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Abstract

In this work the authors will examine the themes of RH, equivalent RH and GRH already presented
in [25]. The authors will explain some formulas and will show other special functions that are
usually introduced with the PNT and useful to investigate other ways. In the Sections 1 and 2, we
describe y(x), i.e. the 2" Chebyshev’s function as equivalent RH. In the Section 3, we describe a
step function and a generalization of Polignac.

In the Section 4, we describe some equations concerning p-adic strings, p-adic and adelic zeta
functions, zeta strings and zeta nonlocal scalar fields.

In conclusion, in the Section 5, we have described some possible mathematical connections
between adelic strings and Lagrangians with Riemann zeta function with some equations in Number
Theory above examined.




1. y(x) equivalent RH

In [25] we saw that Riemann defined {(s) as a function of complex variable s. The first step of
Riemann was to extend (or to analytically continue) £(s) to all of X \ {1} This can be accomplished

by noticing that s=c+itand n™° = sJ' x**dx then:

n-1 N n=1 nX 1y X
T dx 7 [x] Tx—{x} L
=sf| D1 o stdx s[—Hdx @) O
1 \.n<x 1 1
- S o[ Mgy, 051
s-1 {Xx

Since {x}<[0,1), it follows that the last integral converges for >0 and defines a continuation of .
C(s) to the half-plane c=Re(s)>0. We can extend ¢(s) to a holomorphic function on all X \ {1}, in
fact from the last integral s=1 is a simple pole with residue 1. We note that for s real and s>0 the
integral in (1.1) is always positive real. Then from (1.1) £(s)<0, s€(0.1) and £(s)>0, se(1.x).

A popular expression of Euler is:

c()= [T @-p™)"

p=prime

ns@)=- 3 a-p*)= ¥ 3P

p=prime p=primes k=1

(1.2)

In (1.2) we have applied the integration of Newton linked to expression:
L xR
1-x

If the previous expression is integrated for x and you change the sign to bring the term 1-x to
numerator, then we obtain:

3+lx“+...
4

1 1
—log(1l—Xx) = x+=Xx*+=X
9(1-x) > X3

Now, we introduce the von Mangoldt’s function (also called lambda function):

__glogp, if n:pk, p prime, k>1
A(n) - {0, otherwise (1-3)

! [x] is the greatest integer < x or floor of x; {x}=x-[x] is the fractional part of x.
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Figure 1 — von Mangoldt’s function
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From (1.2) we have:
—ks __ {n’s, if n=pX
p 0,  otherwise
and if we use the rules of logarithm: n = p*, k = log, n = log n/log p then:

logn logn
0, otherwise

1 logp = m when n:pk
k

Further the (1.2) becomes:

ng(s)=3 A() =iA(”) N (L4)

“~logn n® “3logn

The (1.4) consents to pass from “a multiplicative problem” to “an additive problem”, even if we are
started from the Euler’s product.

Consequently if we do the derivative of (1.4) then we obtain:

SO A
o & 49

The von Mongoldt’s function isn’t a multiplicative function nor an additive function. Moreover it’s:

logn= ZA(d) whered | nare divisor of n

din
Example
n=12

We remember 12=2%2*3 and that the divisors of 12 are: 1, 2, 3, 4, 6, 12, then:
log 12=A(1)+ A(2)+ A(3)+ A(2%)+ A(2*3)+ A(2**3)

From (1.3) itis:
log12=0+1log 2 +log 3 +log 2 + 0 + 0= log(2*3*2) = log 12



Pafnuty Lvovich Chebyshev introduced two functions:

Q(X) = Z |Og p 1st Chebyshev's function
p=x

\jl(X) = Z A(n) 2nd Chebyshev's function

n<x

This functions are very important in the proofs linked to prime numbers, because they are simple to
use.

Another formulas equivalent for 6(x) is:

7(X) 7 (X)

0(x)= Y logp= > logp, =[] ]p, |

p<x k=1

Hardy and Wright [23] showed that:

lim,_ X =1
a(x)
Or:
O(x) 0 x
From here we have the figure 1.
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Figure 2 - 8(x) Chebyshev’s function

We also can write y(X):

7 (X)
v = X logp=> AK) (1
p<x k=1

k

p-<x
In the previous formula the sum runs over all prime numbers p and positive integers k such that
p“<x and therefore potentially includes some primes multiple times.
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Figure 3 - y(x) Chebyshev’s function

A simple and nice formula for y(x) is:
v =Inllem@,2,3,4,..x)|
or
lcm(1,2,3,4,..x) =e"™

Example
x=10
lem(1,2,3,4,5,6,7,8,9,10)=5*7*2%*32=2520

(10)=In 2520 = In5*7*2°*3?=In5+In7+3In2+2In 3
Now an equivalent PNT or an equivalent RH is:

y(x) D x (1.7)
Finally y(x) and 6(x) are linked:

y(x) =3 6(x¥)

1/2

The previous formula has got a finite number of terms, because 6(x™“)=0 for n>log,x.

The functions y(x) and 6(x) are in some ways more natural then prime counting function m(x),
because they deal with multiplication of primes. In a multiplicative problem they are better.

It can be obtained a link from ¢(s) and y(x) by inverting (1.5); in fact, starting from (1.5), the
Fourier inversion formula implies, for each a>1.:

_iim. L F(_Le) . ds 18
ve) =lime,, —— I( C(S)]X x>0 (1.8)

a-iT

A link between y(x) and the nontrivial zeros (with multiplicities) of Riemann zeta function is the
so-called explicit formula (Riemann-von Mangoldt):

y(X)=x— Zﬁ_ (In27) —%In(l— x?) (1.9)
0

P

2 For italian readers the term lcm (least common multiple) is equivalent to the term mcm



For x>1 and x not prime number or prime power and p a nontrivial zero. The (1.9) gives a very
precise description of the error in the approssimations (1.7), and, more important, it relations the
estimation of this error to the location of the nontrivial zeros.

We note that de la Vallée-Poussin showed that the term-by-term integration of both sides of (1.9) is
a valid operation for x>1:

X d X2 Xp+l X—2n+1 | 5 (1 10)
= tdt=2— — — — t .
v, (X) _c[\v( ) > Zp:p(p+1) Zn:Zn(Zn—l) xlog(2r) +cons

It is clear that, as x—ao, the last three terms on the right hand side of the (1.10) are all o(x).

2. Why y(x) is an equivalent RH

Now we can show that {(1+it)= 0 or that there aren’t nontrivial zeros on the line o=1. If we
remember that s=c+it, taking the real part, from (1.4) is:

Re(Ing(s)) = iloﬁ% -cos(tlogn)

n—2
By trigonometric identity 3 + 4 cos t + cos 2t = 2(1 + cos t)%>0 then:
3Re(Ing(s)) +4Re(Ing(c+1t)) + Re(Ing (o + 2it)) > 0
So exponentiating, this gives:
16(0)Fls(c+it) ['| g(c +2it) > 1 (2.1)

As we have seen in (1.1), (s) has got a simple pole in s=1 with residue 1. This is equivalent to
says:

lim, ,(s-Dg(s)=1 (2.2)
Now we suppose that £(s) has got a zero of order m>1 at sp =1 + it then it is equivalent to.
Iirns—>s0 (S_So)img(s) =C (23)

For some ¢ € X \{0}. Takings =oc +itpand o>1 then we can rewrite (2.1) as:

c+it)|* ) c—-1p
l6(@) Plo—1p LCFI | o ot yp 1O
|5_So| |S_So|
G_

_‘G_1|4m _|6_1|4m—1



Letting c—1", and taking account the two limits above, we obtain that there is a pole of order 4m-
3>1 at s=1+2itg. This is impossible, then {(1+it)=0 for teR \ {0} is true. Therefore if p is a

nontrivial zero of £(s), then Re(p)<1, |x"-1|<1 and the infinite sum Zﬁ in (1.10) converges
p PP+
p-1
absolutely. This implies that ZX— converges uniformly in x and:
> p(p+1)

) xP! . x°!
lim,_ =>lim_ ———=>0=0 (25)
z;>“13(p+1) ; pp+1) ;

So also the second term of (1.10) is bounded by o(x?). Therefore we can conclude that w1 (X) ~ X*/2.

In general if two functions are asymptotic one can’t conclude their derivative are asymptotic; but
we know that the derivative y=y;’ is a monotonic non-decreasing function, then we can conclude
that (1.7) is true or y(x) ~ X.

3. A step function and a generalization of Polignac

Now, we introduce the von Mangoldt’s function (also called lambda function):

__¢logp, if n=p*, p prime, k>1
A(n) - {O, otherwise (3.1)
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Figure 4 — von Mangoldt’s function

The von Mongoldt’s function isn’t a multiplicative function nor an additive function. Moreover it’s:

|Og n= ZA(d) whered | naredivisor of n
din
Example
n=12

We remember 12=2%*3 and that the divisors of 12 are: 1, 2, 3, 4, 6, 12, then:
log 12=A(1)+ A(2)+ A(3)+ A(2%)+ A(2*3)+ A(2**3)

From (3.1) itis:
log12=0+1log 2 +log 3 +log 2 + 0 + 0= log(2*3*2) = log 12
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We know =(N) as a counting prime function (a step function):

(N)=>1

p<x
If we introduce the von Mangoldt’s function A(N) then we propose a “step function v(N)”:

__z(N)
YN = Ay

SO vy OF Iimm¥/v(x)=1

For example
w(N) ANN) v(N) G(N)/N
n(10) = 4 A(10)=In10=23 v(10) = 4/(10*2,3)=0,17 G(10)/10=0,1
7(30) = 10 A(30) = In 30 = 3,401 v(30) = 10/(30*3,401)=0,098~0,1 G(30)/30 = 3/30=0,1
n(100) = 25 A(100) = In 100 = 4,605 v(100) = 25/(100*4,605)=0,054 G(100)/100 = 6/100=0,06
m(1000) = 168 A(1000) = In 1000 = 6,907 v(1000) = 168/(1000*6,907)=0,0243 G(1000)/1000 =
28/1000=0,028

The approssimations of the step function v(N) improve when N grows (see figure 5).
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Figure 5 — step function v(N)
Can we generalize this result as a generalization of Polignac? Yes. If we call P(x , d) the number of

primes <x and which are far d, if we remember the GRH [see 25], since it is:

(X, a, d)—mj—dHO(xz ), x> o (3.2)

where a, d are such that gcd(a, d)=1 and ¢(d) is the totient function of Euler.

Then it is:

P(od) _7(x,a,d)

| KC3(x),k =1,C3(x) = —

X xInx
or (3.3
P(xd) 1 ¢ 1 P
| X @(d)lt(lnt)zdtl_o(x )



Example

x=127, a=2,d=9

gcd(a,d) =1

a+d: 11, 20, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 128 ...

We have underlined the prime numbers above.

¢(9) =6, infact 1,2,4,5,7,8 are the numbers without nothing in common with 9,
Li ~ x/In x

n(127-2,9) ~ [1/p(9)]*(127/In 127) ~ 4,36 about 5.

But this result is also P(x, 9). In fact if we consider a=1,2,4,5,7,8 or the numbers less than 9 and
without nothing in common with 9, we have six arithmetic progressions:

a=1,a+d: 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127 ...
a=2,a+d: 11,20, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 128 ...
a=4,a+d: 13,22, 31,40, 49, 58, 67, 76, 85, 94, 103, 112, 121, 130 ...
a=5,a+d: 14,23, 32,41, 50, 59, 68, 77, 86, 95, 104, 113, 122, 131 ...
a=7,a+d: 16, 25, 34, 43,52, 61, 70, 79, 88, 97, 106, 115, 124, 133 ...
a=8,a+d: 17,26, 35, 44, 53, 62, 71, 80, 89, 98, 107, 116, 125, 134 ...

In all arithmetic progression we have prime numbers. How many are the prime numbers in each
arithmetic progression?

About:
[L/p(d)] * (X/In Xx).

Then the absolute value of difference [P(x, d)/x] - [r(X, a, d)/x In X] is very little.
In fact fora=21is:
P(127,9)/127 = 5/127 = 0,00031

(127, 2, 9)/(127 In 127) = 0,007102
[P(127, 9)/127] - [x(127, 2, 9)/127 In 127]| = 0,00679 < 1/In 127 = 0,206433.

We can obtain, with the integral, a value better than x/In x; in fact (see Appendix) it is:

J‘X dt B 1 1
2t.-Int In2 Inx

Then it is:

n(127,2,9) =1/6 * (1/In 2 - 1/In 127) = 0,20604
n(127, 2,9) / 127 In 127 = 0,000334 a similar result of P(x, d)/x
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[[P(127, 9)/127] - [=(127, 2, 9)/127 In 127]| = 0,000024 < 1/In 127 = 0,206433.
So, also (3.3) is an equivalent RH.

With regard the values 4,36 and 0,206433 we have the following mathematical connections:

(@)"" + (@)™ = 4,236067977 +0,127156535 = 4,36322 ;
(@) + ()™ =0,145898034 + 0,059693843 = 0,205591877 = 0,2056 .

Note that @ = \/§2+1 ~1,6180339 is the Aurea ratio and that with regard the index n/7, n=
1,2,..., +0, n=-1,-2,..., —oo, while 7 is the number of the compactified dimensions of M-
Theory.

4. On some equations concerning p-adic strings, p-adic and adelic zeta functions, zeta
strings and zeta nonlocal scalar fields. [27] [28] [29] [30] [31]

Like in the ordinary string theory, the starting point of p-adic strings is a construction of the

corresponding scattering amplitudes. Recall that the ordinary crossing symmetric Veneziano
amplitude can be presented in the following forms:

T 1), rere)). gt cioblst
Ma+b) To+o) Tera)| 0 ¢ ¢B) <0

= g[ DX exp[—zijdzaaaxﬂaax “JHJ-dZO'j exp(ikVX*), (4.1-4.4)
T

j=1

A (a,b)= gZJ-R|x|ifl|1— x|k:1dx = gz{

where h=1, T=1/7, and a:—a(s):—l—g, b=-alt), c=-a(u) with the condition

s+t+u=-8,i.e. a+b+c=1.
The p-adic generalization of the above expression

A(ab)=g? [ X} - x[ dx,

A (a,b)= gf)IQp|x|z_l|1— x|l:)_1dx, (4.5)

where ||p denotes p-adic absolute value. In this case only string world-sheet parameter x is treated

as p-adic variable, and all other quantities have their usual (real) valuation.
Now, we remember that the Gauss integrals satisfy adelic product formula

J'R;(w(ax2+bx)dwajQ ;(p(ax2+bx)dpx:l, aeQ’, beQ, (4.6)
pep <P
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what follows from
1 b?
IQ ;(V(ax2 + bx)dvx = Zv(a)|2a|vzzv[— EJ , V=02, p.... (4.7)
These Gauss integrals apply in evaluation of the Feynman path integrals
St xt) j ;(V[——j (4.9, t)dtjD q, (4.8)
for kernels Kv(x”,t";x',t') of the evolution operator in adelic quantum mechanics for quadratic

Lagrangians. In the case of Lagrangian

£ 2

L(q,q>=§(—q——zq+1j,

4

for the de Sitter cosmological model one obtains

K, (X" Tx O [K,(x".T:x,0)=1, x".x,1€Q,TeQ", (4.9

peP

where
2T 3

1
K, (X", T;x',0)=4,(-8T )4T| 2 ;{V(— o

+[A(x"x) - 2]% + MJ . (4.10)

Also here we have the number 24 that correspond to the Ramanujan function that has 24 “modes”,
i.e., the physical vibrations of a bosonic string. Hence, we obtain the following mathematical

connection:
K, (x".T;x0)= ,(-8T )|4T|_;}(V[— T2 i) -2 XX) ] -
' 4 4 8T
© COSZXW' _ 2 dx
4| antilog = co;zh?x \ff
e g (itw)

10b)

: o (0722 20 | “

The adelic wave function for the simplest ground state has the form

~v. 0[]l lp){ DIXEZ

bP 0,xeQ\zZ

11



where Q(]x|p):1 if |x|p <1 and Q(]x|p):0 if |x|p >1. Since this wave function is non-zero only in
integer points it can be interpreted as discreteness of the space due to p-adic effects in adelic
approach. The Gel’fand-Graev-Tate gamma and beta functions are:

a-1

r(a)= jR|X|jo_IZ°°(X)d°°X = C(;'T;)a) , Fp(a) = IQP |X|";‘)‘1Zp(x)dpx = ]i__ F;_a , (4.12)
B,(a,b)= IR|X|1_1|1— X/ d,x=T,(a)r,(b)r.(c), (4.13)

B,(a,b)= IQ |x|2_1|1— x|t:)_1d x=C (@), (b)r,(c), (4.14)

where a,b,ceC with condition a+b+c=1 and ¢(a) is the Riemann zeta function. With a
regularization of the product of p-adic gamma functions one has adelic products:

r,u[]r,(u=1, B (ab)]]B,(ab)=1, u=01 u=abc, (4.15)

peP peP

where a+b+c=1. We note that B, (a,b) and Bp(a,b) are the crossing symmetric standard and p-

adic Veneziano amplitudes for scattering of two open tachyon strings. Introducing real, p-adic and
adelic zeta functions as

¢ (@)= .[R exp(— ﬂXZ)XE—lde = n_:r(gj . (4.16)

o (a)= o jQp QQx|p)x|zfldpx = ﬁ Rea>1, (4.17)
sy(@)=¢. ()¢, (a)=¢.(a)(a), (4.18)

one obtains
{al-a)=¢,(a), (4.19)

where ¢,(a) can be called adelic zeta function. We have also that

-1

¢(@)= ¢ @ T¢,(a)=¢. (@) (a)= [ expl- 2 | dx

peP 1_p IQqux|p)X|z_lde' (4-19b)

Let us note that exp(— nxz) and Qﬂx|p) are analogous functions in real and p-adic cases. Adelic

harmonic oscillator has connection with the Riemann zeta function. The simplest vacuum state of
the adelic harmonic oscillator is the following Schwartz-Bruhat function:

wA(x):Z‘l‘e‘”xngQXP‘p), (4.20)

whose the Fourier transform

12



)= [ Ak 4 () HQQk ., ) (4.21)

has the same form as y,(x). The Mellin transform of y,(x) is

a)= IWA(X)|x|ad;x = L v, (X d X[ ]

peP 1_ p_:L

Qﬂx|p)x|‘“d X = ﬁr@jn‘zg(a) (4.22)

and the same for (k). Then according to the Tate formula one obtains (4.19).
The exact tree-level Lagrangian for effective scalar field ¢ which describes open p-adic string
tachyon is

1 p? 1 - 1 1
L =———|-=¢p 2p+——0p""|, (423
P g p—l[ 5 » p+1¢’ } (4.23)

where p is any prime number, 0=-07 +V? is the D-dimensional d’Alambertian and we adopt

metric with signature (~+...+). Now, we want to show a model which incorporates the p-adic
string Lagrangians in a restricted adelic way. Let us take the following Lagrangian

n-1 ——{——gﬁZn 2¢+Z 1} (4.24)

n>1 n>1 n n>1 n>1

Recall that the Riemann zeta function is defined as

{(S):Z%znl_l_s, s=o+ir, o>1. (4.25)
nx1 p p

Employing usual expansion for the logarithmic function and definition (4.25) we can rewrite (4.24)
in the form

11 O
_?{Eﬁ(zp +¢+In(1- ¢)} . (4.26)

where |¢| <1.¢ (%) acts as pseudodifferential operator in the following way:

2

O 1 ixk k2 e 2 _ 12 2
4”(—]¢(x)=wje ;(—?}z)(k)dk, —k*=kZ2-k?’>2+g, (4.27)

where ¢ (k je “g(x)dx is the Fourier transform of ¢(x).

Dynamics of this fleld ¢ is encoded in the (pseudo)differential form of the Riemann zeta function.

When the d’Alambertian is an argument of the Riemann zeta function we shall call such
string a “zeta string”. Consequently, the above ¢ is an open scalar zeta string. The equation of

motion for the zeta string ¢ is

13



E = 1 ixk _k_2 7 :L
4(2)¢‘(zﬂ)vfkg_w>2+ge é[ 2J¢(k)dk L am)

which has an evident solution ¢ =0.

For the case of time dependent spatially homogeneous solutions, we have the following equation of
motion

—+

~ 0! 1 gt Ko ) _ #(t)
é[T}ﬁ(t)— @) Jipis® 4(7}» (ko )k, = s ¥

With regard the open and closed scalar zeta strings, the equations of motion are

n(n-1)

U 1 ixk kz Y _ 2 n
?(Ej¢=wje C(—?j(é(k)dk—;a ¢", (4.30)

-

and one can easily see trivial solution ¢ =6 =0.

(Zflr)D I e%(_ kT:)é(k)dk i 2[6 ’ 28: ;39 e —1)} . (43D)

The exact tree-level Lagrangian of effective scalar field ¢, which describes open p-adic string
tachyon, is:

mD 2 ,iz
Ly =—% P {—l(ﬂp i ”¢+L(/)p”], (4.32)
o p+1

where p is any prime number, 01=-87 +V? is the D-dimensional d’Alambertian and we adopt
metric with signature (—+...+), as above. Now, we want to introduce a model which incorporates
all the above string Lagrangians (4.32) with p replaced by ne N . Thence, we take the sum of all
Lagrangians £, in the form

L=c.e=3C my 0’ —1¢n_2?‘5¢5+i¢”+1 (4.33)
n=1 " n=1 " gﬁ n-1 2 n+1 ' '

whose explicit realization depends on particular choice of coefficients C_, masses m, and coupling
constants g, .
Now, we consider the following case

C :n—l

= (4.34)
where h is a real number. The corresponding Lagrangian reads

mD 1 & _iz_h +90 n—h
L =—]—-— n 2m +y ——g" 4.35
RO ID Ve A I CED
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and it depends on parameter h. According to the Euler product formula one can write

0
-—-h

+00 o B 1
én S ) e i )

g(s):ioiS:H L s—o+ir, o1, (4.37)

an S, l-p7

which has analytic continuation to the entire complex s plane, excluding the point s =1, where it
has a simple pole with residue 1. Employing definition (4.37) we can rewrite (4.35) in the form

m°P| 1 O 2n"
Lh_?|:_§¢§(2m2 +hj¢+§m¢ } (4.38)

O
2m?

+ h} acts as a pseudodifferential operator

Here ;(

;(%+ h)qﬁ(x) - (2%),3 [ eixkg[— anjz + h}}(k)dk . (4.39)

where ¢(k)= I e™g(x)dx is the Fourier transform of ¢(x).

We consider Lagrangian (4.38) with analytic continuations of the zeta function and the power series
-h
n n+l ;
——¢"" e,
Zn+1¢
m°| 1 O &an”
L=—|—-= +hlg+ACY ——¢"" |, (4.40
- d g e acT | o

where AC denotes analytic continuation.
Potential of the above zeta scalar field (4.40) isequal to — L, at 1=0, i.e.

_M 8 h)- ACS g
V()= z[zé(h) ACY J (4.41)

where h =1 since ¢(1)=c0. The term with ¢ -function vanishes at h = -2,—4,-6,.... The equation
of motion in differential and integral form is

;( = +hj¢= Acfn-“go”, (4.42)

2m?
L ol - K B Odk = ACS g (443
(ZH)DIRDe ( _2m2+ () - nZ:;,n ¢ ) ( )
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respectively.

Now, we consider five values of h, which seem to be the most interesting, regarding the
Lagrangian (4.40): h=0, h=4+1 and h=+2. For h=-2, the corresponding equation of motion
now read:

SIS PO S S S RV e
;(2m2 2j¢_(27z_)DJ.RDe é/[ 2m2 2]¢(k)dk_(l_¢)3' (4-44)

This equation has two trivial solutions: #(x)=0 and ¢(x)=-1. Solution #(x)=-1 can be also
shown taking ¢ (k)=-5(k)27)° and ¢(-2)=0 in (4.44).
For h =-1, the corresponding equation of motion is:

EEE PO S S L SN b A
é/( 2 1j¢ (27Z_)DJ.RDe ;( 2m2 1]¢(k)dk (1_¢)2' (4-45)

1
o
The equation of motion (4.45) has a constant trivial solution only for ¢(x)=0.
For h =0, the equation of motion is

where £(-1)=

- — 1 ixk _ k2 ~ _L
g(zmz}é‘(gﬂ)DfRoe é{ 2m2J¢(k)dk—l_¢. (4.46)

It has two solutions: ¢ =0 and ¢ =3. The solution ¢ =3 follows from the Taylor expansion of the
Riemann zeta function operator

(5 ]=¢(0)+Z§(n)(o)( =] e

2m?

as well as from ¢ (k)= (27)°35(k).
For h =1, the equation of motion is:

1 ixk k2 ~ __1 oy
(27) Jo® 5[— 2m2+1]¢(k)dk— SIn(—g), (4.48)

where £(1)=c0 gives V,(g)=oo.
In conclusion, for h =2, we have the following equation of motion:

1 ixk k? = _ ¢|I’1(1—W)2
WIRDE C;(_W+2j¢(k)dk_ ‘L—ZW dw. (4.49)

Since holds equality




one has trivial solution ¢ =1 in (4.49).
2

Now, we want to analyze the following case: C, = In this case, from the Lagrangian (4.33),

n?

_m’l 1 o O ¢
L_gz{ 2¢{§[2m2 1j+§(2m2j}¢+1_¢] (4.50)

The corresponding potential is:

\V; :_m_DM 2 (451
W= g? @

we obtain:

We note that 7 and 31 are prime natural numbers, i.e. 6n+1 with n=1 and 5, with 1 and 5 that are
Fibonacci’s numbers. Furthermore, the number 24 is related to the Ramanujan function that has 24
“modes” that correspond to the physical vibrations of a bosonic string. Thence, we obtain:

© COS 7tXW'

e Vx| o
4| antilog > CO:Zh”X : ;42
w' W

D 1. e 4 g, (itw
()= M 3L-T¢ (itw)

2 ¢ = . (4.51b)
g 241-9¢) | N(lo +11\/§] \/[10+7\/§”
og 4 + 0
The equation of motion is:

H Ot 2 Zj}é: ¢k?¢—_1;2+ J e

Its weak field approximation is:

| O
{g(Zmz —1J+;(2m2j—2}¢ =0, (4.53)

which implies condition on the mass spectrum

M2 M 2
2o 22 o

From (4.54) it follows one solution for M? >0 at M?* ~ 2.79m? and many tachyon solutions when

M? <—-38m?.
\/§+1
2

nd ¢ =

We note that the number 2.79 is connected with ¢ = @ a , 1.e. the “aurea” section

and the “aurea” ratio. Indeed, we have that:

17



2
V5 +1 2 V5-1) ) 2195422278,
2 2 2

Furthermore, we have also that:

(@) + (@) ™" =2,618033989 + 0,179314566 = 2,79734

With regard the extension by ordinary Lagrangian, we have the Lagrangian, potential, equation of

2
. . n“-1
motion and mass spectrum condition that, when C, =

L 2 =¥ = I WX = Y] PR e S
_gz[Z{mz g[ 1] 5[2m2j 1}¢+2|n¢ +1—¢] (4.55)

m> 1-1 —L] 4.56
{ 0)+1-Ing’ p (4.56)

, are:

- 2

{;[Zm j o) }zﬁ gt g 0t a5

M M2) M?
g(Zmz 1j+§(2m2j_ﬁ' (4.58)

In addition to many tachyon solutions, equation (4.58) has two solutions with positive mass:

M?~2.67m? and M? ~ 4.66m?>.
We note also here, that the numbers 2.67 and 4.66 are related to the “aureo” numbers. Indeed, we

have that:
2
V5 +1 T V5-1 ~ 26798,
2 25 2

(\/§+1T+(\/§+1J [\/_-i-l
22

2 2 2

j 4.64057 .

Furthermore, we have also that:

(@) + (@)™ =2,618033989 + 0,059693843 = 2,6777278;
(@' +(@)*'" = 4537517342 + 0,1271565635 = 4,6646738.

L Here 1(n) is the Mobius function, which is defined

Now, we describe the case of C, = u(n) nn_z

for all positive integers and has values 1, 0, — 1 depending on factorization of n into prime numbers
p . Itis defined as follows:

0, n=p’m
p(n)=1(-1f, N=pp,..p. P =p; (459)
11 n :1,(k :O)

18



The corresponding Lagrangian is

mD e~ ( — n+l
Ly =Cobo+™ 7| - Z Z (4.60)
n=l .2

nz 2 =1

Recall that the inverse Riemann zeta function can be defined by

-S4 ") sooiit, o1, (4.61)
Now (4.60) can be rewritten as

D

m 1 1 oo
L, =Coky g _E¢§[—Dj¢+jo M(g)dg |, (4.62)

2m

where M(g)=D"" 1(n)p" =p—¢* —¢° —¢° + ¢° — 4" + §° — ¢ —... The corresponding potential,
equation of motion and mass spectrum formula, respectively, are:

m®[C,
vﬂ(¢):—Lﬂ(m=o)=?[2¢ ~Ing?)-g - [ d¢] (4.63)
— < p- M)~ Cy 4 -2C,Ing =0, (464
= "
(o)
L —cox:mco—l:o, ¢ <<1, (4.65)

M 2
where usual relativistic kinematic relation k*=—k2+k?=-M? is used.
Now, we take the pure numbers concerning the egs. (4.54) and (4.58). They are: 2.79, 2.67 and

\/§+1
2

4.66. We note that all the numbers are related with ® =

, thence with the aurea ratio, by the

following expressions:

279=(@)*""; 267 (@) +(@)*"; 466=(@) +(®)*"". (4.66)

5. Mathematical connections.

With regard the Section 1 and 3, we have the following possible interesting mathematical
connections between the egs. (1.1), (1.8), (1.10) and (3.3) and the equations (4.28), (4.30), (4.31),

19



(4.43), (4.45), (4.46), (4.48), (4.49) and (4.62) of the Section 4. Indeed, with the egs. (4.28), (4.30)
and (4.31), for example, we obtain that:

n n=1
5] 1) 2 = of Blax=s] o
1 \n<x X 1X 1
:i—sj%}ldx, c>1
s-1 71X

- ﬁjkg-mﬂew? [ ‘ j¢7 Kk =—2— =

i o p
e e o

n>1

\_/
=
W
M
%3

N:
\SEH
U

w(x) =lim, iaﬂ [—@jxs E X>0=

2 —iT C(S) S
1 ixk k2 ~ B ¢
- W-[ké—li%uge é/[ ? ¢(k)dk _m —

N2

. (o)
:%je‘*kg[—k—}»(k)dk:zg 2 g =

n>1

ixk n 1) ”(”2*1)_1 n+l _
je ;( j k)dk = 2[ n+1)e (6" -1)|. (.2
Xp+1 X—2n+1
v,(X) = Jw(t)dt—— - Z o) - () - xlog(27) + const =

1 ixk k2 \~ ¢
:W'[kz“zzﬂwe ¢ 9 ¢ (k)dk = — =

J‘elxké/[_ r
n(n-1)

:(L)Dje“k;(—{jé(k)dkzM[enz+”(”_1)9 2 Yp-1)]. (53)

\_/
S
A
\_/
o
~
I

A\g
%:!
N7
QSV
U

20



| P(x,d) _z(xad) [<kC3(x),k =1,C3(x) :%

X xInx
or
P(xd) 1 ¢ 1 ks
X (P(d)'!t(lnt)zdtl_o(x )
L ixk _k_2 ~ :L
:(Zﬂ)DJ.ké—E%zHe él[ 2j¢(k)dk 1 ¢:>

n>1

_ n(n—l)_:L
je‘*k;( J k)dk = z[en n+1§e 2 (g -1)|. (5.4)

nx>1

1Djeixk§[_k] K)dk = Zgnnzl¢:>

In conclusion, with egs. (4.46) and (4.62), for example, we have the following mathematical
connections:

N X -1y X
= SJ-( 1] s+l SI [Sngl dx = SI sil }dX
1\nx ) X 1 X 1 X
s X
:——s.[—}ldx, c>1
S_ XS+
1

-2n+1

T X X
v, (X) = iw(t)dt—?— ;p(p ) 2 () xlog(2z) + const =

oy, 1 ixk k? KA
=& g P o f;( = }»(k)dk— e
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| P(x,d) =(xa,d) |< kC3(x),k =1,C3(x) -
X XInx Inx
or
Pt 1 E 1 ok
X (P(d)Jz.t(Int)zd”_O(X )

- _ 1 ik | k? \~ —L
jg(zmzj‘é‘(gﬁ)DfRne 5( 2m2j¢(k)dk—l_¢. (5.8)

=Cly 7 —ymm J, M)y | (59)

L _iL_a”T _“§K§2 SEEE -
w09 =lim, , j[ C(S)jx L X>0

mD

:>C04BO +? -

¢+ j (p)dg|. (5.10)
e

-2n+1

v,(x) = Jw(t)dt—%—z (p+1) 22:(2n_1)—xlog(27r)+const3

D
= C,L, +% —-=
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| P(x,d) _z(xad) [<kC3(x),k =1,C3(x) :%

X xInx
or
X 1
P(x,d)_ 1 J- 1 2dt|:0(x5+8)
X o(d) 5 t(Int)

D

1
=Gt 775

b+ [ M| G12)
o)
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