period  

since  . Due to the Chinese Remainder Theorem (CRT)  

[22, p.101],  a solution  to the system of equations   

exists, and if  is a solution to the system, then  is also a solution to the 

same system.  Considering the ring of all integers , we write .   

Here  consists of     congruence classes:  modulo  , 

also called residue classes, denoted as  with the addition and 

multiplication rules expressed as     

,   

respectively.   For any prime number , set of congruence classes modulo   

is a finite abelian group  of order .  

Consider a random sequence  such that 

random variables   are mutually independent and we can always find the 

minimal solution to  among all solutions.   

For example, given  , the system 

 has the minimal solution  . One of other possible 

solutions, for instance, is  . 

r(n) = mod n, !p(n)( )
p n

T p
£

=Õ

mod( , ) 0 for any T p p n= £

x ( )mod( , ) 1i ix p r i m= £ £

x y x T= +

Z Zm = Z / m ⋅Z( )
Zm m { },0 ,1 , 1, , ,m m m m mC C C -=! " m

[ ] [ ] [ ]0 , 1 , , 1
m m m

m-!

[ ] [ ] [ ] [ ] [ ] [ ]mod( , ) and mod( , )
m m m m m m

k l k l m k l k l m+ = + × = ×

p∈P Z p p

Gp = Z p = Z / p ⋅Z( ), p

( )1 2, , , where ( 1,2, , )
in i pG i nw h h h h= Î =! !

1 2, , , nh h h!

( )mod( , ) 1i ix p r i m= £ £

(5,11,17,23,29) and (0,8,13,7,1)p r= =
! !

( )mod( , ) 1 5i ix p r i= £ £ 30x =

623675x =
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We are interested in probability measures on the direct product  such that 

each non-trivial probability distribution is supported by a finite number of 

components in  .   

For a random sequence  of  mutually independent random variables 

 with  distributions  on , we have 

                   .    

and 

       for any    (4.1) 

 

Further, we use the following notation:     and for 

every probability distribution  on  define the ‘shifted’ measure 

. Obviously the shifted measure  is a probability measure on 

subsets of a finite set  because  for any  

since is a group. Due to CRT, there exist one-to one correspondence between 

finite sequences of residues  and positive integers  such that 

.  If   for some number , then 

.  Consider two independent random integers   

with probability measures ,  and their residuals  modulo , 

respectively.  We are interested in probability distribution  of the sum  

. For any set  we have  

p
p

G
Î

=Õ
P

G

G

( )1, , nw h h= !

( 1,2, , )i i nh = ! { } ( )|
i

i
i p rP r r G qh = Î =

ip
G

P ηi ∈B⊆ Gpi{ } = qr
( i)

r∈B
∑ , qr

( i)

r=0

pi−1

∑ = 1 (i = 1,2,…,n)

{ }
1 1

n n

i i i
i i

P B P Bw h
= =

ì ü
Î = Îí ý

î þ
Õ Õ ii pB GÌ

B − r ≡ s∈Gp s+ r ∈B, r ∈Gp{ }
P pG

θr P(B) = P(B − r) θr P

Gp : θr P(Gp ) = P(Gp − r) = 1 p pG r G- = pr GÎ

pG

1 2( , , , )nr r r!
1

i

k

i
i

n pa
=

=Õ

mod( , ) ( 1,2, , )i in p r i k= = ! mod( , )i im p s= m

mod( , ) mod( , )i i i in m p r s p+ = + ν and µ

Pν and Pµ [ ] [ ],
p p

n µ p

P
ν+µ⎡⎣ ⎤⎦ p

[ ] [ ] [ ]p p p
n µ n µ+ = + pB GÌ
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and we denote    as  

,    (4.2) 

so that   

The measure  is called a convolution of measures  . 

One of interesting questions is an asymptotic distribution of sums of independent 

random integers  and their corresponding residuals     

                                            

which are also sums of independent random variables . 

The answer to the question about the limit distribution of  depends in general 

on the distributions of the terms  in the sum. Meanwhile the limit behavior of 

residuals does not depend (under very simple and natural conditions) on the 

distribution of each term .  In what follows we use the well-known general facts 

from Probability Theory regarding characteristic functions of probability 

distributions and their convolutions.  

Let  be a probability measure defined on all finite subsets of  . This means that 

for every   there exists   such that  .  

Characteristic function  is defined by the formula 

.   

For a finite abelian additive group  we consider a homomorphism of  

into multiplicative group of complex numbers .   

P ν + µ⎡⎣ ⎤⎦ p ∈B{ } = P ν⎡⎣ ⎤⎦ p = r{ }
(r+s)∈B
∑ ⋅P µ⎡⎣ ⎤⎦ p = s{ } = P ν⎡⎣ ⎤⎦ p = t − s{ }

t∈B
∑ ⋅P µ⎡⎣ ⎤⎦ p = s{ }

P
ν+µ⎡⎣ ⎤⎦ p (B) = P ν + µ⎡⎣ ⎤⎦ p ∈B{ }

P
ν+µ⎡⎣ ⎤⎦ p (B) = P

ν⎡⎣ ⎤⎦ p ∗P
µ⎡⎣ ⎤⎦ p B( )

Pν+µ (B) = Pν ∗Pµ B( ) = P ν⎡⎣ ⎤⎦ p = t − s{ }
t∈B
∑ ⋅P µ⎡⎣ ⎤⎦ p = s{ }
( )( )P B P P Bn µ n µ+ = * andP Pn µ

( )
1 2

n
nvn n n= + + +!

[ ] [ ] [ ]( )
1 2

n
np p pp

n n n né ù = + + +ë û !

[ ] ( 1,2, , )i p
i nn = !

( )nn

in

( )n

p
né ùë û

[ ]i p
n

Px !

n∈! Pξ (n) = P ξ = n{ } ≥ 0 ( ) 1
n
P nx

Î

=å
xF

Φξ (t) = Eeit⋅ξ = eit⋅n ⋅
n∈!
∑ Pξ (n)

p pG = ! c pG

C∗ : pG Cc *®
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A homomorphism  is also called a character. 

Since any element  has order , that is ,  

we have . This means that any character value 

 is a  root of unity.  

We can define  such character values:  . 

Denote . Character ,  

and   is called a principal character.   

Consider a square matrix  of size . All characters are 

orthogonal to each other in terms of scalar products of rows of matrix  : 

        

Characteristic function for residual is given by the formula 

    

Since the matrix  is orthogonal, the inverse matrix  

exists and the probability distribution  can be uniquely recovered as  

=  given its characteristic function .  

There is one-to-one correspondence between finite probability distributions and the 

corresponding characteristic functions.    

: pG Cc *®

[ ] ( 0,1, , 1)pp
k G k pÎ = -! p [ ] [ ]0p p

p k× =

[ ]( ) [ ]( ) [ ]( )( )1 0
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p p p
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[ ]( )pkc -thp
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2π i
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(r⋅k )
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p
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2 2 2 21 1 1( ) ( ) ( )
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0 0 0

, if1,
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i i i i r sp p pr t s t r s t
p p p

r s rt st i r s
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p r see e e
r s
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p p p p
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- × -- - -× × - ×

× -
= = =

=ì-
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A probability distribution  defined on a finite set  

can be identified with the -dimensional vector where 

 .  

If we have a sequence of probability distributions such that  

in a sense of vector convergence in -dimensional vector space to probability 

measure  , then we can expect the convergence for the sequences of 

corresponding characteristic functions: is a characteristic function 

of some limit random variable  ,  and vice versa.  One of the most important 

properties of characteristic functions is that for any two independent random 

variables  we have  , so that  for independent 

 . 

  

Theorem 4.1 

For any random integers  its residual  for a prime  has a characteristic 

function  such that . 

Proof. 

If a random integer  is such that  has a uniform distribution on  , that is 

 , then  

We prove this by the direct calculations: 

 

( ) ( 1,2, , )P k k nx = ! { }1 2, , , nX x x x= !

n ( )1 2, , , nP p p px = !
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n
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i i
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i

x
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=

å
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We have .  This implies .  

We have . Assume that there exist  such that .   

Then,   and, equivalently,  

 

Since , we have  

for  , which is possible only if .  

Q.E.D. 

 

Now, we can answer the question about convergence of probability distributions of 

residuals  for sums of independent random 

integers by the following statement. 

 

Theorem 4.2 

Let  be a sequence of independent random integers (not necessarily 

equally distributed) such that for every prime  the residuals  have 

probability distributions . 

We assume that  for . Then, the residuals of sums 

 are asymptotically uniformly distributed on . 

Proof. 
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We need to prove that  , or simply that  (in 

probability)  as  , where    is uniformly distributed on  .   

We have  and  , for each . 

 This implies that  , so that  . 

Thus, random variables are asymptotically uniformly distributed on  

as .  

Q.E.D. 

For a random variable  we are interested in the vector of residuals 

, where  stands for number of primes .  

Here    for all .  

The asymptotic independence of residuals   

is addressed in the following statement. 

Theorem 4.4 

All components of the vector of residuals are asymptotically 

independent random variables. 

Proof. 

Notice that the vector function ,  

where  , is periodic with a period  since

. This implies that if  is a solution to the system of 

equations , then  is also a solution to the 

same system.   We set .  Then, 
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n
P Pn l

®¥
= ν (n)⎡⎣ ⎤⎦ p = ν i⎡⎣ ⎤⎦ p

i=1

n

∑ [ ]pl®

n®¥ [ ]pl pG

( )

1

n
i

n

i

nn

=

F = FÕ Φν ( n ) (r) = Φν i (r)
i=1

n

∏ ≤ Mn → 0 as n→∞ r ≠ 0

[ ]( ) 1, if 0
lim ( ) ( )

0,if 0

n
p p

n

r
r r

r
n lé ù
ë û

®¥

=ì
F =F = í ¹î

ν (n)⎡⎣ ⎤⎦ p = ν i⎡⎣ ⎤⎦ p
i=1

n

∑ → λ⎡⎣ ⎤⎦ p

ν (n)⎡⎣ ⎤⎦ p p pG = !

n→∞

ν ∈!

( )1 2 ( )( ) , ,r r r rp nn =
!

" ( )p n p n£

[ ] ( )mod( , ) 1,2, , ( )
i

i ip
r p in n p n= = = ! ip n£

[ ] ( )mod( , ) 1,2, , ( )
i

i ip
r p in n p n= = = !

( )1 2 ( )( ) , ,r r r rp nn =
!

"

( ) ( )1 2 ( )mod , ( ) ( ) , ,n p r r r rp nn n= =
! !

"

( )1 2 ( )( ) , , ,p p p pp nn =
!

" ( )
p

T p
n

n
£

=Õ

mod( ( ), ) 0 for any T p pn n= £ x

( )mod( , ) 1 ( )i ix p r i p n= £ £ ( )y x T n= +

( ) ( )( ) , where mod , ( )k T r r Tn n n n n= × + =



 62 

  and since the combination of residual values 

 occurs  times in trials, then for the relative frequency

,  we have:   . 

Q.E.D. 
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− 1

pii≤π (ν )
∏ = 1

T (ν )+ r
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− 1
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→ 0 as  ν →∞
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5. Distribution of Primes among Arithmetic Sequences 

 

Denote  a finite probability space with elementary events 

 that represent congruence classes modulo  . Then, we 

consider the corresponding algebra of events generated by all subsets 

  of  and introduce a probability space   

where  is a probability measure on .  

Since  provides a partition of  , it induces a partition of the set of primes :   

                                                                     

Notice, that for  if  numbers   have a common divider , 

then  divides  so that  cannot be prime. Therefore, we assume that  are 

co-prime numbers, that is . This is the case when  is prime and 

. Notice that  represents an arithmetic 

sequence with an initial term  and a common difference . One of an old and 

known problems in Number Theory is the occurrence of prime numbers in 

arithmetic sequences .  L. Dirichlet proved in 1837 that  is the necessary 

and sufficient condition that there are infinitely many prime numbers in each of 

congruence classes [2,5,10].  

We illustrate in the tables below the occurrence of prime numbers within some 

arithmetic sequences, calculated with help of the author’s scripts in R.  

We denote the number of primes  in class   as  . In examples below 

we provide  the calculated values of primes occurred within finite arithmetic 

{ },0 ,1 , 1, , ,m m m m mC C C -W = !

ω r = Cm,r (r = 0,1,...,m−1) m

Fm

ω r = Cm,r (r = 0,1,...,m−1) mW Ωm ,Fm ,Pm( )

mP ÎP mW

mW N P

P = Br
r=0

n−1

∪ , Br ∩ Bt =∅ (r ≠ t) where Br = P∩Cn,r . 

b = k ⋅m+ r ∈Cn,r m and r d >1

d b b m and r

(m,r) = 1 m = p∈P

r = 1,2,…, p −1 Cp,r = m |m = k ⋅ p + r,  k ∈!{ }
r p

Cp,r ( p,r) = 1

Cp,r (1≤ r ≤ p −1)

p ≤ x Cp,r π p,r (x)
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sequences:   denoted as  and the counts 

 of primes in these sequences.       

   Example 1.  .  

 

                       

       

Example 2.    

             

 

Example 3.    

 

            

     

Example 4.    

 

            

      

  

   Example 5.  . 

           

m = p ⋅ k + r  (r  =  1,2,…, p -1; k = 1,2,…,K ) P̂p,r

π̂ p,r

K = 100, p = 5, r = 1

P̂5,1 =
11    31  41   61  71 101 131 151 181 191 211    

241 251 271 281 311 331 401 421 431 461 491
⎧
⎨
⎩

⎫
⎬
⎭

K = 100, p = 5, r = 2

P̂5,2 =
7   17   37   47    67   97 107 127 137  157 167 197 
227 257 277 307 317 337 347 367  397 457 467 487}

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

K = 100, p = 5, r = 3

P5.3 =
13  23   43   53   73  83 103 113 163 173 193 223   

233 263 283 293 313 353 373 383 433 443 463 503

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

K = 100, p = 5, r = 4

P̂5,4 =
9  29  59  79  89 109 139 149 179 199 229 239
269 349 359 379 389 409 419 439 449 479 499

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

K = 100, p = 13, r = 2
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Here  appears a problem: find a frequency distribution of prime numbers among 

congruence classes . This problem had been solved in 1896    

by La Valée-Puoussin, supporting the conjecture of even distribution of primes 

among the possible classes.  

 We illustrate the statement here (supported by computer calculations) that primes 

are asymptotically uniformly distributed over , that is for each  

prime  and all remainder values , we should have 

                           (5.1) 

This means that prime numbers asymptotically evenly populate congruence classes 

. See the Table 1 and Figure 1 below with the frequencies of 

prime numbers of the form , in each of 30 

congruence classes. 

 

Table 5.1 

    

Notice that  for all . 

 P̂13,2 =
41  67 197 223 353 379 431 457 509
 587 613 691 743 769  821 977 1237 1289

⎧
⎨
⎩

⎫
⎬
⎭

Cp,r | r = 1,2,…, p −1{ }

Cp,r | r = 1,2,…, p −1{ }
p ≥ 3  r = 1,2,  … , p −1

f p,r =
π̂ p,r

π̂ p,t
t=1

p−1

∑
≈ 1
p −1

Cp,1,Cp,2 ,…,Cp,p−1{ }
n ⋅ p + r  where p = 31,  n ≤106, r = 1,2,…,30

f p,r
⎡⎣ ⎤⎦ =

0.03328864 0.03331891 0.03332309 0.03333561 0.03340451 0.03325263
0.03331108 0.03328133 0.03341547 0.03334918 0.03335649 0.03335858
0.03339302 0.03330638 0.03331265 0.03338363 0.03339929 0.03329647
0.03335545 0.03324845 0.03331839 0.03335075 0.03333352 0.03336223
0.03331734 0.03330221 0.03332935 0.03329803 0.03334240 0.03335492
 

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

f31,r ≈
1
30

= 0.0333… r (1≤ r ≤ 30)
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We applied the Kolmogorov-Smirnov test to verify the claim about the uniform 

distribution of frequences of prime numbers among congruence classes 

 for : 

      

Consider now the question about divisibility of an unknown random number  by 

a given integer . We are looking for natural  such that  for some 

. This means that  . Evaluation of probability that ,  

depends on the information about a given number . There several assumptions 

are possible.  We assume that given number   is a realization of a random 

variable  distributed over  according to a probability distribution . Then we 

evaluate the probability  that natural   divides (that is

) . Generally, if , then , .  

 

Lemma 5.1 

Let  be a random variable that has a probability distribution on partition of 

 such that  for every . 

Then events are independent for any two co-prime numbers . 

Proof. 

Cp,1,Cp,2 ,…,Cp,p−1{ } p = 31,  n ≤106

ks.test(F6.31,runif)
One-sample Kolmogorov-Smirnov test
data:  F6.31
D = 0.86259, p-value = 1.221e-15
alternative hypothesis: two-sided

ν

m m < n n k m= ×

k ∈! ,0mn CÎ ν ∈Cm,0 ,  where ν = n

n

n

ν ! P

P m \ν{ } = P ν ∈Cm,0{ } m ν

mod(ν ,m) = 0 mod(ν ,m) = r { } ( ), ,m r m rP v C P CÎ = ( )
1

,
0

1
m

m r
r
P C

-

=

=å

ν !

Ωm = Cm,0 ,Cm,1,…,Cm,m−1{ } P ν ∈Cm,0( ) = P Cm,0( ) = 1
ms

 ( s > 0) 2m ³

1 2,0 ,0andm mC C 1 2andm m
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We have  . On the other hand, for any two co-prime number  

 we have , so that       

  .           (5.2) 

Q.E.D. 

 

Remark 5.1 

Notice that if a randomly chosen  is evenly distributed within congruence classes 

 then  for every  .  

The assumption of the uniform distribution of  on  within congruence classes 

corresponds to the minimum information (maximum uncertainty) about divisibility 

of an unknown random number  by a given  (a maximum entropy value for a 

probability distribution on for each natural ).  

The question is whether there exists a random variable  with its support 

on  uniformly distributed on each partition  of  for  

every integer  . 

Here we demonstrate that that if  has a Riemann Zeta probability distribution  , 

then   for any , and it satisfies 

the condition of the Lemma 2.1 above.  This means independence of divisibility of 

Zeta distributed random number  by any coprime numbers . 

Remark 5.2 

P Cm1⋅m2 ,0( ) = 1

m1 ⋅m2( )s

1 2andm m
1 2 1 2, 0 , 0 , 0m m m mC C C ×Ç =

P Cm1,0∩Cm2 ,0( ) = P Cm1⋅m2 ,0( ) = 1
m1
s ⋅
1
m2
s = P Cm1,0( ) ⋅P Cm2 ,0( )

ν

{ },0 ,1 , 1, , ,m m m m mC C C -W = ! P ν ∈Cm,0( ) = 1m m ≥ 2

ν Ωm

ν m

mW 2m ³

ν :Ω→ !

N, { },0 ,1 , 1, , ,m m m m mC C C -W = ! !

2m ³

n Ps

P ν ∈Cm,0{ } = 1
ζ (s)

1

k ⋅m( )sk∈!
∑ = 1

ms
⋅ 1
ζ (s)

⋅ 1
k sk∈!

∑ = 1
ms

1s >

ν 1 2andm m



 68 

Meanwhile, obviously Zeta distribution   of  on  does not provide a 

uniform distribution of  on the partition . Indeed, if  

has Zeta distribution, then  , and  the uniform distribution 

 for all  would require  which 

is possible only if  . But Zeta probability distribution  exists only for . 

For a prime  the congruence classes  make a 

partition of . Obviously,  Therefore, 

 make a partition of the infinite set of primes , 

and then, due to the ‘pigeonhole principle’, at least one of classes   

must contain infinitely many prime numbers. 

Notice, that for  the partition  consists of two classes: the class of 

all  even numbers  and the class of all odd numbers .  Obviously, is the 

arithmetic sequence , which includes all prime numbers . 

 

Definition 5.1 

A prime number  we call  if   that is if there exist

 such that  .  

In other words, set consists of all . Obviously, is the intersection 

of an arithmetic sequence  , , 

and set of primes . 

 

The first goal is to prove that all sets of -prime numbers are not empty sets.  

Ps (s >1) ν N

ν { },0 ,1 , 1, , ,m m m m mC C C -W = ! ν

Ps ν ∈Cm,0{ } = 1
ms

Ps Cm,r( ) = 1
ms

r = 0,1,2,…,m−1 Ps !( ) = Ps Cm,r( )
r=0

m−1

∑ = m
ms

= 1,

s = 1 Ps s >1

p∈P, p ≥ 3, Cp,r | r = 0,1,2,…, p −1{ }
! Cp,0 = p ⋅! and Pp,0 = Cp,0 ∩P = p{ }.

Pp,r = Cp,r ∩P | r = 1,2,…, p −1{ } P \ p{ }

Cp,r  (1≤ r ≤ p -1)

P Ω2 = C2,0 ,C2,1{ }
C2,0 C2,1 C2,1

n = 2 ⋅ k +1| k ∈!{ } p > 2

q∈P, q ≠ p, Pp,r − prime q∈Cp,r

n∈! and integer r  (1≤ r ≤ p −1) q = n ⋅ p + r

Pp,r Pp,r − primes Pp,r

Cpr ∩P! p{ } Cpr = n = k ⋅ p + r | k ∈!{ } 1≤ r ≤ p −1

P \ p, p∈P

Pp,r
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The second goal is to prove that every set has infinitely many terms. The third 

goal is to prove that all sets are evenly populated ( in a statistical sense) by 

primes from the sets . Due to the ‘pigeonhole principle’, at least for one 

value of  set  contains infinitely many primes. As we have 

already mentioned above, the first two goals were completely achieved by L. 

Dirichlet [ 5, 2 ].    

 

Denote   a number of   in the interval  . 

Given a prime number  , the corresponding (reduced) vector of residuals 

  must have all non-zero components  

  , , and obviously the complete 

vector of residuals   has also all non-zero components.  

One of quite reasonable questions is how primes are distributed among arithmetic 

sequences. Since the sequence of all natural numbers is an example of an 

arithmetic sequence, the problem of occurrence of  within an arithmetic 

sequence  can be viewed as  a generalization of the fundamental 

problem of distribution of primes in . The sequence of primes  

is a deterministic sequence, and from probabilistic point of view we may consider 

  as a possible realization of a sequence of random variables 

defined on an appropriate probability space .  Similarly, we may 

consider a sequence , where   

and , so that .   

Pp,r

Pp,r

P \ p{ }
r  (r = 1,2,…, p −1) Pp,r ≠ ∅

π p,r (x) = 1= I[3,x](q)
q∈Pp ,r
∑

Pp ,r∩[3,x]
∑ Pp,r -primes [3,x]

q

!r (q) = r1,r2 ,…,rπ q( )
⎛
⎝⎜

⎞
⎠⎟

ri = mod(q, pi ),  0 ≤ i ≤ π q( ) ri = mod(q, pi ),  0 ≤ i ≤ π q( )
!
R = r1,r2 ,…,rπ q( ) −1( )

Pp,r -primes

m = k ⋅ p + r | k ∈!{ }
! pi{ }i∈! = 2,3,5,…{ }

P = pi{ }i∈! ν i(ω ){ }i∈!
ν i(ω ) = pi P,F ,Ω( )

Pp,r = q1,q2 ,…,qn ,…{ } qk = nk ⋅ p + r,  (n1 < n2 <!< nk <!)

qk ∈P ν i(ω ) = qi ∈Pp,r
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Then, we can evaluate probability  by the relative frequency: 

                                               (5.3)         

Denote    .      Then,   ,     

where   . 

Let  be a sequence of random variables  where  

The following theorem answers the question about the asymptotic behavior of 

residual values . It turns out that asymptotically (as  

 all values of residuals  are equally likely to occur. 

  

Theorem 5.1 

Let  be a sequence of  prime number indicators  

and  a set of primes , except for  , in the arithmetic sequence 

 .  For     and  ,     

denote  the probability distribution of  on 

.  Then,  in probability, where random variable  

has a uniform distribution on .  

Proof. 

P ν i(ω ) = qi ∈Pp,r{ }

P ν  is a Pp,r -prime| ν ∈P∩ p + r,x⎡⎣ ⎤⎦{ } ≈ π p,r (x)

π p,r (x)
t=1

p−1

∑

ξ p,r (m) =
1 if  m is  Pp,r -prime

0,   otherwise

⎧
⎨
⎪

⎩⎪
π̂ p,r (x) = ξ p,r (ν )

ν≤x
∑

ξ p,r (ν ) =
1 if  ν > p,ν ∈P, mod(ν , p) = r( )
ξ p,r (ν ) = 0 otherwise

⎧
⎨
⎪

⎩⎪

νn{ }n≥2 νn = n ⋅ξ(n) ξ(n) =
1 if  n∈P
0 otherwise
⎧
⎨
⎩

mod(νn , p) = νn⎡⎣ ⎤⎦ p )n®¥

[ ] (0 1)
p

n r r p= £ £ -

ξ(n) | n = 1,2,…( ) ξ(n) =
1 if  n∈P
0 otherwise
⎧
⎨
⎩

Ppr = Cpr ∩P \ p{ } p

Cpr 1≤ r ≤ p −1)( ) ξ p,r (n) =
1 if  n is  Pp,r -prime

0,   otherwise

⎧
⎨
⎪

⎩⎪
νn = n ⋅ξ pr (n)

P
νn⎡⎣ ⎤⎦ p (r) = P νn⎡⎣ ⎤⎦ p = r{ } νn⎡⎣ ⎤⎦ p

Cp,r | r = 1,2,…, p −1{ } νn⎡⎣ ⎤⎦ p →ν0 ν0

01,2,…, p −1{ }
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Consider a characteristic function  of probability 

distribution  of   on . 

Due to the Cramer’s model approximation for probabilities of  primes, 

for all  

 We have  then  . This implies:    

where  is a characteristic function of   uniformly distributed on . 

Q.E.D. 

 

 Theorem 5.2 

 By using the Cramer’s model approximation, 

   . Then, 

        (5.4))  

Assuming that terms in the sequence  are uncorrelated, we have 

           (5.5) 

Proof 

Due to the Cramer’s model approximation for probabilities of  primes: 

                   (5.6) 

Thus, mathematical expectation and variance of  given     

can be approximated as 

.     (5.7)  

Φ
νn⎡⎣ ⎤⎦ p (r) = Ee

ir⋅ νn⎡⎣ ⎤⎦ p = eir⋅t
t=0

p−1

∑ P
νn⎡⎣ ⎤⎦ p (t)

P
νn⎡⎣ ⎤⎦ p (r) = P νn⎡⎣ ⎤⎦ p = r{ } = P ξ pr (νn ) = 1{ } νn⎡⎣ ⎤⎦ p Cp,r | r = 1,2,…, p −1{ }

P ξ p,r (νn ) = 1{ } = P Cp,r (νn )∩ νn ∈P( ){ } ≤ P νn ∈P{ } ≈ 1
lnn

(n ≥ 2) r 1≤ r ≤ p −1( )

Φ
νn⎡⎣ ⎤⎦ p (r) ≤ p

lnn
lim
n→∞
Φ νn⎡⎣ ⎤⎦(r) =

1 if r = 0
0 otherwise
⎧
⎨
⎩

= Φν0 (r)

Φν0 ν0 1,2,…, p −1{ }

P ξ p,r (ν ) = 1|ν = n ⋅ p + r ∈Pp,r ,ν < N{ } = 1
ln(n ⋅ p + r)

= λ p,r (n)

E π̂ p,r (x){ } =
n≤x
∑λ p,r (n) ∼ λ p,r (t)

2

x

∫ dt = dt
ln(t ⋅ p + r)2

x

∫ = 1
p
⋅ Li(x ⋅ p + r)− Li( p + r)⎡⎣ ⎤⎦

ξ(n) | n = 1,2,…( )

Var π̂ p,r (x){ } =
n≤x
∑λ p,r (n) ⋅ 1− λ p,r (n)( ) ∼ λ p,r (t) ⋅

3

x

∫ 1− λ p,r (t)( )dt

P ξ p,r (ν ) = 1|ν = n ⋅ p + r ∈Pp,r ,ν < N{ } = 1
ln(n ⋅ p + r)

= λ p,r (n)

ξ p,r (ν ) ν = n ⋅ p + r

E ξ p,r (ν )}|ν = n ⋅ p + r{ } = λ p,r (n), Var ξ p,r (ν )}|ν = n ⋅ p + r{ } = λ p,r (n) ⋅ 1− λ p,r (n)( )
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This implies: 

                      (5.8)   

Using (30), we can approximate the mathematical expectation and variance of 

 in the integral form by using the Eulerian integral approximation.  

We have then, .  

Notice by the way that .   

For the general case of arithmetic sequences, we can write: 

         (5.9)   

Q.E.D. 

The figure below illustrates distribution of primes  and its mathematical 

expectation  in the arithmetic sequence  for the given values of 

.  

Graphs of  (step-function) and  (solid line)  

         for   .   

             

E π̂ p,r (x){ } = E ξ p,r (ν ) |ν = n ⋅ p + r{ } = λ p,r (n)
p+r≤n≤x
∑

ν≤x
∑

Var π̂ p,r (x){ } = Var ξ p,r (ν ) |ν = n ⋅ p + r{ } = λ p,r (n)
p+r≤n≤x
∑

ν≤x
∑ ⋅ 1− λ p,r (n)( )

ξd (ν )

Eπ̂ (x) = 1
lnn2≤n≤x

∑ ∼
dt
ln t

= Li(x) ≈ π (x)
2

x

∫

π 2,1(x) = π (x)

E π̂ p,r (x){ } =
n≤x
∑λ p,r (n) ∼ λ p,r (t)

2

x

∫ dt = dt
ln(t ⋅ p + r)2

x

∫ = 1
p
⋅ Li(x ⋅ p + r)− Li( p + r)⎡⎣ ⎤⎦

Var π̂ p,r (x){ } =
n≤x
∑λ p,r (n) ⋅ 1− λ p,r (n)( ) ∼ λ p,r (t) ⋅

3

x

∫ 1− λ p,r (t)( )dt

π̂ p,r (x)

E π̂ pr (x){ } p ⋅ k + r{ }

p,r and k

π̂ pr (x) E π̂ pr (x){ }
p = 5, r = 1, k = 1,2,…,100



 73 

 

6. Additive Walks and Distribution of Twin- and - Primes   

    
Consider an additive rule to generate stochastic or deterministic sequences of 

positive integers:  

,     (6.1) 

where   for all                         

This approach leads to ‘additive models’ of random walks in the study of prime 

numbers  distribution.  Though the sequence  generated recursively 

is deterministic, each step of the ‘walk’ (6.1) can result either in a prime 

, or in  (if  is a composite number ), and the differences (‘gaps’) 

  between consecutive primes look very sporadic and hard to 

predict. It is well known that the gaps between two consecutive primes 

can be as small as 2 (for twin primes) or arbitrary big (see the table 

below).  Indeed, in the sequence of  consecutive integers  

each integer  is divisible by , and therefore this sequence does not include 

primes. This means that there are consecutive prime numbers  such that 

 , which implies  that  . The next 

definition is a generalization of the notion of twin primes. 

 

Definition 6.1 

We call prime numbers  consecutive if there is no prime   between them 

(that is no prime such that  ). A prime number  we call -prime if  

are consecutive primes and .  

d

ν(1) = 0,ν(k +1) = ν(k)+ ξ(k +1)

ξ(k) =
k if k ∈P
0 otherwise
⎧
⎨
⎩

k = 1,2,3…

( ) ( 1,2, , )k kn = !

ν(k) = pk ∈P 0 k

ξ(k) = Δ pk = pk+1 − pk

pk ≥ 3 and pk+1

n−1 n! +  k | 2 ≤ k ≤ n{ }
n! +  k k

pi  and pi+1

pi < n! +  2 and  pi+1 > n! +  n Δ pi = pi+1 − pi ≥ n

p < ′p q

q p < q < ′p p d

p, ′p ′p = p + d
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Notice that the number  for a  is called a “gap between two 

successive primes” (see the article “Prime gap” in [8]). 

For example,  is a 2-prime, if and only if  are twin primes, since for 

 twin primes are automatically consecutive. Let us denote 

,  the set of  -primes (that is prime 

numbers . 

For example, ; the set of twin primes is .   

One of famous conjectures is that the set  is infinite.  

 

Table  6.1. -primes for , among all primes  

  3   5  11  17  29  41  59  71 101 107 137 149 179 191 197 

  7   13  19  37  43  67  79  97 103 109 127 163 193 

  23  31  47  53  61  73  83 131 151 157 167 173 

 

Notice that   for all odd  and the first conjecture is that   

for all even values of . Obviously, and

, that is  makes a partition of the set of primes. 

This means that any prime number  is a  for an appropriate . Indeed, due 

to the Euclid theorem, there are infinitely many prime numbers, therefore for any 

prime   there exist the next (that is consecutive) prime and   where 

.   

The second conjectire is that every is an infinte set for all even values of .    

d = pi+1 − pi = gi d-prime pi

p p and p + 2

p ≥ 3 p and p + 2

DPd = p | p and p + d  are consecutive primes { } d

p such that p and p + d  are consecutive primes)

DP1 = 2{ } DP2 = 3,5,11,17,29,41,...{ }
DP2

d d = 2,4,6 p < 200

DP2

DP4

DP6

DPd =∅ d >1 DPd ≠ ∅

d ≥ 2 DPd ∩ DP ′d =∅ for all d ≠ ′d

DP1∪ DPd
even d=2

∞

∪
⎡

⎣
⎢

⎤

⎦
⎥ = P DPd{ }d∈2!

p d-prime d

p ′p p∈DPd

d = ′p − p

DPd d ≥ 2
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Lemma 6.1 

For a positive even integer  and a prime number ,  we have 

 if and only if  ,  where  is an odd number such that 

and .  

  Proof. 

Let  be two consecutive prime numbers.  We have 

, 

where  .  Then,  implies 

 . 

Since  , we should have  and .  

Thus, where   

Q.E.D. 

Remark  6.1 

Since for each even number  the finite number of congruence classes 

 make a partition of the infinite set of all primes ,  

 at least one of classes  must contain infinitely many prime numbers.  

Prime numbers populate the sets   not evenly for different even 

integers , as illustrated by the histogram below for  . Computer 

calculations show so far that the most frequent value of consecutive prime gaps    

is . 

According to the Prime Number Theorem [10, p.133], the counting function of  

primes on   is given by the asymptotic formula 

d p  such that  p > d

p∈DPd p∈Cd ,r  and (p + d)∈Cd ,r r

1≤ r ≤ d −1 p = k ⋅d + r,  p + d = k +1( ) ⋅d + r

pi and  pi+1

pi = ki ⋅d + ri ,  pi+1 = ki+1 ⋅d + ri+1

1≤ ri ≤ d −1, 1≤ ri+1 ≤ d −1 pi+1 = pi + d

Δ pi = ki+1 − ki( ) ⋅d + ri+1 − ri( ) = d
ri+1 − ri < d ri+1 = ri = r ki+1 − ki = 1

pi = ki ⋅d + r,  pi+1 = ki +1( ) ⋅d + r r  is an odd number and r ≥1.

d

Cd ,r ∩P |1< even r < d −1{ } P

Cd ,r

DPd ,N = DPd ∩[2,N ]

d N = 109

d = 6

!
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         (6.2) 

This leads to the heuristic assumption about the probability       

                                

According to the Cramér’s model, occurrences of primes in  are controlled by 

the sequence of independent Bernoulli variables  such that   

and 

   for all .     (6.3)              

As we know, the sequence of primes is deterministic and is recursively 

controlled by the corresponding vectors of residual 

.  

Therefore, in contrast to the Cramér’s model, the terms of a more adequate 

sequence of  random variables  cannot be independent, since  must be 

equal to  for all even . Indeed, any prime  is an odd number, and all 

primes, except for , belong to the set of odd numbers (that is to the 

congruence class of ).   Denote  a number  

of  in the interval  .  Given a prime number , the corresponding  

vector of residuals   must have all non-zero components 

  and obviously the complete vector of residuals 

 has also all non-zero components.  

π (x) = 1
p∈P∩[2,x]
∑ ∼ Li(x) = dt

ln t2

x

∫

P p∈[x −1,x]{ } ∼ dt
ln tx−1

x

∫ ∼
1
ln x
.

!

ξn{ }n≥3 ξn =
n if n∈P
0 otherwise
⎧
⎨
⎩

P ξn = 1{ } = 1
lnn

,   P ξn = 0{ } = 1− 1
lnn

n∈!∩ n ≥ 3{ }

pn{ }n∈!

!r (n) = r1,r2 ,…,r
π n( )

⎛
⎝⎜

⎞
⎠⎟ ,   where  ri = mod(n, pi ), i = 1,2,…,π n( )

ξn{ }n≥3 ξn

0 n p > 2

p1 = 2

C2,1 ! π d (x) = 1= I[2,x]( p)
p∈DPd
∑

DPd∩[2,x]
∑

d-primes [2,x] p

!r ( p) = r1,r2 ,…,rπ p( )
⎛
⎝⎜

⎞
⎠⎟

ri = mod( p, pi ),  0 ≤ i ≤ π p( )
!
R = r1,r2 ,…,rπ p( ) −1( )
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One of quite reasonable questions is how frequently -primes may occur among 

all prime numbers? We can evaluate the empirical probability of -primes by the 

relative frequency: 

                                     (6.4) 

Denote    .      Then  , 

 where  are consecutive prime numbers. Thus,  

                           .                     (6.5) 

Assuming the Cramer’s assumption of independence of consecutive primes,  

we have: 

      

Then,   .  Following the Cramér’s model 

assumption:  , we obtain 

                          (6.6) 

Denoting  , we write the function  in (6.6)  as 

                       (6.7) 

Thus, mathematical expectation and variance of given   can be 

approximated as 

d

d

P ν  is a d-prime| ν ∈P∩ 2,x⎡⎣ ⎤⎦{ } ≈ π d (x)
π (x)

ξd (n) =
1 if  n is  d-prime
0,   otherwise
⎧
⎨
⎩

π d (x) = ξd (n)
n≤x
∑

ξd (ν ) = 1  if  ν = pi  and ν + d = pi+1

π d (ν + d) = π d (ν )+ ξd (ν )  (i = 1,2,…)

P ξd (ν ) = 1{ } = P ν  and ν + d  are consecutive primes{ }
= P ν  and ν + d  are prime numbers with no primes in the open interval v,v + d( ){ }
= P ν ∈P{ } ⋅P

i=1

d−1

∩ (ν + i)∉P{ }⎧
⎨
⎩

⎫
⎬
⎭
⋅P (ν + d)∈P{ }

P (ν + i)∉P{ }
i=1

d−1

∩
⎧
⎨
⎩

⎫
⎬
⎭
= 1− P (ν + i)∈P{ }( )

i=1

d−1

∏

P ν ∈P | v = n{ } = 1
lnn

P ξd (ν ) = 1| v = n{ } = 1
lnn( ) ⋅ ln(n+ d)( ) ⋅ 1− 1

ln(n+ i)
⎛
⎝⎜

⎞
⎠⎟i=1

d−1

∏ = Ψ(n,d)

φ(n,d) = 1− 1
ln(d + i)

⎛
⎝⎜

⎞
⎠⎟i=1

d−1

∏ Ψ(n,d)

Ψ(n,d) = φ(n,d)
ln(n) ⋅ ln(n+ d)

ξd (ν ) ν = n
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 .   This implies: 

                                 (6.8) 

Using (6.6 and 6.7), we can approximate the mathematical expectation and 

variance of  in the integral form: 

                                              (6.9) 

The comparison of  is given in 

the tables below computed for  and  changing in steps: 

 . 

               

E ξd (ν )}|ν = n{ } = Ψ(n,d), Var ξd (ν )}|ν = n{ } = Ψ(n,d) ⋅ 1−Ψ(n,d)( )
E π d (x){ } = E ξd (ν )}|ν = n{ } = Ψ(n,d)

n≤x
∑

n≤x
∑

Var π d (x){ } = Var ξd (ν )}|ν = n{ } = Ψ(n,d)
n≤x
∑

n≤x
∑ ⋅ 1−Ψ(n,d)( )

ξd (ν )

E π d (x){ } =
n≤x
∑Ψ(n,d) ∼ φ(t,d)

ln(t) ⋅ ln(t + d)2

x

∫ dt

Var π d (x){ } ∼ φ(t,d)
ln(t) ⋅ ln(t + d)

⋅ 1− φ(t,d)
ln(t) ⋅ ln(t + d)

⎛
⎝⎜

⎞
⎠⎟2

x

∫ dt

π d (x) distribution with its mathematical expectation Eπ d (x) 

d = 2,4,6,8,10,12 x

101,102,…,  108

                            Number π d (x) of d-primes for p ≤ x

      d:       2           4            6          8         10         12         14         16
x :

102            8           7            7          1           0           0           0           0

103         35         40          44        15         16           7           7           0

104        205       202        299      101       119       105         54         33

105      1224     1215      1940      773       916       964       484       339

106      8169     8143    13549    5569     7079     8005     4233     2881

107    58980   58621    99987  42352   54431   65513   35394   25099

108  440312 440257 768752 334180 430016 538382 293201 215804
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The quality of prediction of  is given by the measure of 

relative error  as illustrated by the table below. 

               

        Expectation  Eπ d (x) of  numbers of d-primes for p ≤ x
x :
     d :    2             4          6             8           10        12         14         16

102              5          5           5           1          0           0            0           0

103           27        32         36         13         13          6            6           0

104         177       175       261         88       104        92          47         29

105       1100     1093     1748       697       827       871       437       307

106       7510     7487   12464     5124     6515     7371     3898     2653

107     55001   54667   93255   39505   50776   61125   33026   23422

108   414685 414638 724062 314770 405047 507165 276210 203311

π d (x) by its expectation Eπ d (x)

Rd (x) =
π d (x)− Eπ d (x)

Eπ d (x)

             Relative errors εd (x) =
π d (x)− Eπ d (x)

Eπ d (x)

    d :    2       4       6        8        10      12       14      16
x :     

102  0.628 0.445 0.344 0.284   NaN   NaN   NaN   NaN

103 0.284 0.238 0.219 0.191 0.196 0.198 0.196   NaN

104  0.160 0.155 0.147 0.144 0.144 0.138 0.141 0.134

105  0.112 0.112 0.110 0.108 0.108 0.107 0.107 0.106

106  0.088 0.088 0.087 0.087 0.086 0.086 0.086 0.086

107  0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072

108  0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.061
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Theorem 6.1 

For each even value of   there are infinitely many consecutive prime numbers 

with a gap equal to  (so that every  is an infinte set for all even values of 

) . 

Proof. 

This statement could be proved by using the equivalence:    

 

Indeed, if we assume that there exists  such that  for all  , 

then  becomes constant for sufficiently large values of  . But this 

contradicts the above equivalence since function  is strictly 

increasing for all  because its derivative for all even 

 and . 

Q.E.D. 

 

 

 

 

 

 

 

 

 

 

 

d ≥ 2

d DPd

d ≥ 2

E π d (x){ } =
n≤x
∑Ψ(n,d) ∼ φ(t,d)

ln(t) ⋅ ln(t + d)2

x

∫ dt   as x→∞.

xmax π d (x) = π d (xmax ) x ≥ xmax

π d (x) x

F(x) = φ(t,d)
ln(t) ⋅ ln(t + d)2

x

∫ dt

x > 2 ′F (x) = φ(x,d)
ln(x) ⋅ ln(x + d)

> 0

d ≥ 2 x > 2
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7. An additive model for the Goldbach Strong Conjecture 

 

According to the conjecture stated by Goldbach in his letter to Euler in 1742, 

“every even number  is the sum of two odd primes” [1]. Regardless 

numerous attempts to prove the statement, supported in our days by computer 

calculations up to  , it remains unproven till now.  In this notice we try to 

‘solve’ the puzzle in the framework of Probability Theory, by using the H. 

Cramér’s assumption of independence of primes occurrence in the sequence of 

natural numbers . 

We consider the so-called Goldbach function  that denotes the number of 

presentations of an even integer in the form: where are prime 

numbers (called G-primes).  

A choice of a  for every  is considered as a realization of  

for a random variable  with Zeta probability distribution.   

We have then,  where .  The calculations for the available 

range of  values show that the number of representations  of an even 

integer in the form where are primes, increases when  increases 

and becomes larger for the larger values of . 

 

Definition 7.1 

A prime number , ,  we call a - prime if there exist an even number 

 and a prime number such that .  

The set of all -primes for a given  we denote . 

 

2m ≥ 6

4×1018

!

G(2m)

2m = p + ′p p, ′p  

G-prime p m ≥ 3 G(2m,ν )

ν

2m = ν + ′v ν ∈P,  ′ν ∈P

ν G(2m)

2m = p + ′p p, ′p  m

m

p∈P p ≤ m Gm

2m ≥ 6 ′p ∈P 2m = p + ′p

Gm m GmP
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The Goldbach Conjecture (GC) asserts that all sets are not empty: 

, and it can be stated as  >1 for all  , where 

 denotes a number of elements in a finite set .   

For all  we focuse on the number  of Goldbach -primes, or  

-primes, which are primes  such that a difference  is again a prime 

number.  This means that.  .  

If there exists  such that , then .  In the context of the 

Goldbach conjecture we are interested in evaluation of probability distribution for 

the numbers of primes in the representations  for an even number  in the 

form  

 .             (7.1) 

To incorporate a probabilistic approach in this context we consider a choice of a 

- prime for every  as realization  of one of  random variables , 

 , with a certain probability distributions  , where is a set of all  

probability measures on .  

We have then for each    where .  

There appear some questions related to the ‘modelling’ of primes by sequence           

of random variables  . 

1. How well a chosen probability distribution of terms in a sequence  

represents the natural sequence of  the set of prime numbers  . 

2. What kind on conditions (restrictions) we need to impose on  for 

an adequate ‘modelling’ of the sequence  of primes. 

3. As we have demonstrated above in Chapter 3 (Lemma 3.2), the sequence 

in the Cramér’s model is asymptotically pairwise Bernoullian, so that 

GmP

GmP ≠ ∅ for all m ≥ 3 G(2m) =|GmP | m ≥ 3

| A | A

m ≥ 3 G(2m) m

Gm p 2m− p

GmP = pk |1≤ k ≤G(2m), pk ∈P,2m− pk ∈P{ }
m ≥ 3 GmP =∅ G(2m) = 0

G(2m) 2m

2m = p + ′p ,  where  p, ′p ∈P

Gm m ≥ 3 ν k = p∈P ν k

3≤ k ≤ m Pm ∈P P

σ -additive !

k , 3≤ k ≤ m, 2m = ν k + ′vk ν k ∈P,  ′vk ∈P

ν k( )k∈!
ν k( )k∈!

pk( )k∈! P

ν k( )k∈!
pk( )k∈!

ξk( )k∈!
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       as  for all .       

4. Would the proved conclusion regarding the sequence of random variables 

be valid for . 

Denote vector  and consider  as a realization of .   

Defining  

        with  ,        (7.2) 

we have 

                          (7.3)  

Assuming  to be a sequence of independent random variables on probability 

space  with , we have independence of terms in 

the sequence , and therefore 

     (7.4)  

Validity of the choice  of probabilities in the Cramer’s model is supported by 

formula (2.2) in Theorem 2.3,  and by Merten’s 1st and 2nd theorems [2, p.15].   

Indeed, by using (2.2) and the Merten’s 1-st theorem (30), we have: 

  (7.5) 

where   .   
 
Setting  , we have . 

If we denote 

  , where ,  then, due to (7.4),           

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = O 1
lnN

⎛
⎝⎜

⎞
⎠⎟

Dn = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

n > N

ν k( )k∈! P

ν m( ) = ν k | 3≤ k ≤ m( ) G(2m) G(2m,ν m( ))

γ m(n) =
1  if  n∈GmP
0,  otherwise

⎧
⎨
⎩⎪

P γ m(ν k ) = 1|ν k = n{ } = Pm ν k ∈GmP |ν k = n{ }

G(2m,ν m ) = γ m(n)
3≤n≤m
∑ = γ m(ν k )

k=3

m

∑

ν k( )k∈!
Ω,F ,P( ) P ξ(n) = 1{ } = P ν k = n∈P{ }

ξ(n) | n∈N( )
P γ m(νm ) = 1|νm = n{ } = P νm ∈P( ) ∩ (2m -νm )∈P( ) |νm = n{ }
= P ξ(n) = 1{ } ⋅P ξ(2m− n) = 1{ }

P ξ(n) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ ≈ e−γ

1
2
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

c
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1.12292 18968c
eg

= » 1
lnn n

l = { }( ) 1 ( ) nP n E n ch h l= = » ×

P γ m(ν ) = 1|ν = n{ } = β(m,n) 3≤ν ≤ 2m− 3
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                                    . 

Since  ,  we have for a mathematical expectation and a 

variance: 

   (7.6)             

                    

 

The main results of this section are stated in the following theorems. 

The most critical question for the Goldbach strong Conjecture is whether the 

probability that for ‘sufficiently large’ values of   all sets  are not 

empty, or equivalently,  is this true that  

   . 

Let  be a set of all -primes, that is prime numbers  such that 

.  Let each random variable  in the sequence of independent random  

variables  follow Zeta probability distribution:  and

.  Then    is a sequence of independent 

Bernoulli variables and the Goldbach function  has the 

following properties: 

β(m,n) = 1
ln(n)

⋅ 1
ln(2m− n)

G(2m,νm ) = γ m(νm )
νm=3

m−3

∑

E G(2m,νm ){ } =
n=3

m−3

∑E γ m(νm,n ){ } =
n=3

2⋅m−3

∑β(m,n) ∼
3

2m−3

∫ β(m,t)dt

Var G(2m,νm ){ } = Var γ m(νm ){ }
n=3

m−3

∑

= β(m,n) ⋅(1− β(m,n)⎡⎣ ⎤⎦
n=3

2⋅m−3

∑ ∼ β(m,t) ⋅ 1− β(m,t)( )dt
3

2m−3

∫

m > M ≥ 3 GmP

P G(2m,νm ) =|GmP |  > 0{ }
m=M

∞

∩
⎧
⎨
⎩

⎫
⎬
⎭
→1 as M→∞

GmP for  m ≥ 3 G p, ′p ∈P

p + ′p = 2m νm

νm{ }3≤m P νm = n{ } = n−s

ζ (s)
  (s >1)

γ m(νm ) =
1 if νm = n∈GmP
0 otherwise

⎧
⎨
⎩⎪

γ m(νm ){ }m≥3

G(2m,νm ) = γ m(νm )
n=3

2m−3

∑
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(1)   

(2)   

(3)     

 

Due to Lemma 3.2, the sequence in the Cramér’s model is asymptotically 

pairwise Bernoullian, so that 

       as  for all .       

In the formula  we have all random variables 

,  not necessarily independent but asymptotically linearly 

uncorrelated.   Then,  . 

Examples of sets for  with the corresponding values of   

are represented in the following table.  

 

 

 

 

 

 

 

 

 

P G(2m,νm ) = 0{ } = P γ m(νm ) = 0 |νm = n{ }
n=3

2m−3

∩
⎧
⎨
⎩

⎫
⎬
⎭
→ 0 as  m→∞.

P G(2m,νm ) = 0{ } < e
− 2m−6
ln2 (2m)

m=3

∞

∑
m=3

∞

∑ ≈ 6.00236

lim
M→∞

P G(2m,νm ) =|GmP |  > 0{ }
m=M

∞

∩
⎧
⎨
⎩

⎫
⎬
⎭
→1 

ξk( )k∈!

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = O 1
lnN

⎛
⎝⎜

⎞
⎠⎟

Dn = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

n > N

G(2m,ν ) = γ m(n)
n=3

2m−3

∑ > 0

γ m(n) , N ≤ n ≤ 2m - 3

lim
m→∞

P GmP ≥1{ } = 1
GmP 2m = 10, 102, 103 G(2m)
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Table 7.1 

                                  

In the context of the Goldbach conjecture we are interested in evaluation of the 

number of  representations  for an even number  in the form 

 . To incorporate a probabilistic approach in this context, 

let us consider a choice of a  for every  as a realization of a random 

variable  with a certain probability distribution.  We have then, 

where .  Denote such a number  as a realization of .  

Since  ,  we have for a mathematical expectation and  

a variance: 

            (7.7)             

 

G - primes in sets GmP and  Goldbach function values
2m                              GmP    sets                               G(2m)
10          3  5  7                                                                  3
100        3  11  17  29  41  47  53  59  71  83  89  97      12
1000      3   17   23   29   47   53   59   71  89  113  
           137  173  179  191  227  239  257  281 317  
           347 353  359  383  401  431  443  479  491  
           509  521  557  569  599  617  641  647  653   
           683  719  743  761  773  809  821  827  863  
           887  911  929  941  947  953  971  977  983  
           997                                                                       56

G(2m) 2m

2m = p + ′p ,  where  p, ′p ∈P

G-prime p m ≥ 3

ν = νm 2m = νm + ′vm

νm ∈P,  ′νm ∈P G(2m) G(2m,νm )

G(2m,νm ) = γ m(νm )
νm=3

m−3

∑

E G(2m,νm ){ } =
n=3

m−3

∑E γ m(νm ){ } =
n=3

2⋅m−3

∑β(m,n) ∼
3

2m−3

∫ β(m,t)dt

Var G(2m,νm ){ } = Var γ m(νm ){ }
n=3

m−3

∑

= β(m,n) ⋅(1− β(m,n)⎡⎣ ⎤⎦
n=3

2⋅m−3

∑ ∼ β(m,t) ⋅ 1− β(m,t)( )dt
3

2m−3

∫
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                     Figure 3 

    
     Figure 4 

The Goldbach Conjecture can be stated in the form  for all 

. Assumption that  for some arbitrary large value of  

contradicts to the increasing behavior of when  increases. Moreover, 

we prove the following proposition.  

 

Theorem 7.1 

Let  be a set of all -primes, that is prime numbers  such that 

.  Let each random variable  in the sequence of independent random  

G(2m,νm ) = γ m(vm )
vm=3

2m−3

∑ > 0

m ≥ 3 G(2m,νm ) = 0 m

G(2m,νm ) m

GmP for  m ≥ 3 G p, ′p ∈P

p + ′p = 2m νm
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variables  follow Zeta probability distribution:  and

.  Then    is a sequence of independent 

Bernoulli variables and the Goldbach function  has the 

following properties: 

(1)   

(2)   

(3)        

 Proof. 

Independence of the Bernoulli variables in the set   

follows from the assumed independence of  in the sequence   and  

Theorem 4.1 regarding with  Zeta distribution.  Then, due to independence of   

 , we have     

                  ,  

where  .  This implies: 

  . 

 

We are interested in proving that .  

νm{ }3≤m P νm = n{ } = n−s

ζ (s)
  (s >1)

γ m(νm ) =
1 if νm = n∈GmP
0 otherwise

⎧
⎨
⎩⎪

γ m(νm ){ }m≥3

G(2m,νm ) = γ m(νm )
n=3

2m−3

∑

P G(2m,νm ) = 0{ } = P γ m(νm ) = 0 |νm = n{ }
n=3

2m−3

∩
⎧
⎨
⎩

⎫
⎬
⎭
→ 0 as  m→∞.

P G(2m,νm ) = 0{ } < e
− 2m−6
ln2 (2m)

m=3

∞

∑
m=3

∞

∑ ≈ 6.00236

lim
M→∞

P G(2m,νm ) =|GmP |  > 0{ }
m=M

∞

∩
⎧
⎨
⎩

⎫
⎬
⎭
→1 

γ m(νm ) |νm = n,3≤ n ≤ 2m− 3{ }
νm νm{ }3≤m

νm

γ m(νm ) | 3≤ n ≤ 2m− 3{ }

P γ m(νm ) = 0 | vm = n{ }
n=3

2m−3

∩
⎧
⎨
⎩

⎫
⎬
⎭
= P γ m(νm ) = 0 | vm = n{ } = 1− β(m,n)⎡⎣ ⎤⎦

n=3

2m−3

∏
n=3

2m−3

∏

β(m,n) > 1
ln2(2m)

P G(2m,νm ) = 0{ } < 1− 1
ln2(2m)

⎡

⎣
⎢

⎤

⎦
⎥

n=3

2m−3

∏  = 1− 1
ln2(2m)

⎡

⎣
⎢

⎤

⎦
⎥

2m−6

∼ e
− 2m−6

ln2 (2m) → 0  as  m→∞

P G(2m,νm ) > 0{ }→1 as m→∞
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A more critical question for the Goldbach Conjecture can be stated as follows: 

what is the probability that for ‘sufficiently large’ values of   all sets  

are not empty, that is  

   . 

Consider the probability of the opposite event:  .   

We have: . 

Then,  

due to convergence of the series . 

Q.E.D. 

There is another way to evaluate the probability  .  

Theorem 7.2 

If in the formula  we assume (less restrictively) that all 

random variables , are not necessarily independent, but at  

least linearly uncorrelated. Then,  . 

Proof. 

By applying the Central Limit Theorem, we have, due to formulas (1. 15),  

for sufficiently large values of : 

 

m > M ≥ 3 GmP

P G(2m,νm ) =|GmP |  > 0{ }
m=M

∞

∩
⎧
⎨
⎩

⎫
⎬
⎭
→1 as M→∞

P G(2m,νm ){ } = 0
m=M

∞

∪
⎧
⎨
⎩

⎫
⎬
⎭

P G(2m,νm ) = 0{ }
m=3

∞

∪
⎧
⎨
⎩

⎫
⎬
⎭
≤ P G(2m,νm ) = 0{ } < e

− 2m−6
ln2 (2m)

m=3

∞

∑
m=3

∞

∑ ≈ 6.00236

P G(2m,νm ){ } = 0
m=M

∞

∪
⎧
⎨
⎩

⎫
⎬
⎭
≤ P G(2m,νm ) = 0{ }
m=M

∞

∑ → 0  as M→∞

m=3

∞

∑P G(2m,νm ) = 0{ }

P GmP <1⎢⎣ ⎥⎦

G(2m,ν ) = γ m(n)
n=3

2m−3

∑ > 0

γ m(n) , 3≤ n ≤ 2m - 3

lim
m→∞

P GmP ≥1{ } = 1

m

P GmP <1{ } = P X < xcr (m){ } ≈ 1
2π

e
−1

2
t2

dt
−∞

xcr (m)

∫ ,   where  xcr (m) =
1− E GmP{ }
Var GmP{ }

.



 92 

Obviously,  ,  since , which 

means that . 

Q.E.D. 

The values of    and  for  are given in the 

following table. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim
m→∞

P GmP <1{ } = 0 xcr (m) =
1− E GmP{ }
Var GmP{ }

→−∞ as  m→∞

lim
m→∞

P GmP ≥1{ } = 1

P GmP <1{ } xcr (m) m = 103,104,…,108

       
  -6.866973 -16.130926 -40.343498 -105.469447 -284.348502 -783.836910 

   

      

   

m 103 104 105 106 107 108

x
cr
(m)

P G(2m) <1{ } 3.278916 ×10−12 7.734173× 10−59 0.0000000 0.0000000 0.0000000 0.0000000



 93 

 

 

8.  Diffusion Approximations for Counting Number of Primes 

 

In this chapter we consider the sequence as a realization of a random 

walks generated by the recurrent equation 

  where ,                    (8.1) 

Here  are assumed to be random variables with Zeta probability distribution. 

Recall that to define a stochastic process  with a discrete or a continuous set 

of values we need to have a measurable space , where often 

,  a Borel  -algebra  of subsets on , and a set  of 

parameters  such that for each ,     is a random variable on a 

probability space . Then, the family  of random variables is called 

a stochastic process in the phase space . The parameter  is usually 

interpreted as ‘discrete time’ for a countable set  or as ‘continuous 

time’ for the continuous interval .  

Then, a  is called a stochastic process with a discrete or a continuous time, 

respectively. For any given elementary event , a function  such 

that  is called a path (or a trajectory) of the random process. 

Alternatively, a stochastic process can be  defined as a collection of paths (random 

elements) in a function space  where  that identifies 

each path  is an elementary event in probability space .  Elements (or 

points)  are called ‘states’ of the process, and  itself is called a process 

with a discrete or continuous phase space  . 

π (n){ }n∈!
π (n,ω ){ }n∈W

π (nk+1)−π (nk ) =η(nk+1) η(nk ) = h min(
!r (nk )( ) nk = ν k (ω )

vk{ }k∈!
ξ(t,ω )

X (X ,B)

X ⊆ !  or  X ⊆ "d σ B X T

t ∈T t ∈T ξ(t,⋅) :Ω→X

Ω,F ,P( ) ξ(t,⋅){ }t∈T
(X ,B) t ∈T

T ⊆W = !∪ 0{ }
T = t0 ,t f⎡⎣ )⊆ !+ = 0,∞⎡⎣ )

ξ(t,ω )

ω ∈Ω x(⋅) :T→X

x(t) = ξ(t,ω )

x(⋅) = ξ(⋅,ω ) X T = x(t) | t ∈T{ } ω

Ω,F ,P( )
x ∈X ξ(t,ω )

(X ,B)



 94 

Following the historical traditions of the classical Probability Theory (and the 

development of Calculus, in general), we try to apply limit theorem approach to 

analyze behavior of infinite discrete random sequences in terms of continuous-time 

stochastic processes.   

Let  be a vector of consecutive prime numbers such that  

,  .  Index  determines here the value of function 

 that is the number of primes less than or equal to  so that 

. For each coordinate  of vector   we determine the 

residual value    and consider the corresponding 

vector of residuals .  Notice that, due to the Sieve Algorithm, for an 

integer  to be prime it is necessary and sufficient that the all coordinates  

   of the ‘reduced’ vector of residuals   be 

different from zero  (Lemma 1.2). Meanwhile, if a random integer follows Zeta 

distribution,  then, due to Lemma 2.1, the events that  does not divide each of 

consecutive primes   are independent and can be expressed as a 

condition:    

 .                     (8.2) 

By using the Heaviside function    , we can write the recurrent 

equation  for  in the form:   

      

or, equivalently,         

         (8.3) 

( )1 2( ) , , , kp n p p p=
!

"

p1 = 2 1and  k kp n p n+£ > k

( )n kp = n

( )1 2 ( )( ) , , , np n p p pp=
!

" ip ( )p n!

mod( , ), 1,2, , ( ),i ir n p i np= = !

(r1,r2 ,…,rπ (n) )

2n >

ir 1≤ i ≤ π (n)( ) !r (n) = r1,r2 ,…r π (n)( )
n

nn =

1 2 ( ), , , np p p
p

!

( ){ }
1 ( )

min |1 0 or, equivalently, 0i i
i n

r i n r
p

p
£ £

£ £ > >Õ

h(x) =
1  if x > 0
0 if x ≤ 0
⎧
⎨
⎩

( )np

π (n+1) = π (n)+ h min
p≤ n

mod(n, p) | p∈P{ }⎛
⎝

⎞
⎠

π (n+1) = π (n)+ h min
i≤ n+1

ri | ri = mod(n, pi ){ }( ) = π (n)+ h min(!r (n)( )
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which controls the occurrence of prime numbers in the sequence of all integers 

: if and only if  is a prime number and  

otherwise.  

Consider a stochastic process approximation of non-Markov random walks 

 such that , with  restricted to the 

interval of discrete ‘times’ :   

                          .    (8.4) 

Denote    a partition of an interval  into  

subintervals,  such that  . 

We can map the closed interval of real numbers  to the interval  

with an increasing continuously differentiable function  such that 

. 

In the context of our study, a suitable choice of function  takes the form:  

           (8.5) 

where  stands for the Eulerian logarithmic integral .   

Then,  and for  (the inverse of ) we have  .  

Denote  .  Assume that  and for each choice of   a positive 

integer  can be taken such that  .  Here a sequence of random 

variables    is interpreted as a path of a walking point  that 

n ≥ 3 h min(!r (n)( ) = 1 n h min(!r (n)( ) = 0

π (n,ω ){ }n∈W π (n,ω ) = π n( )  π :! ×Ω→ !∪ 0{ }
Nmin = n0 < n1 <!< nK = Nmax

π Δ (tk ) = π (nk ,ω ) | Nmin ≤ nk ≤ Nmax{ }
Δ = 0 = t0 < t1 <…< tK = 1( ) 0,1⎡⎣ ⎤⎦ K

K
ln Nmax( )→ 0 as Nmax →∞

Nmin ,Nmax⎡⎣ ⎤⎦ ⊂ !

0,1⎡⎣ ⎤⎦ ⊂ ! τ (x)

τ (Nmin ) = 0, τ (Nmax ) = 1

τ

τ (x) =

dt
ln tNmin

x

∫
dt
ln tNmin

Nmax

∫
=

Li(x)− Li(Nmin )
Li(Nmax )− Li(Nmin )

Li(x) Li(x) =
2

x

∫
dt
ln t

tk = τ (nk ) τ −1 τ nk = τ
−1(tk ) (k = 1,2,…,K )

Δtk = tk − tk−1 Nmin →∞ Nmin

K Δ = max
1≤k≤K

Δtk → 0

π Δ (tk ) = π (nk ) ( )ktp D
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belongs to a measurable space  at each ‘instant of registration’ .  

Probability distribution on the probability space   generated by the path 

space  of   random walks  is determined by 

transition probabilities    where ,

 ,   ,   .  Existence and 

uniqueness of the probability path space  follows from the theorem of 

Ionescu Tulcea [30].   

Notice that  and therefore, we set . 

To prove the weak convergence of transition probabilities for the sequence of 

random walks (3.1.4) to the diffusion process on the time interval , 

consider so called infinitesimal characteristics of the random walks:     

,       

       

 .   

Here    

, ,

,  , 

. 

Xk ,Bk( ) tk

Ω,F ,P( )

X ∞ ,F ∞( ) = Xk ,⊗k∈!Bkk∈!
∏⎛⎝⎜

⎞
⎠⎟

π (k,ω ){ }k∈W

P π Δ (tk+1)∈E |π
Δ (
!
t0
k ) = !x0

k{ } !
t0
k = t0 ,t1,…,tk( )

!
x0
k = x0 ,x1,…,xk( )∈X0k = Xi

i=0

k

∏ xi ∈Xi (i = 0,1,…) E ∈Bk+1

Ω,F ,P( )

π :!→W = !∪ 0{ } Xk =W for all  k ∈!∗

π̂ (t) [0,1]

mΔ (tk ,
!x1
k ) = 1

Δtk
E Δπ (tk+1) |π

Δ (
!
t1
k ) = !x1

k{ }

σ Δ (tk ,
!x1
k )⎡⎣ ⎤⎦

2
= 1
2 ⋅ Δtk

E Δπ (tk+1)⎡⎣ ⎤⎦
2
|π Δ (
!
t1
k ) = !x1

k{ }
gΔ tk ,

!x1
k ;Γ k+1( ) = 1

Δtk
E IΓk+1 (Δπ

Δ (tk+1) |π
Δ (
!
t1
k ) = !x1

k{ }
Δπ (tk+1) = π

Δ (tk+1)−π
Δ (tk ) =η

Δ (tk+1) = π (nk+1)−π (nk ) =η(nk+1)

Δπ (tk+1) = π
Δ (tk+1)−π

Δ (tk ) = π (nk+1)−π (nk ) =η
Δ (tk+1) =η(nk+1)

!
t1
k = t1,t2 ,…,tk( )

π Δ (
!
t1
k ) = π Δ (t1),π

Δ (t2 ),…,π
Δ (tk )( ) = x1,x2 ,…,xk( ) = !x1k IΓ (x) =

1 if  x ∈Γ
0 otherwise
⎧
⎨
⎩

Γ k+1 ⊂Xk+1 \ xk{ } ∈Bk+1
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By setting ,  we have:

 

 

, where  

              (8.6) 

 We have then,   

             (8.7) 

Similar, since , we have  

         (8.8)  

By applying the first Merten’s theorem to (6.5) and (6.6), we have 

          (8.9) 

 

LEMMA 9.1 

For any interval   with integer  such that  , we have 

               (8.10)) 

 

 

 

nk = n0 + k  for all k = 0,1,…,K

Δπ Δ (tk+1) = π (nk+1)−π (nk ) =η(nk +1) =η
Δ (tk+1)

Δπ Δ (tk+1) = π (nk+1)−π (nk ) = π (nk +1)−π (nk ) =η(nk+1) =η
Δ (tk+1)

Δπ Δ (tk+1) = π (nk+1)−π (nk ) = π (nk +1)−π (nk ) =η(nk +1) =η
Δ (tk+1)

  P ηΔ (tk+1) = 1{ } = rnk+1
=
p≤ nk+1

∏ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟

,  

  P ηΔ (tk+1) = 0{ } = 1− rnk+1

mΔ (tk ,
!xk ) ==

1
Δtk

⋅E η(nk+1){ } = 1
Δtk

⋅
p≤ nk+1

∏ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟

η(nk+1) = η(nk+1)⎡⎣ ⎤⎦
2

σ Δ (tk ,
!xk )⎡⎣ ⎤⎦

2
= 1
Δtk

⋅E η(nk+1)⎡⎣ ⎤⎦
2{ } = 1

Δtk
⋅
p≤ nk+1

∏ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟

mΔ (tk ,xnk ) =
1
Δtk

⋅ c
ln(nk +1)

⋅ 1+O 1
ln(nk +1)

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

σ Δ (tk ,xnk )
⎡
⎣

⎤
⎦
2
= 1
Δtk

⋅ c
ln(nk +1)

⋅ 1+O 1
ln(nk +1)

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

[a,b] a and b 0 < a < b

1
lnn

− dt
ln ta

b

∫
a<n≤b
∑ ≤ dt

t ⋅(ln t)2a

b

∫ ≤ b− a
a ⋅(lna)2
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Proof. 

Due to the Euler’s summation formula [12, p.54], for positive integer numbers 

 and a function  with a continuous derivative  , we have 

,where   denotes an integer part of  .   

    

Q.E.D. 

Consider the Eulerian logarithmic integral  to evaluate .  

 LEMMA 9.2. 

  

Proof. 

We have  

By using approximation [12]:   ,    

we have:   .  

This implies   . 

Q.E.D. 

 

Consider now a diffusion process  given by the sum of stochastic integrals: 

                 (8.11) 

a and b f ′f   on [a,b]

f (n) = f (t)dt +
a

b

∫
a<n≤b
∑ t − [t]( ) ′f (t)dt

a

b

∫ [t] t

a<n≤b
∑ 1
lnn

−
a

b

∫
dt
ln t

= t − [t]( ) ′f (t)dt
a

b

∫ ≤ ′f (t)
a

b

∫ dt ≤ b− a
a ⋅(lna)2

Li(x) =
2

x

∫
dt
ln t i=nk+1

nk+1

∑ rki

∑
i=nk+1

nk+1
rki =

dt
ln tnk

nk+1

∫ = Li(nk+1)− Li(nk )+O
nk+1

ln2(nk+1)
⎛

⎝⎜
⎞

⎠⎟
=
nk+1
lnnk+1

−
nk
lnnk

+O
nk+1
ln2 nk+1

⎛

⎝⎜
⎞

⎠⎟

li(x) = dt
ln t0

x

∫ = x
ln x

+O 1
ln2 x

⎛
⎝⎜

⎞
⎠⎟

Li(x) = li(x)− li(2),  where li(x) = dt
ln t0

x

∫ = x
ln x

+O x
ln2 x

⎛
⎝⎜

⎞
⎠⎟

Li(nk+1)− Li(nk ) =
nk+1
lnnk+1

−
nk
lnnk

+O
nk+1
ln2 nk+1

⎛

⎝⎜
⎞

⎠⎟

π̂ (t)

π̂ (t) = m(s)ds+
0

t

∫ σ (s)dw(s)
0

t

∫
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where   . 

with the transition probability .   

Here  is a process of Brownian motion on .  

The semigroup of linear operators  is defined on the space of bounded 

measurable functions by .  

We have the infinitesimal generator of the semigroup  given by the formula:     

 .  

On the set of twice continuously differentiable functions  the generator  

takes a form of a differential operator . 

The function  satisfies the 

equation 

          (8.12) 

with the initial condition . Taking as an initial condition -function,  

we have  ,  called a fundamental solution to (6.9).  

This means that the transition probability has a density , so that   

       .                                                                                                                                                                        

By applying the generalized limit theorem [31, 32] about convergence of random 

walks  as  to diffusion processes (6.9), we obtain an 

approximation of   in terms of diffusion processes, defined for 

expanding intervals  of approximation on . 

m(t) = c
ln τ −1(t)( ) ,σ (t) =

1
2
⋅m(t) ⋅ 1−m(t( ), c = 2

eγ
, 0 ≤ t ≤1; τ −1(t) = x

u(t,x,A) = P π̂ (t)∈A | π̂ (t0 ) = 0{ }
( )w t 0 ≤ t ≤1

tU

( )( ) ( ) ( , , )tU f x f y u t x dy= ò

tU

( ) ( )
0

( ) ( )
( ) lim t t

t

U f x f x
Lf x

t
+D

D ®

-
=

D

C 2(!) L

( )
2

2
2

1( ) ( ) ( )
2

f fLf x m x x
x x

s¶ ¶
= +

¶ ¶

( ) [ ]0( , ) ( ) ( ) | ( ) ( ) ( , , )tV t x U f x E Y t Y t x f y u t x dy= = = = ò

2
2

2

1 ( ) ( )
2

V V Vx m x
t x x

s¶ ¶ ¶
= +

¶ ¶ ¶

0( , ) ( )V t x f x= d

( , ) ( , , )V t x u t x y=

( , , )u t x y

P Y (t)∈A |Y0(t) = x{ } = u(t,x, y)dy
A
∫

( )ktp D Δ = max
1≤k≤K

Δtk → 0, Nmin →∞

π (n,ω ){ }n∈W
[Nmin ,Nmax ] !
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Theorem 9.1 

Transition probabilities  

, where  ,  

 of the defined above non-Markov random walks   converge 

weakly to the transition probabilities of the diffusion process  given by the 

stochastic integral 

,  

 where  

,  

,  

 as .   

 

Proof. 

Since ,  to due to Lemma 3.1.1, we have: 

               , while  

Then, formulas (3.1.7), due to the second Merten’s theorem (the Merten’s formula) 

[ 2, p.19], imply: 

{ }1 1 1 0 0( ) | ( ) , ( ) , , ( )k k k k kP t E t x t x t xp p p pD D D D
+ - -Î = = =!

!xk = (x1,…,xk )∈"
k

{ }min max( ) |kt N k Np D < <

π̂ (t)

π̂ (t) = m̂(s)ds+
0

t

∫ σ̂ (s)dw(s)
0

t

∫

m̂(t) = c
ln τ −1(t)( ) , σ̂ (t) =

1
2
⋅ m̂(t) ⋅ 1− m̂(t)( ), c = 2

eγ
, 0 ≤ t ≤1,

τ −1(t) = x , Nmin ≤ n ≤ Nmax , τ (Nmin ) = 0, τ (Nmax ) = 1 c = 2
eγ

≈1.122918968

 with  the Euler's constant γ = 1
mm≤n

∑ − lnn+O 1
n

⎛
⎝⎜

⎞
⎠⎟

,γ ≈ 0.577215664

Δ = max
1≤k≤K

Δtk → 0, Nmin →∞

Δtk
k=1

K

∑ = 1

k=1

K

∑ 1
lnnk

≤ K
ln(Nmin )

⋅ 1+O 1
ln(Nmin )

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ → 0 K

Nmax
→ 0
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For  , we have , so that all conditions 

are satisfied to apply the limit theorems for random walks proved in [31 ,32, 33]. 

Q.E.D. 

The figures below illustrate graphically the diffusion approximation of distribution 

of primes in terms of  on different intervals of the argument. 

Legend for the graphs on the following figures: 

data1:   

data2:  Brownian approximation  of   

data 3:   Trend function  of    

Approximation of  for  

 

               
  

|mΔ (tk ,
!xk )−m(tk ) |+ | σ Δ (tk ,

!xk )( )2
− σ (tk ,

!xk )( )2
|⎡
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⎤
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∑ ⋅Δtk
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− 1
ln(nk )

⋅ Δtk +
1

ln(nk )
⋅O 1

ln(nk )
⎛

⎝⎜
⎞
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⎡

⎣
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⎢

⎤

⎦
⎥
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1− Δtk +O
1
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⎛
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⎞
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⎛

⎝
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⎞
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⎡
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⎢
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⎤
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K

∑
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1≤k≤K

1− Δtk +O
1

ln(nk )
⎛

⎝⎜
⎞
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⋅ 1

lnnkk=1

K

∑ → 0,  as Nmin →∞
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 Approximation of  for   

 

                
  

                         Approximation of  for   

      

On figures below there are the graphs of paths described evolution of the ‘walk’ 

of a counts  of consecutive primes restricted to the intervals 

 and approximating diffusion processes :        
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        The sequence of vectors  created by consecutive  

primes and the residual values , allows an interesting 3D 

presentation. In each pair   vector of primes  represents a 

‘radial’ component, while the vector of residuals , due to its natural 

periodicity, represents a ‘circular’ component. 

  

Denote   - a sequence of complex 

numbers and the vector  . Then for any  vector  takes a 

shape of a spiral helix as in the pictures below. 
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" n
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k
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