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THE THEORY OF RAMIFICATION

THEOPHILUS AGAMA

Abstract. In this paper we introduce and develop the concept of ramification

in a given moduli. We study some properties in relation to this concept and

it’s connection to some important problems in mathematics, particularly the

Goldbach conjecture.

1. Introduction and concept

Definition 1.1. Let n ≥ 2 be an integer and n ≡ a1 (mod m). Then n is said

to ramify in (mod m) if there exist some r < m with n ≡ a2 (mod r) so that

a1 + a2 = m. We say the modulus m admits a ramifier and we denote the ramifier

by R(m) = n.

Remark 1.2. Definition 1.1 has a practical implication. The concept affirms the

notion that, given the image of an object on a miror of a certain size, If we can

find a miror of a relatively smaller size that produce an image of the same body so

that the concatenation of the two covers the size of the larger miror, then the body

must indeed be a ramifier. Next we examine some properties of the ramifiers in a

given modulus.

2. Properties of the ramifiers

In this section we study some properties of the ramifiers in a fixed modulus. We also

count the number of ramifiers in all modulus. We first give a proof that indicates

that there must exist a ramifier in any given modulus. The method of proof employs

in an ingenious way an infinite descending argument whose consequence is not

suitable for that particular regime.

Proposition 2.1. There exist a ramifier in any given modulus. In particular, for

any m ≥ 2, there exists a ramifier in (mod t) for 1 < t ≤ m.

Proof. Suppose on the contrary that for all m ≥ 2, then the modulus do not admit

a ramifier for 1 < t ≤ m. Then it follows by definition 1.1 that there exist some
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sequence of positive integers 2 = s1 < s2 < . . . < sk = m such that for all m with

n ≡ a1 (mod m)

m 6= a1 + ri

where n (mod si) = ri for i = 1, . . . k−1. Again there exist some 1 < rj ≤ rk−1 such

that a1+rj < m if and only if rj < m−a1 < m. Now choose tk = m−a1 < m, then

by assumption it follows that for n ≡ a2 (mod tk) so that there exist a sequence

of positive integers tk > vk−1 > vk−2 > · · · v1 > 1 such that a2 + ui 6= tk for

all i = 1, 2 . . . k − 1, where n (mod vi) = ui. It follows that there exist some

1 < uj ≤ uk−1 so that a2 + uj < tk if and only if uj < tk − a2 < tk. By choosing

tk−a2 = tk−1 < tk < m and using the fact that each 1 < t ≤ m admits no ramifier,

we obtain by induction an infinite descending sequence of positive integers

m > tk > tk−1 > tk−2 > · · · > tk−i > · · · .
This proves the proposition. �

Remark 2.1. The next result highlights a sufficient condition for any positive integer

to ramify in a given modulus.

Proposition 2.2. Let m ≥ 2. Then R(m) = n if and only if R(m) 6≡ 0 (mod m).

Proof. Let m ≥ 2 and let R(m) = n. Suppose on the contrary that R(m) ≡ 0

(mod m), then it follows that for the sequence m = rk > rk−1 > . . . > r1 >

1, where R(m) (mod ri) = si with i = 1, 2, . . . k − 1, it must certainly be that

si + 0 < m. This contradicts the fact that m admits a ramifier. Conversely, if

R(m) ≡ 0 (mod m), then it follows that R(m) 6= n. This completes the proof of

the proposition. �

Proposition 2.2, though simple, is somewhat revealing. It enables us to controll at

the very least the number of ramifiers for a finite set of integers in a given modulus.

That is to say, for any set of the form {n ≤ x : R(m) = n}, then

#{n ≤ x : R(m) = n} =
∑

n≤x
R(m)=n

1

≤ x−
⌊

x

m

⌋

=

(

1− 1

m

)

x+O(1).

It follows from this upper bound that the distribution of ramifiers in any finite set

of the integers depends greatly on the modulus of ramification. It is clear that

the smaller the modulus, the less chance there is to find a ramifier in the set.

Conversely, the larger the modulus the high chance there is in picking a ramifier in

the set in any random selection. This upper bound, though very weak could serve

as a benchmark, for an appeal to Proposition 2.2 indicates that we can do better

than this if we knew other subtle properties of the ramifiers in any finite set of the

integers. The sequel will be focused on studying such properties.



THE THEORY OF RAMIFICATION 3

Theorem 2.2. Let p be a prime and let (a, p) = 1. If a is a quadratic residue

modulo p, then the set M := {a, a2, . . . , ap−1} contains at least two non-ramifiers

modulo p.

Proof. Let p be a prime and (a, p) = 1. It follows that ap−1 ≡ 1 (mod p). It follows

immediately that R(p) 6= ap−1. If we assume that a is a quadratic residue modulo

p, then it follows that

a
p−1

2 ≡ 1 (mod p)

and it follows that R(p) 6= a
p−1

2 , thereby ending the proof. �

Remark 2.3. In light of Theorem 2.2, we can certainly improve on the upper bound

in the foregone discussion concerning the scale of ramifiers in a given modulus.

Theorem 2.4. Let m be fixed and let I := {n ≤ x : R(m) = n}, then

#I ≤
(

1− 1

m

)

x− log x

logm
+O(1).

Proof. In the forgone discussion, the number of ramifiers that led to the upper

bound are integers n ≤ x satisfying n ≡ 0 (mod m). Let I := {n ≤ x : R(m) = n}
be the set of ramifiers in modulo m. Then by Theorem 2.2, it follows that the

upper bound can slightly be improved to

#I ≤
(

1− 1

m

)

x−
∑

a≤x

ak≤x

ak≡1 (mod m)
(a,m)=1

1 +O(1)

=

(

1− 1

m

)

x−
∑

a≤x
(a,m)=1

∑

ak≡1 (mod m)

1≤k≤⌊ log x

log a
⌋

1 +O(1),

and the result follows by taking a = m+ 1 in the sum. �

Remark 2.5. In the spirit of understanding the Goldbach conjecture we launch

a very strict form of the notion of Ramifiers. The Goldbach conjecture can be

formulated in this language. It comes in the following sequel.

Definition 2.6. Let n ≥ 2 be an integer and n ≡ p1 (mod m). Then n is said to

ramify strongly in (mod m) if there exist some r < m such that n ≡ p2 (mod r),

such that p1 + p2 = m where p1, p2 are all prime. In other words, we say the

modulus m admits a strong ramifier.

Conjecture 2.1 (Goldbach). Every even number n ≥ 6 admits a strong ramifier in

(mod n).

Theorem 2.7. There are infinitely many ramifiers in (mod m) for some fixed m.
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Proof. It suffices to obtain a lower bound for the quantity #{n ≤ x : R(m) = n}.
Thus it follows that

#{n ≤ x : R(m) = n} =
∑

n≤x
R(m)=n

1

=
∑

n≤x
a0+b0=m

n≡a0 (mod m)
n≡b0 (mod r0)

r0<m

1

=
∑

n≤x
a0+b0=m

mr0|(n−a0)(n−b0)
r0<m

1

=
∑

n≤x
a0+b0=m

r0<m

∑

mr0|(n−a0)(n−b0)

1

=
∑

a0+b0=m
r0<m

⌊

(x− a0)(x− b0)

mr0

⌋

=
∑

a0+b0=m
r0<m

x2 − x(a0 + b0) + a0b0

mr0
+Om(1)

≥ x2 − xm

m2
+Om(1)

and the result follows immediately from this estimate. �

The above lower bound for the number of ramifiers in a fixed modulus is somewhat

instructive. It puts a threshold on the size of the modulus that cannot admit a

ramifier from a finite set of the integers n ≤ x. Indeed for this lower bound to fail,

then it follows that the inequality must be satisfied

x2 − xm

m2
+Om(1) > x

(

1− 1

m

)

− log x

logm
+O(1).

Using the main term, it follows that

m <
x√

x− log x
.

Thus, the moduli for which the lower bound majorizes the upper bound for the

number of ramifiers in a finite set gives the largest scale of a modulus that do not

admit a ramifier. It follows that size of any modulus that admits a ramifier in any

finite set of the integers n ≤ x must satisfy the inequality

m ≥
⌊

x√
x− log x

⌋

+ 1.
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We examine some immediate consequences of this analysis in relation to the dis-

tribution of prime numbers in small intervals. In fact, it is redolent of Bertrand’s

postulate.

Theorem 2.8. Let p ≤ x be a prime and suppose p admits a ramifier n for some

n ≤ x. Then there must exist at least one prime in the interval

(

x√
x− log x

, x

]

.

Proof. Suppose p ≤ x is a prime and that R(p) = n for some n ≤ x. Then it

follows from our forgone discussion and Theorem 2.7 that

p ≥
⌊

x√
x− log x

⌋

+ 1

and the result follows immediately from this inequality. �

Remark 2.9. Next we prove a result that suggests that there are some integers

n ≤ x that ramifies in more than one modulus m < x. We find the following

elementary estimate useful:

Lemma 2.10. The estimate is valid

∞
∑

n=1

1

n2
=

π2

6
.

Proof. For a proof see [2]. �

Lemma 2.11. The estimate is valid

∑

n≤x

1

n
= log x+ γ +O

(

1

x

)

.

Proof. For a proof see [1]. �

Theorem 2.12. The estimate

∑

m≤x

∑

n≤x
R(m)=n

1 ≥ x log(
√

x− log x) +O(x)

is valid
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Proof. We observe that by an application of Lemma 2.10, Lemma 2.11 and Theorem

2.7
∑

x
√

x−log x
<m≤x

∑

n≤x
R(m)=n

1 ≥
∑

x
√

x−log x
<m≤x

x2 − xm

m2
+O(x)

= x2
∑

x
√

x−log x
<m≤x

1

m2
− x

∑

x
√

x−log x
<m≤x

1

m
+O(x)

= x2

(

∑

m> x
√

x−log x

1

m2
−

∑

m>x

1

m2

)

− x
∑

x
√

x−log x
<m≤x

1

m
+O(x)

= O(x) +O(1) + x log(
√

x− log x) +O(
√
x)

= x log(
√

x− log x) +O(x).

�

Corollary 1. There exist at least one integer n ≤ x that ramifies in at least two

modulus m ≤ x.

Proof. The result follows from the pigeon-hole principle since

x log(
√
x− log x) +O(x)

x
≥ log(

√

x− log x) +O(1).

�

3. The index of ramification

In this section we launch the notion of the index of ramification. We expose some

relationship between ramifiers and their corresponding indeces.

Definition 3.1. Let n ≥ 2 be a positive integers that ramifies in modulo m ≥ 2.

Then by the index of ramification in modulom, denoted indm(n), we mean the value

rj < m so that for n ≡ ai (mod m), then n ≡ sj (mod rj) such that ai + sj = m.

Theorem 3.2. Let n ≡ ai (mod m) and suppose (n −m, ai) = 1. If R(m) = n,

then indm(n) ≡ 0 (mod ai) or (indm(n), ai) = 1.

Proof. Let n ≡ ai (mod m) with (n − m, ai) = 1 and suppose for the sake of

contradiction that (indm(n), ai) = d with 1 < d < ai. Then it follows that
(

indm(n)
d

, ai

d

)

= 1. Since R(m) = n, it follows that there exist some rk < m

such that for n ≡ sk (mod rk), then it follows that ai + sk = m. It follows that

d|(m−sk). Since d|indm(n), it follows that d|(n−sk). Thus it follows that d|(n−m).

This contradicts the assumption (n−m, ai) = 1, since d|ai and 1 < d < ai. �

Remark 3.3. Theorem 3.2 roughly speaking tells us that the image of a body in

a miror of somewhat large size could be magnified to cover the size of a certain

smaller mirror.
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4. The circle of ramification

In this section we launch the notion of the circle of ramification in a given modulus.

We launch in a more formal way the following terminology:

Definition 4.1. Let I := {n ≤ x : R(m) = n} be any set of ramifiers, then

by the circle of ramification relative to I with center m and radius r we mean

|R(m)−m| ≤ r, where r = max{|R(m)−m|}.

Remark 4.2. The next result tells us that for any finite set of the integers, we

can get controll on the radius of the circle of ramification. In other words, there

appears to be lack of degree of freedom in constructing circles of ramification, given

any finite set of integers.

Proposition 4.1. Let I := {n ≤ x : R(m) = n} be any set of ramifiers, then

max{|R(m)−m|} ≤ x(
√
x− log x− 1)√
x− log x

.

Proof. The result follows by applying Theorem 2.7 and the previous discussion on

the least scale of modulus that admits a ramifier. �

Remark 4.3. Proposition 4.1 tells us that the ramifiers in any finite set must not be

too far way from the centre of ramification, in the sense that they must be closer

to the centre than expected with distance ≤ x1−ǫ for some ǫ > 0.

5. Ramification character

It is important to notice that in a given modulus not every integer is a ramifier. In

other words there are some numbers that ramify and some that do not ramify in a

given modulus. A sequel to this paper will be geared towards launching a criterion

for deciding which number is a ramifier for any given modulus. In this section, how-

ever, we launch the ramification character and establish some elementary properties

in this regard.

Definition 5.1. (Ramification character) Let n be any positive integer. Then we

set

κm(n) :=

{

1 if R(m) = n

0 otherwise.

Remark 5.2. We begin this section by studying some interesting properties of the

ramification character in a given modulus.

Proposition 5.1. Let m be a fixed positive integer, then the following properties

of the ramification character holds:

(i) κm(n+ 2m) = κm(n).

(ii) κm(n+m!) = κm(n).

(iii) κm(1) = 0.
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(iv) κm(n) = 0 for n ≡ 0, 1 (mod m).

(v) κm(nm!) = κm(n)κm(m!).

Proof. We prove only (ii), (iii), (iv) and (v). For (ii), since n+m! ≡ n (mod ri) for

any sequence r0 < r1 < . . . rk−1 < rk = m the result follows immediately according

as n is a ramifier or a non-ramifier. Clearly (iii) and (iv) follows from Proposition

2.2 and Proposition 2.2. Finally (iv) is also easy to establish. �

A natural quest is to, at the very least, seek for various upper and lower bounds

for the partial sums of the ramification character in a fixed modulus. That is, we

seek estimates for sums of the form
∑

n≤x

κm(n).

It is easy to check trivial upper and lower bounds for this sum have been established

in Theorem 2.4 and Theorem 2.7, by observing that
∑

n≤x
R(m)=n

1 =
∑

n≤x

κm(n).

We obtain the following weaker estimate for the partial sums of the ramification

character as follows:

Theorem 5.3. Let m be a fixed positive integer, then the inequality is valid

x2 − xm

m2
+Om(1) ≤

∑

n≤x

κm(n) ≤
(

1− 1

m

)

x− log x

logm
+O(1)

for

m ≥
⌊

x√
x− log x

⌋

+ 1.

Proof. The result follows by combining Theorem 2.7 and Theorem 2.4. �

6. Final remarks

In this paper we have introduced the concept of the ramifiers. We have established

some properties and some consequences of this theory. The Goldbach conjecture,

which is an important open problem, can be framed in this language as:

Conjecture 6.1 (Goldbach). Every even number n ≥ 6 admits a strong ramifier in

(mod n).

The most striking is the result about the distribution of prime in small intervals

given as:
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Theorem 6.1. Let p ≤ x be a prime and suppose p admits a ramifier n for some

n ≤ x. Then there must exist at least one prime in the interval
(

x√
x− log x

, x

]

.
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