
MATHEMATICAL REPRESENTATION AND FORMAL PROOFS OF
CARD TRICKS

A PREPRINT

Boro Sitnikovski
Faculty of Informatics

UTMS
Skopje, North Macedonia
buritomath@gmail.com

May 15, 2020

ABSTRACT

Card tricks can be entertaining to audiences. Magicians apply them, but an in-depth knowledge of
why they work the way they do is necessary, especially when constructing new tricks. Mapping
a trick to its corresponding mathematical operations can be helpful in analysis, and the vice-versa
process can help create new tricks and make them accessible to magicians.
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1 Introduction

We will present a simple card trick - the card sandwith trick - and then analyze it to represent it mathematically in
terms of matrices. Further, the computational code will be provided in Python together with a formal proof by cases.

Different variants of the trick are possible, however, we will use a simpler variant with only 9 cards.

A magician starts by picking 9 random cards. Then, another person is asked to pick a card, remember it, and put it
back into the deck without the magician knowing which card it is. The magician starts dealing the deck into 3 piles.
Then the person is asked which pile their card appeared in. They can answer 1, 2, or 3. Whatever the answer, it is
important to keep that pile as a ”sandwich” between the other two piles when the card piles are grabbed back together.
For example, if they said 1, then the magician would first grab either pile 2 or 3, then pile 1, then either pile 3 or 2.
Repeat this process one more time, and the cards will be ordered in a way such that the 5th card will be the card picked
by the person.

For example, the available cards are (1, 2, 3, 4, 5, 6, 7, 8, 9). A person picks card 4 without the magician knowing
this. The magician lays these cards in 3 piles: ((1, 4, 7), (2, 5, 8), (3, 6, 9)). The person answers pile 1. The ma-
gician grabs the second pile, then the first pile, then the third pile. The next lay on the table will be these 3 piles:
((2, 1, 3), (5, 4, 6), (8, 7, 9)). The person answers pile 2. The magician grabs the first pile, then the second pile, then
the third pile. The fifth card will be 4.

After trying a couple of more cases manually, it will become obvious that matrix operations with rotations and colum-
n/row swaps are involved. We will present these operations, together with an example calculation program in Python
and a proof of correctness.

The piles can be seen as columns in a matrix. The gist of the trick is getting the (x, y) coordinate by asking two
questions about columns’ position, rather than asking one question about x (row position) and one about y (column
position).
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2 Mathematical representation

In this section, we will provide the mathematical representation of the card trick, as well as proof by cases.

2.1 Operations

For simplicity we focus on a 2D 3-by-3 matrix, but these operations can be extended to larger square matrices.
Definition 2.1. Operation SwapCol1-2: Let

S12 =

[
0 1 0
1 0 0
0 0 1

]

To swap column 1 with 2 in a matrix, we just multiply it by S12 from the right:

[
x11 x12 x13

x21 x22 x23

x31 x32 x33

]
S12 =

[
x12 x11 x13

x22 x21 x23

x32 x31 x33

]
Example 2.1. Let

A =

[
1 2 3
4 5 6
7 8 9

]

Thus,

[
1 2 3
4 5 6
7 8 9

][
0 1 0
1 0 0
0 0 1

]
=

[
2 1 3
5 4 6
8 7 9

]
Definition 2.2. Operation SwapCol2-3: Let

S23 =

[
1 0 0
0 0 1
0 1 0

]

To swap column 2 with 3 in a matrix, we just multiply it by S23 from the right:

[
x11 x12 x13

x21 x22 x23

x31 x32 x33

]
S23 =

[
x12 x13 x11

x22 x23 x21

x32 x33 x31

]
Example 2.2. Let

A =

[
1 2 3
4 5 6
7 8 9

]

Thus,

[
1 2 3
4 5 6
7 8 9

][
1 0 0
0 0 1
0 1 0

]
=

[
1 3 2
4 6 5
7 9 8

]

Note: Swapping column 2 with 2 is the identity matrix, i.e. SwapCol2-2 is defined as S22 = I.
Definition 2.3. Operation FlipUD: Let

D′ =

[
0 0 1
0 1 0
1 0 0

]

That is, D′ is the anti-diagonal matrix. To get the upside-down representation of a matrix, we just multiply by D′ from
the left:
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D′

[
x11 x12 x13

x21 x22 x23

x31 x32 x33

]
=

[
x31 x32 x33

x21 x22 x23

x11 x12 x13

]
Example 2.3. Let

A =

[
1 2 3
4 5 6
7 8 9

]

Thus,

[
0 0 1
0 1 0
1 0 0

][
1 2 3
4 5 6
7 8 9

]
=

[
7 8 9
4 5 6
1 2 3

]
Definition 2.4. Operation RightRotate:

Let D′ be the anti-diagonal matrix. To get the rotated representation of a matrix, we just take its transpose, and
multiply by D′ from the right:

[
x11 x12 x13

x21 x22 x23

x31 x32 x33

]T

D′ =

[
x31 x21 x11

x32 x22 x12

x33 x23 x13

]
Example 2.4. Let

A =

[
1 2 3
4 5 6
7 8 9

]

Thus,

[
1 2 3
4 5 6
7 8 9

]T [
0 0 1
0 1 0
1 0 0

]
=

[
1 4 7
2 5 8
3 6 9

][
0 0 1
0 1 0
1 0 0

]
=

[
7 4 1
8 5 2
9 6 3

]

2.2 Proof by cases

We will show that if we apply these operations in a specific order for specific inputs, it is possible to extract every
element from the matrix. Motivated by the example showed earlier, we will come up with a general algorithm.

Based on an input, the algorithm should first apply either SwapCol1-2, SwapCol2-3, or I (SwapCol2-2). Next,
FlipUD should be applied to flip the matrix upside-down, and then finally RightRotate to rotate the matrix. These
operations should be applied twice, which means there are two inputs. Let:

f(A,S) = (D′AS)TD′

This function represents only one step, an operation on A with corresponding swap S. Thus, to capture the whole
process, we need to apply f twice, and then return the center element:

g(A,S1,S2) = f(f(A,S1),S2)1,1

We wish to prove that g provides combinations for extracting all elements in a matrix. Using proof by cases, it is trivial
to do the calculations on A to derive the table 1, as we will show in the next section. This proves that every element
in a 3-by-3 matrix can be extracted based on the inputs.

A =

[
1 2 3
4 5 6
7 8 9

]
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Table 1: Numbers mapping

Operation Result
g(A,S12,S12) 1
g(A, I,S12) 2
g(A,S23,S12) 3
g(A,S12, I) 4
g(A, I, I) 5
g(A,S23, I) 6
g(A,S12,S23) 7
g(A, I,S23) 8
g(A,S23,S23) 9

3 Implementation and proof in Python

Python is a general-purpose programming language[1]. We will be using the Numpy[2] library which provides func-
tions for scientific computations.

1 import numpy as np

Further, Numpy does not provide out of the box functions for swapping columns in a matrix, so we will define one.
We will also provide the definitions for the different columns swapping combinations.

1 [I, S12, S23] = [[1,1], [0,1], [1,2]]
2
3 def swap_cols(arr, frm, to):
4 arr[:,[frm,to]] = arr[:,[to,frm]]

The FlipUD operation is defined in Numpy as simply np.flipud(A). Similarly, the RightRotate operation is
np.rot90(A, 3). Given this, we can implement f and g as follows:

1 def f(A, S):
2 swap_cols(A, S[0], S[1])
3 A = np.flipud(A)
4 A = np.rot90(A, 3)
5 return A
6
7 def g(A, S1, S2):
8 A = np.array(A)
9 return f(f(A, S1), S2)[1][1]

For the formal proof these functions can be used with various inputs, and we can use assertions that these combinations
produce the numbers {1, 2, . . . , 9}.

1 cards = [
2 [1, 2, 3],
3 [4, 5, 6],
4 [7, 8, 9]]
5
6 assert(1 == g(cards, S12, S12))
7 assert(2 == g(cards, I, S12))
8 assert(3 == g(cards, S23, S12))
9 assert(4 == g(cards, S12, I))

10 assert(5 == g(cards, I, I))
11 assert(6 == g(cards, S23, I))
12 assert(7 == g(cards, S12, S23))
13 assert(8 == g(cards, I, S23))
14 assert(9 == g(cards, S23, S23))

In which all asserted cases will pass.
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4 Conclusion

We showed how to get an in-depth understanding of a ”magical” trick, using mathematics and methods for formal
verification. This research can be useful since analyzed tricks can be further researched to create new tricks. For
example, if we show that the defined operations apply to larger square matrices we can create new variants of the same
trick, or adjust the variants and create a completely new trick.
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