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pairs of odd numbers 
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A proof of Fermat Last Theorem (FLT) is proposed. FLT was formulated by Fermat in 1637, and 
proved by A. Wiles in 1995. Here, a simpler approach is studied. The initial equation x^n + y^n = 
z^n is considered not in natural, but in integer numbers. It is subdivided into four equations based on 
parity of terms and their powers. Then, each such equation is studied separately. One equation is 
considered using presentations of pairs of odd numbers with a successively increasing factor of 2^r. 
The other equation is equivalent to the first one with regard to absence of solution. The third 
equation is considered using binomial expansion of its terms. The fourth equation uses presentation 
of pairs of odd numbers with a factor of four, and transformation to the second power. All four 
equations have no solution in integer numbers. Thus, the original FLT equation has no solution too. 
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1. Introduction  
One of the reasons that FLT still attracts people is that the known solution [1] is too complicated. 
Earlier, a general approach for analysis of Diophantine equations, and FLT equation in particular, 
was proposed in [2]. Here, it is presented with some additions.  
 
2. FLT sub-equations  
Let us consider an equation. 

aaa zyx =+                   (1) 
The power a is a natural number 3≥a . Unlike in the original FLT equation, here, x, y, z belong to 
the set of integer numbers Z. We assume that variables x, y, z have no common divisor. Indeed, if 
they have such a divisor d, both parts of equation can be divided by ad , so that the new variables 

dxx /1 = , dyy /1 = , dzz /1 =  will have no common divisor. We will call such a solution, without 
a common divisor, a primitive solution. From the formulas above, it is clear that any non-primitive 
solution can be reduced to a primitive solution by dividing by the greatest common divisor. The 
reverse is also true, that is any non-primitive solution can be obtained from a primitive solution by 
multiplying the primitive solution by a certain number. So, it is suffice to consider primitive 
solutions only.  
 Values x, y, z in (1) cannot be all even. Indeed, if this is so, this means that the solution is not 
primitive. By dividing it by the greatest common divisor, it can be reduced to a primitive solution. 
Obviously, x, y, z cannot be all odd. So, the only possible combinations left are when x and y are 
both odd, then z is even, or when one of the variables, x or y, is even, and the other is odd. In this 
case, z is odd. Thus, equation (1) can be subdivided into the following cases, which cover all 
permissible permutations of equation's parameters. 
1. na 2= ;   12 += kx ; 12 += py . Then, z is even, mz 2= . 
2. 12 += na ;  12 += px ; my 2= .   Then, z is odd, 12 += kz . 
3. 12 += na ;  12 += kx ; 12 += py . Then, z is even, mz 2= . 
4. na 2= ;   12 += px ; my 2= .   Then, z is odd, 12 += kz . 
 
3. Case 1 
Let us assume that (1) has a solution for the following terms. 

nnn mpk 222 )2()12()12( =+++               (2) 
Binomial expansion of the left part of (2) is as follows. 
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Transforming (3), we obtain 
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The lowest power of terms 2k and 2p in the sum is 2)22(2 =−− nn . In other words, all summands 
in the sum are even, having a factor of two in a degree of two or greater. The second term has a 
factor of four. Let us divide both parts of (4) by two. We obtain. 
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The first two summands in the left part of (5) are even. So, the left part presents the sum of two even 
terms and the number one. Thus, the left part is odd.  
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 Since we consider the values of 42 ≥n , the power 3)12( ≥−n , so that the right part is even. So, 
(5) presents an equality of the odd and even integer numbers, which is impossible. Thus, the initial 
assumption that (2) has a solution is invalid. So, it has no solution in integer numbers, since the 
parity of the right and left parts of (5) does not depend on algebraic signs of variables. 
 
4. Cases 2 and 3 
4.1. Sums with merging terms 
We will need several Lemmas for these cases. 
 
 Lemma 1: Each non-negative integer number n can be presented in a form  

i

r

i

i Kn ∑
=

=
0

2                   (6) 

where }1,0{=iK .  
 
Proof: We will use method of mathematical induction. Lemma is true for numbers 123 1+= ; 

024 2+= ; 125 2+= . Let us assume that (6) is valid for number n. Then, the next number 1+n  is 
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If 00 =K , then (7) converges to the form (6) as follows. 
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where 110 =K  for 0=i , ii KK =1  for 1≥i . 
If 10 =K , we may have potentially a "falling domino" effect, when the previous term merges with 
the next one, thus transforming this next term into a term, whose power of two is greater by one.  
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So, 010 =K .  
 In (9), we should merge the summand 12  with the term 1

12 K , which becomes )1(2 1
1 K+ . For 

the values of }1,0{1 =K , this new term can be equal to accordingly }2,2{ 2 . For the first value, 
111 =K . The second value of 22  should be merged with the term 2

22 K , while 11K  becomes zero, 
since in this case we don't have non-zero terms with 12 . The merge with the term 2

22 K  results in a 
term )1(2 2

2 K+ . For the values of }1,0{2 =K , it accordingly produces the values of }0,1{12 =K , 
Zero value occurs because when 12 =K , we have 3

2
2 2)1(2 =+ K , and the term should be merged 

with the term 3
32 K .  

 Formally, one can assume that such a merge happened at an arbitrary step with the term s
s K2 . 

The resultant merged term is )1(2 s
s K+ . Then, for }1,0{=sK  we have }0,1{1 =sK . For 1=sK , the 

new term should be merged with the term 1
12 +
+

s
s K , thus making 01 =sK .    

 So, the form (8) is preserved in a general case as well.  Thus, the assumption that the procedure 
is repeated at an arbitrary step led to the same values of sK1  for the corresponding values of sK , as 
it was obtained for particular powers, and also led to a merge at the next step when 1=sK .  
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 The procedure is repeated until the term with a zero value of iK  is met, or a new non-zero term 

1
12 +
+

r
r K  is created at the very end, by merging the last term r

r K2  in the sum, and the value of r2  
obtained from the merge of previous terms. In all instances, the form (8) is preserved. So, the sum 
(8) eventually becomes 
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where }1,0{1,1 =+rK . 
 So, the presentation (6) is valid for number (n+1). According to principle of mathematical 
induction, this means the validity of (6) for all numbers. This proves the Lemma. 
 
 Corollary 1: Any negative integer number n can be presented in a form 
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where }0,1{−=iK .  
 
Proof: The proof follows from Lemma 1. For n < 0, we can write 
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where ii KK −=1 . According to Lemma 1, }1,0{=iK . So, }0,1{1 −=iK . This proves the Corollary. 
 
 Corollary 2: Any integer number n can be presented in a form 
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where }1,0,1{−=iK .  
 
Proof: Suppose n > 0, and in presentation (13) 1

0
=iK , ri ≤≤ 00 , so that the appropriate term is 

0

02 i
i K . We can add and subtract the value of 02i , such that the term becomes ]2)22[( 00

0

0 ii
i

i K −+ . 

Then, we can assume that 1
0

−=iK , while the summand 00

0

0 22)22( ii
i

i K ×=+  should be added to the 

term 1
1

0

02 +
+

i
i K , in the same way, as it was done in Lemma 1.  

 Similarly, when n < 0, one can obtain a positive coefficient 1
0
=iK . This proves the Lemma. 

 
4.2. Presentation of equation (1) for cases 2 and 3  
For the case 3, we have 12 += na ; 12 1 += kx ; 12 1 += py . Then, (1) transforms to 

1212
1

12
1 )2()12()12( +++ =+++ nnn mpk             (14) 

For the case 2, the power 12 += na ; 12 += px ; my 2= . Then, z is odd, 12 += kz .  
121212 )12()2()12( +++ +=++ nnn kmp  

It can be rewritten in a form 
121212 )2()12()12( +++ =+−+ nnn mpk             (15) 

We can present m as 12 mm μ= , where 0≥μ , and 1m  is an odd number. Then, (15) transforms to 
NNNN mpk 1

)1(2)12()12( +=+−+ μ               (16) 
where 12 += nN .  
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 Note that the value )1( += μNrt  is a threshold one. If we divide both parts of the equation by 
r2 , then for trr <  the right part is even, for trr =  it is odd, and for trr >  it is rational. 

 The left part of (16) can be presented in a form (13). It can be rewritten as follows. 
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Here, 0i  is a minimum value of the index, for which 0≠iK .  
 The following Lemma gives an example of using the presentation from Lemma 1. 
 
 Lemma 2: Equation (16), and consequently (15), has no solution in integer numbers for 3≥N  
when tri ≠0 , where 12 += nN . 
 
Proof: Dividing both parts of (17) by 02i , one obtains 
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Since 0ii > , all terms in the sum in the left part are either zeros or even, so that the sum is even, 
while }1,1{

0
−=iK  is odd. So, the left part is odd. Excluding tri ≠0 , two scenarios are possible. 

(a) 00 >− irt . In this case, the right part is even, while the left part is odd. So, (18), and consequently 
(16), has no solution. 
(b) 00 <− irt . Since 1m  is odd, Nm1  is odd too. Thus, the right part triNm −02/1  is rational, while the 
left part is an odd integer. So, (18) and the original equation (16) have no solution in integer 
numbers. This proves the Lemma. 
 
In the following, we will use a presentation of pairs of odd numbers with a factor of r2 , where 1≥r , 
whose properties are considered below.  
 
4.3. Presentation of pairs of odd numbers with a factor of 2r 
Let us consider an infinite set of pairs of odd integer numbers { )12( +k , )12( +p }, where k and p are 
integers. Each set { )12( +k } and { )12( +p } can be accordingly presented with a factor of four as 
sets { )14( +t , )34( +t } and { )14( +s , )34( +s }, where t and s are integers, )( ∞<<−∞ t , 

)( ∞<<−∞ s . Table 1 shows four possible pairs of odd numbers, expressed with a factor of four, 
composed from these terms. Note that such a presentation produces a complete set of pairs of odd 
integer numbers, since we considered all possible combinations of parities of k and p. (The 
completeness will be proved later for a general case of presentation with a factor r2 ). 
 We can continue presentations of pairs of odd numbers using a successively increasing factor of 

r2 . Initial pairs for the next presentation level with a factor of 32  are pairs in cells (2,1)-(2,4). Table 
2 shows the presentation with a factor of 32 for two pairs from cells (2,3), (2,4) in Table 1. Note that 
index '3' corresponds to power r=3 in a presentation factor r2 . Such correspondence of the index to 
the power of two in a presentation factor will be used throughout the paper. 
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Table 1. All possible pairs of odd numbers, expressed with a factor of four. 
 

 0 1 2 3 4 
1 
 

k 
p 

2t2 
2s2+1

2t2+1
2s2 

2t2 
2s2 

2t2+1 
2s2+1

2 2k+1
2p+1

4t2+1 
4s2+3 

4t2+3 
4s2+1

4t2+1 
4s2+1

4t2+3 
4s2+3

 
Table 2. Pairs of odd numbers, expressed with a factor of 32 , corresponding to initial pairs  
[ 14 2 +t , 14 2 +s ], [ 34 2 +t , 34 2 +s ]. 
  

 0 1 2 3 4 
1 t2 

s2 
2t3 
2s3+1

2t3+1
2s3 

2t3 
2s3 

2t3+1 
2s3+1

2 4t2+1 
4s2+1

8t3+1 
8s3+5 

8t3+5 
8s3+1

8t3+1 
8s3+1

8t3+5 
8s3+5

3 4t2+3 
4s2+3

8t3+3 
8s3+7 

8t3+7 
8s3+3

8t3+3 
8s3+3

8t3+7 
8s3+7

 
4.3.1. The concept of the proof 
Each pair of terms in Tables 1 and 2, and in subsequent presentations, defines an infinite set of pairs 
of odd numbers. All such pairs of terms at each presentation level produce the whole set of pairs of 
odd numbers. The infinite sets, defined by pairs of terms, are unique and do not intersect (this will 
be proved later). At each presentation level, equation (15), corresponding to certain pairs of terms, 
has no solution. Such "no solution" pairs accumulate through subsequent presentation levels, 
producing a greater and greater total fraction of pairs of terms, for which (15) has no solution. In the 
limit, this total "no solution" fraction becomes equal to one, which would mean that (15) has no 
solution for all possible pairs of odd numbers.  
 At the first presentation level, with a factor of 22 , we begin with the whole set of all possible 
pairs of odd integer numbers, represented as a pair of terms { )12( +k , )12( +p }, k and p are integers. 
Equations, corresponding to a half of pairs from this set, have no solution. Then, the half of pairs, for 
which equations have no solution, is set aside (the "no solution" fraction nsf2 ). The remaining pairs 
compose an "uncertain" fraction, for which solution is uncertain. The "uncertain" fraction is equal to 

2/11 22 =−= nsu ff .  The following example illustrates the approach. (The actual algorithm is 
different, but the general idea is similar.)  
 Equation (15) can be transformed as a difference of two numbers in odd powers. 
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Dividing both parts by two, one obtains 

∑
=

− =++−
n

i

niin mmpkpk
2

0

22 )2()12()12()(             

Here, the sum is odd as an odd quantity of odd numbers. If the factor )( pk −  is odd, then the left 
part is odd, while the right part is even (since n > 0). This means that there is no solution in this case. 
The value of )( pk −  is odd when one of the terms is odd and the other is even, which are the values 
of k and p in cells (1,1), (1,2) in Table 1, corresponding to pairs [ 14 +t , 34 +s ] and [ 34 +t , 14 +s ]. 
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The change of algebraic signs of k and p does not change the parity of the left part. So, the result is 
valid for integer numbers k and p. When 0)( =− pk , the left part is zero, while the right part is an 
integer, so that there is no solution in this case. 
 When )( pk −  is even, both parts of equation are even, and solution is uncertain. This 
corresponds to values of k and p in cells (1,3), (1,4) in Table 1, with corresponding pairs of terms 
[ 14 +t , 14 +s ] and [ 34 +t , 34 +s ]. These "uncertain" pairs should be used as initial pairs for the next 
presentation level with a factor of 32  (Table 2).  
 At the presentation level with r=3, we again find that a half of pairs (the ones in bold in Table 2) 
correspond to a "no solution" fraction, which is found as 4/12/123 =×= uns ff . The fraction of 
remaining uncertain pairs is accordingly 4/14/12/1323 =−=−= nsuu fff . Therefore, two 
presentation levels produce the following total fraction of pairs, for which (15) has no solution, 

4/34/12/1323 =+=+= nsnsNS ffF . The "uncertain" fraction 4/14/313 =−=uf , gives initial pairs for 
the next presentation level (with r=4), and so forth, until in infinity the "no solution" fraction 
accumulates to one. (The real situation with the "no solution" fractions is slightly more complicated, 
since such fractions can be greater than 1/2, when equations, corresponding to certain pairs of terms, 
have no solution for all pairs, and such a branch is closed. However, the total "no solution" fraction 
is still equal to one in the limit.) 
 Above, we used the term "pair" in two connotations - as a pair of terms, such as 
[ 14 2 +t , 14 2 +s ], which defines an infinite set, and as a pair of particular odd numbers within a set. 
In the following, for brevity, the term "pair" will mean a pair of terms, generating a set, unless it is 
clear from context that particular pairs of odd numbers are meant. In less obvious situations, the 
elements of a set, particular pairs, will be called "pairs of odd numbers". 
 
4.3.2. Properties of presentations of pairs of odd number with a factor of r2  
 
 Lemma 3: Successive presentations of odd numbers with a factor of r2 cannot contain a free 
coefficient greater or equal to r2 . 
 
Proof: Presentations of odd numbers with factors 22  and 32 satisfy this requirement. Let us assume 
that this is true for a presentation level r, that is the free coefficient v in a term )2( vtr

r +  satisfies 
the condition rv 2< . At a presentation level (r + 1), this term is presented as )22( 1

1 vt r
r

r +++
+  or 

)2( 1
1 vtr

r ++
+ . In the latter term, the condition is already fulfilled. In the first term, 

12222 +=+<+ rrrr v , since rv 2<  is true for level r by assumption. So, assuming that the 
condition is fulfilled at the level r, we obtained that it is also fulfilled at the level (r + 1). According 
to principle of mathematical induction, this means the validity of the assumption. This proves the 
Lemma.  
 
The number of pairs grows for successive complete presentations in a geometrical progression with a 
common ratio of four, since each initial pair produces four new pairs at the next presentation level. 
(Each new pair corresponds to one of the four possible parity combinations of input parameters, like 

2t , 2s  in Table 2, whose parity is expressed through 3t , 3s .)  
 For the following, we need to prove that (a) such a presentation produces the whole set of pairs 
of odd numbers at each level; (b) the presentation is unique, that is two different pairs of odd 
numbers cannot produce the same pair of odd numbers at higher levels of presentation.  
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 Lemma 4: Successive presentations of pairs of odd numbers with a factor of r2 , 2≥r , produce 
the same set of pairs of odd numbers at each presentation level, both for subsets of such pairs, and 
for the whole set of pairs of odd integer numbers. Such presentations are unique, that is two 
different pairs of odd numbers from the previous levels cannot correspond to the same pair at higher 
presentation levels. 
 
Proof: The equivalency of sets of pairs of odd numbers at each presentation level r follows from the 
fact that each next presentation level (r+1) is obtained prom the previous one through branching of 
each initial pair (from level r) into all four possible combinations of parities of parameters tr and sr, 
so that there are no any other possible combinations of parities. This means that any pair from level r 
is fully represented at level (r+1), although in the form of four pairs. Indeed, the initial term 

)2( vtr
r +  can be presented at level (r+1) only in two forms (for even and odd values of t), that is as 

vtvt r
r

r
r +=+ +

+
+ 1

1
1 2)2(2 , or vtvt r

r
r

r
r ++=++ +

+
+ 22)12(2 1

1
1 . Similarly, the term )2( wsr

r +  can also 
be represented in the same two forms only. So, only four combinations of pairs, containing both t 
and s parameters, are possible. These combinations are unique, because the combinations of free 
coefficients are unique, which are as follows: [v,w], [ vr +2 ,w] , [v, wr +2 ], [ vr +2 , wr +2 ]. 
Consequently, no intersection of thus defined sets of pairs of odd numbers is possible.  
 The reverse is also true, that is four pairs at presentation level (r+1) converge to one initial pair 
at lower level r. Indeed, two terms with parameter t converge to the same term )2( vtr

r + . 
vtvtvt r

r
r

r
r

r +=+=+ ++
+ 2)2(22 11
1  

vtvtvt r
r

r
rr

r
r +=++=++ +

+
+

+ 2)12(222 1
1

1
1  

where }.12,2{ 11 += ++ rrr ttt  
Note that the same convergence to a single term can be obtained for a general case of presenting two 
terms at level (r+1) using Lemma 1, and then transforming them to level r.  
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Since }1,0{=rK , we obtain the same set }.12,2{ 11 += ++ rrr ttt   
 Similarly, one can convert two possible terms with parameter s at level (r+1) to a single term 
with parameter s at level r. So, four pairs at level (r+1), indeed, converge to one pair 
[ vtr

r +2 , wsr
r +2 ] at level r. Therefore, such transformations from level r to level (r+1) and 

backward include all possible, while non-intersecting, pairs of terms. This means that presentations 
of pairs of odd numbers at these two levels are equivalent, that is for each pair of odd numbers at 
level r there is only one pair of odd numbers at level (r+1), and vice versa.  
 
Another approach involves arrangements with repetitions and their extension to infinite sets. For 
that, we need to use the notion of density for finite, and asymptotic density for infinite, countable sets 
[3,4]. In the last case, the asymptotic density should be defined as the limit of the ratio A(n)/n, that is 
of the count of certain elements in a given set of n elements, when ∞→n , if such a limit exists.  
 Let us consider a set of 2n odd numbers at level r. The number of arrangements of two (the 
number of pairs) with repetitions is  

222
2 4)2( nnP n ==                  (20) 

At the next level of presentation (r+1), the density of the set of odd numbers for each term is twice 
as less, that is n (since the presentation factor increases twice, and so the distance between the 
numbers in the set increases twice as well). For instance, the presentation (4t+1) misses each next 
number compared to the presentation (2k+1). Indeed, on a finite interval [a,b], the quantity rQ  of 
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numbers )2( vr +  is equal to ]2/)[( r
r abQ −= . The quantity of numbers )2( 1

1 vr ++  is  
]2/)[( 1

1
+

+ −= r
r abQ . Here, the square brackets denote an integer part. The density rr QQ /1+=α  can 

be equal only to 1/2, or )12/()1( ++ hh , where 12 += hQr . For instance, in the interval [4,14], the 
number of multiples of four is three, the number of even numbers is six, and so the ratio is 1/2. On 
the interval [4,16], the ratio is 4/7. In the limit, when ∞→h , and the left a and right b boundaries of 
the interval go to infinities, that is −∞→a , ∞→b , the asymptotic density 

2/1)12/()1(lim =++∞→ hhh . It is in this sense of asymptotic density that we can compare infinite 
countable sets of integer numbers. (The notion of cardinality is not applicable in this case.) So, the 
density of sets, defined by each pair at the next presentation level, is twice as less compared to the 
density of the set at the previous presentation level. Thus, for a finite set 2n, the size of each new set 
is equal to n. Accordingly, for each new pair out of four (such as pairs in cells (2,1)-(2,4) in Tables 1 
and 2), the number of arrangements of two with repetitions is 2

2 nPn = , and the total number of 
arrangements for all four new pairs is 2

2 44 nPn = , that is the same as for the original set in (20). The 
obtained equality is valid for any n, so that it remains true for subsets of odd numbers when ∞→n . 
So, both presentations, at levels r and (r+1), produce the same (in size) set of pairs of odd integer 
numbers.  
 The uniqueness of presentations with factors r2 can be proved as follows. Let us assume that 
two pairs from a presentation level 0r  produced the same pair of odd numbers in the next 
presentation level )1( 0 +r . That would mean that the number of arrangements of two for one of the 
set of odd numbers at the level )1( 0 +r  will be 12

2 −= nPn , and the total number of arrangements of 
two for this level will be 22 4)14( nn ≠− . The same inequality remains true for any n when ∞→n . 
Thus, we obtained that the number of arrangements in two different presentation levels is different, 
which contradicts to the earlier proved statement that these numbers are the same. This means that 
our assumption is invalid, and the presentations at each level contain unique elements. 
 So, the transformations from the lower presentation levels to higher levels, and from a higher 
level downward, are unique, one-to-one, transformations. This proves the Lemma.  
 
 Corollary 3: The asymptotic densities of four subsets of pairs at level (r+1) are the same.  
 
Proof: It was found in Lemma 4 that the number of arrangements of two with repetitions for each of 
four subsets at the next presentation is 2

2 nPn = , for any large n when ∞→n . Thus, the ratio of 
numbers of elements in these subsets is one for any large n, and so it remains one when ∞→n . This 
proves the Corollary.  
  
It follows from Lemma 4 and Corollary 3 that (a) for any pair of odd numbers in one presentation 
level there is one and only one corresponding pair in another presentation level, which means that 
the sets of pairs of odd numbers at two different levels are the same (provided all pairs from the 
previous presentation level become initial pairs for the next one); (b) asymptotic densities of sets, 
corresponding to four pairs at level (r+1), obtained from one pair at level r, are the same; (c) these 
four sets are non-intersecting. Since these four sets do not intersect, and together define the same set 
of pairs of odd numbers, as at the previous level, this means that the asymptotic density of a union of 
four sets is the same as the density D of the set, produced by the initial pair. Since all four sets have 
the same density, it means that the asymptotic density of each of them is equal to (1/4)D. In other 
words, these four sets are equivalent in terms of densities. This opens another venue of considering 
accumulation of densities instead of fractions of pairs. However, we use the last one.  
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 Note that such successive presentations can be used for any number, not only for the odd ones. 
 
4.4. Datasets of integer numbers with a factor of four, symmetrical relative to zero 
 
 Lemma 5: The dataset Z1 ={ 14 +s }, defined on the set of integer numbers )( ∞<<−∞ s  is 
symmetrical to the dataset Z3 ={ )34( 1 +s }, )( 1 ∞<<−∞ s  relative to zero, meaning that for each 
number w in Z1 there is one and only one number (-w) in the dataset Z3 , and vice versa (meaning 
the swap of datasets).  
 
Proof: Let us consider )1(1 +−= ss . Then, we can write the following for Z3. 

)14()14()3)1(4()34( 1 +−=−−=+−−=+ ssss  
Assuming 11 −−= ss , we obtain for Z1. 

)34()1)1(4()14( 1 +−=+−−=+ sss  
or )14()34( 1 +−=+ ss  
Since the above transformations are one-to-one, it means one-to-one relationship between any 
number in one dataset and its algebraic opposite in another dataset. Note that values of s and 1s  have 
the same ranges of definition, so that they are interchangeable in the above expressions. This proves 
the Lemma. 
 
Fig. 1 illustrates the algebraically opposite numbers in two datasets. 

 
Fig. 1. Symmetrical subsets of odd integer numbers, expressed with a factor of four.  
 
The symmetry of obtained sets can be illustrated by congruencies. Indeed, )4(mod114 ≡+s , while 
the congruency for the matching value )4(mod3)34( 1 −≡−− s  transforms to )4(mod1)14( 1 ≡+− s , so 
that both values are congruent to number one. 
 The following corollary follows from Lemma 5. 
 
 Corollary 4: Dataset Z1 ={ 14 +s }, )( ∞<<−∞ s  can be substituted by dataset  
-Z3 ={ )34( 1 +− s }, )( 1 ∞<<−∞ s , and vice versa.  
 
4.5. Properties of equations, corresponding to pairs of odd numbers with a factor of r2  
This section introduces an equation, to which all equations, corresponding to pairs of odd numbers, 
can be transformed, and explores its properties. 
 
 Lemma 6: Let us consider an equation 

NNN
r

rN
r

r mwsvt 1
)1(2)2()2( +=+−+ μ             (21) 

0 4 8 - 4- 8 (4s+1) 

(4s+3)(4s1+1) 

(4s1+3) 
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where rt  and rs  are integers; N=2n+1; 1m  is odd; v, w are positive odd (possibly equal) numbers, 
obtained through successive presentations of pairs of odd numbers. Then, for any 3≥r , such 
equations can be transformed to the following form 

trrNr
rrrr mcAAst −+=− 2/2/)( 1               (22) 

where ∑
−

=

−− ++=
1

0

1 )2()2(
N

i

i
r

riN
r

r
r wsvtA is an odd integer; c is an integer; )1( += μNrt . 

 
Proof: Equation (21) presents equation (15), rewritten for a presentation with a factor of r2 . 

NN
N

i

i
r

riN
r

r
rr

r mwsvtwvst 1
)1(

1

0

1 2)2()2()]()(2[ +
−

=

−− =++−+− ∑ μ        (23) 

The sum in (23) is odd, because it presents the sum of odd number of odd values. Let us denote it  

∑
−

=

−− ++=
1

0

1 )2()2(
N

i

i
r

riN
r

r
r wsvtA  

Since v and w are odd, their difference is even. Also, in successive presentation of odd numbers, 
according to Lemma 3, rv 2< , rw 2< . Since both values are positive, their absolute difference is 
also less than r2 . According to Lemma 1, (v - w) can be presented as a sum of powers of two with 
coefficients, having the same algebraic sign. Since rwv 2<− , such a sum cannot contain a 

summand with a power greater than 12 −r , when all coefficients iK  have the same algebraic sign. 

NN
ri

r

i

i
rr

r mAKst 1
)1(

1

1
2]2)(2[ +

−

=

=+− ∑ μ              (24) 

Then, (24) can be rewritten as follows. 
NN

ri

r

i

i
rrr

r mAKAst 1
)1(

1

1
22)(2 +

−

=

+⎟
⎠

⎞
⎜
⎝

⎛
−=− ∑ μ            (25) 

Let us denote i

r

i

i Kc ∑
−

=

−=
1

1
2 . Since vwc −= , when vw =  (that is free coefficients are equal), 0=c . 

When vw ≠ , the value of 0≠c . Dividing both parts of (25) by r2 , and taking into account that 
)1( += μNrt , we obtain  

trrNr
rrrr mcAAst −+=− 2/2/)( 1              (26) 

 This proves the Lemma.  
 
 Lemma 7: If 0≠c  in (26), then r

rcA 2/  is a rational number. 
 
Proof: It was indicated in Lemma 6 that when free coefficients w and v are unequal, 0≠c . 

According to Lemma 1, we can always use a presentation i

r

i

i K∑
−

=

1

1
2  with the range of values 

}1,0{=iK , 11 −≤≤ ri , when 0>c , and }0,1{−=iK  when 0<c . Then 

22)12/()12(222 1
1

1

1

1
−=−−=≤= −

−

=

−

=
∑∑ rr
r

i

i
i

r

i

i Kc           (27) 

(Here, we substituted the sum of a geometrical progression with a common ratio of two and the first 
term of two.)  Accordingly 

)2/11(2/ 1−−≤ r
r

r
r AcA                (28) 
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Dividing inequality (28) by a positive number rA , one obtains 

)2/11(2/ 1−−≤ rrc                 (29) 

Thus, rc 2/  is a rational number. The term rA  is an odd number, which, consequently, contains no 
dividers of two. In turn, this means that r

rcA 2/  is a rational number. This proves the Lemma. 
 
 Lemma 8: Equation (22) has no solution for pairs with unequal free coefficients when 

)1( +≤ μNr , while solution is uncertain for pairs with equal free coefficients. 
 
Proof: For trNr =+≤ )1(μ , the term Nrr mt

12 −  in (22) is an integer. According to Lemma 7, the 
summand r

rcA 2/  is rational for pairs with unequal free coefficients. So, the right part of (22) is 
rational. On the other hand, the left part is an integer when 0)( ≠− rr st . This means that (22) has no 
solution in this case. When 0)( =− rr st , (22) presents equality of zero (in the left part), and of a 
rational number, which is impossible too. So, (22) has no solution for pairs with unequal free 
coefficients. 
 When free coefficients are equal, c = 0, and (22) transforms to  

Nrr
rrr mAst t

12)( −=−                 (30) 
For trr < , the right part is even, for trr =  it is odd. The left part can be odd, or even, or zero. So, the 
solution of this equation is uncertain. Consequently, the pairs, whose terms have equal free 
coefficients, should be used as initial pairs for the next presentation level. 
 This proves the Lemma. 
 
Now, we should establish relationships between the sizes of groups, corresponding to pairs with 
equal and unequal free coefficients, and the parity of the term )( rr st −  in (22).  
 
 Lemma 9: When initial pairs, obtained from the r-level of presentation, have equal free 
coefficients, the number of pairs with equal and unequal free coefficients at the next presentation 
level (r+1) is the same and is equal to 1/2 of the whole set of pairs at level (r+1). The group of pairs 
with equal free coefficients correspond to even values of )( rr st − , while pairs with unequal free 
coefficients correspond to odd )( rr st − , so that it is equivalent subdividing the pairs based on parity 
of )( rr st − , or on the basis of equal and unequal free coefficients. 
 
Proof: It follows from Table 1 that for 22 =r , the quantities of pairs with equal and unequal free 
coefficients are equal. Consequently, each group constitutes a half of all pairs. Odd values of 

)(
22 rr st −  correspond to pairs at level r = 3 with unequal free coefficients. Accordingly, even values 

of )(
22 rr st −  correspond to pairs with equal free coefficients. Let us assume that the same is true for 

an initial pair with equal free coefficients at the greater level r, 2≥r . The presentation for all 
possible parity combinations of tr and sr at level (r+1) is shown in Table 3 for one generic pair with 
equal free coefficients.   
 It follows from Table 3 that the number of pairs with equal and unequal free coefficients is the 
same, and is equal to 1/2 of quantity of all pairs. Unequal free coefficients correspond to odd values 
of )( rr st − , while even values )( rr st −  correspond to pairs with equal free coefficients. So, we 
obtained the same results as for 2=r . Since the rest of initial pairs have the same form (in all of 
them free coefficients are equal), depending on the parity of )( rr st − , they also produce a half of 
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pairs with equal free coefficients, and a half with unequal ones. According to principle of 
mathematical induction, this means that the found properties are valid for any presentation level 

2≥r . This proves the Lemma. 
 
Table 3. Presentation with a factor 2r for a pair with equal free coefficients. 
 

 0 1 2 3 4 
1 
 

tr 
sr 

2tr+1 
2s r+1+1 

2tr+1+1 
2s r+1 

2t r+1 
2s r+1 

2t r+1+1 
2s r+1+1 

2 2rtr+vi 
2rsr+ vi 

2r+1tr+1+ vi 
2r+1sr+1+2r + vi

2r+1tr+1+2r +vi
2r+1s r+1+ vi 

2r+1t r+1+ vi 
2r+1s r+1+ vi

2r+1t r+1+2r + vi 
2r+1s r+1+2r +vi 

 
 Corollary 5: Consider successive presentations of pairs of odd numbers with a factor of r2 , 
which use initial pairs with equal free coefficients from the previous level, beginning with one pair. 
Then, the number of initial pairs at level r is equal to 12 −r .  
 
Proof: For a factor of two, we have one pair; for a factor of 22  there are two pairs with equal free 
coefficients (Table 1); for a factor of 32 there are 22  such pairs (Table 2), and so forth. The total 
number of pairs increases by four times for the next presentation level (since each initial pair 
produces four new pairs, one per parity combination of rr st , ). From this amount, a half of pairs 
correspond to pairs with equal free coefficients, according to Lemma 9. The value of 12 −r  reflects on 
the fact that at each presentation level the number of pairs with equal free coefficients doubles. This 
proves the Corollary.  
 
 Corollary 6: For )1( +=≤ μNrr t , the fraction of pairs of odd numbers, for which equation (15) 
has no solution for a presentation level r, is equal to  

1)2/1( −= r
rf                   (31)  

 
Proof: It was shown in Lemma 8 that (22) has no solution for pairs with unequal free coefficients, 
while, according to Lemma 9, these pairs constitute half of all pairs at a given presentation level. 
Thus, (31) is true for 2=r . Let us assume that Lemma is valid for the value of r > 2. According to 
Lemma 8, for trr ≤ , the corresponding equations have no solution for pairs with unequal free 
coefficients, so that initial pairs for the next level are always pairs with equal free coefficients. Then, 
the fraction ruf  of pairs, for which solution is uncertain, is the same, as the fraction of "no solution" 
pairs, that is 1)2/1( −= r

ruf . This fraction contains initial pairs for the presentation level (r+1). At this 
level, all pairs are again divided into two equal groups of "no solution" and "uncertain" pairs, so that 
the "no solution" fraction is 

rr
rur ff )2/1(2/)2/1()2/1( 1

1 ==×= −
+ , 

which is formula (31) for the level (r+1). According to principle of mathematical induction, this 
means validity of (31). This proves the Corollary. 
 
 Lemma 10: At each next presentation level (r+1), the number of pairs, corresponding to odd 
and even values of )( rr st − , are equal.  
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Proof: Suppose we have 1+rp  initial pairs at a presentation level (r+1). Each initial pair produces 
four equivalent (in terms of asymptotic densities, Lemma 4) pairs at level (r+1), one pair per each 
possible parity combination of terms rr st , , listed in the first row of Table 3. These parity 
combinations do not depend, whether the initial pairs have equal or unequal free terms, and also do 
not depend on the value of r compared to tr . Two of these parity combinations (in cells (1,1), (1,2) 
in Table 3) produce odd values of )( rr st − , namely when rr st ,  are equal to [ 12 +rt , 12 1 ++rs ], 
[ 12 1 ++rt , 12 +rs ]. Two other combinations, in cells (1,3), (1,4), produce even values of )( rr st −  for 
pairs [ 12 +rt , 12 +rs ], [ 12 1 ++rt , 12 1 ++rs ]. So, the number of pairs, for which )( rr st −  is odd is equal to 

12 +rp . The number of pairs, for which )( rr st −  is even, is also 12 +rp . So, quantities of pairs, 
corresponding to odd and even values of )( rr st − , are equal. This proves the Lemma. 
 Note: At the presentation level (r+1), odd values )( rr st −  cannot be zero, given the presentation 
of rt  and rs  through t r+1 and s r+1 in Table 3. Even values of )( rr st −  can be zero. However, from 
the perspective of solution, such a zero term can be transformed to a non-zero even term (such a 
transition is addressed by Lemma 11). 
 
4.6. Finding fraction of "no solution" pairs for presentation levels with )1( +=≤ μNrr t  
We found so far that for )1( +=≤ μNrr t the following is true:  
(a) Initial pairs with equal free coefficients, taken from level r, produce equal number of pairs with 
equal and unequal free coefficients at a presentation level (r+1), Lemma 9;  
(b) Corresponding to pairs equations have no solution for pairs with unequal free coefficients, while 
solution is uncertain for pairs with equal free coefficients, Lemma 8; 
(c) Each presentation level adds a "no solution" fraction of pairs equal to 1)2/1( −= r

rf .  
 
So, each previous level supplies to the next presentation level "uncertain" pairs, which constitutes 
half of all pairs of the previous level. These initial pairs have equal free coefficients. This allows 
finding a "no solution" fraction of pairs from successive presentations with a factor of r2 . Since 
each level adds 1/2 of pairs to a "no solution" fraction, the total such fraction rF  is equal to a sum of 
geometrical progression with a common ratio 2/1=q , and the first term 2/12 =f  (the "no solution" 
fraction at level r=2). Fig. 2 illustrates this consideration.  
 So, we can write 

)1/()1( 1
2

2

2
2

2
qqfqffF r

r

i

i
r

i
ir −−=== −

=

−

=
∑∑             (32) 

For example, for r=5, 16/15=rF . Note that if such a progression is valid to infinity, the total 
fraction in the limit would be 

1)2/1/()2/1()1/(lim 2 ==−=∞→ qfFrr             (33) 
(Here, the limit is understood as an ordinary Cauchy's limit.) In other words, equation (15) would 
not have a solution for all possible pairs of odd integer numbers. However, in order to obtain the 
result, one needs to confirm that such a progression is true for )1( +=> μNrr t . 
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Fig. 2. Graphical presentation of how the "No solution" fraction accumulates through presentation 
levels, and the appropriate decrease of "Uncertain" fraction. The value of r=rt=N(µ+1) is a threshold 
value, where transition begins from even right parts of equations to integer or rational ones.  
 
4.7. Transcending the threshold level trr =  
Presentation level )1( +tr   
Table 4 shows pairs of odd numbers for level )1( +tr . The number of initial pairs is defined by 
Corollary 5, and is equal to tr2  for this level. For pairs with equal free coefficients (columns 3 and 4 
in Table 4), (22) transform to 

2/)( 1,111
N

ijrrr mAst
ttt

=− +++                (34) 
 The right part of (34) is rational ( 1m  is an odd number). The left part is an integer. So, (34) has 
no solution for pairs with equal free coefficients (and, consequently, for even )(

tt rr st − , according to 
Lemmas 9 and 10). When 0)( =−

tt rr st , the left part is zero, while the right part is rational. So, (34) 
has no solution too. This group of pairs constitutes 1/2 of all pairs (Lemma 10), so that the common 
ratio remains equal to 1/2, and formula (32) stays valid.  
 
Table 4. Pairs presented with a factor of 12 +tr . It is assumed that trr = . 

 0 1 2 3 4 
 tr 

sr 
2tr+1 
2s r+1+1 

2t r+1+1 
2s r+1 

2t r+1 
2s r+1 

2t r+1+1 
2s r+1+1 

1/2  (Here and below, this number 
presents the "no solution" fraction

r=3

. . . 

"No solution "fractions "Uncertain" fractions 

1/22 

1/2 

1/22 

1/23 1/23 

  1/2r-1 

  

r=rt=N(µ+1). The last level, where the second 
summand in the right part of (22) is an integer. 

r=4 

  1/2r r=rt+1. The pairs with equal free coefficients 
become the "no solution" group.  

1/2r+1 

r=2 

r=rt+2. Starting from this level, each pair is 
considered separately. All pairs, except 
completed branches, are "uncertain" pairs.     

                

. . . . .

. . . . .

. . . . .

. . . . .

Until the level r=rt+1, pairs with unequal free 
coefficients form the "no solution" group 

    

r=rt+3. At this level, pairs 
are divided into "no 
solution" and "uncertain" 
groups. 
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1 
12 rr

r vt +  

12 rr
r vs +  

11
12 rr

r vt ++
+  

11
1 22 r

r
r

r vs +++
+  

11
1 22 r

r
r

r vt +++
+  

11
12 rr

r vs ++
+  

11
12 rr

r vt ++
+  

11
12 rr

r vs ++
+  

11
1 22 r

r
r

r vt +++
+  

11
1 22 r

r
r

r vs +++
+  

2 
22 rr

r vt +  

22 rr
r vs +  

21
12 rr

r vt ++
+  

21
1 22 r

r
r

r vs +++
+

21
1 22 r

r
r

r vt +++
+

21
12 rr

r vs ++
+  

21
12 rr

r vt ++
+  

21
12 rr

r vs ++
+

21
1 22 r

r
r

r vt +++
+  

21
1 22 r

r
r

r vs +++
+

…      
r2  rRr

r vt +2  

rRr
r vs +2  

rRr
r vt ++
+

1
12  

rR
r

r
r vs +++
+ 22 1
1

rR
r

r
r vt +++
+ 22 1
1

rRr
r vs ++
+

1
12  

rRr
r vt ++
+

1
12  

rRr
r vs ++
+

1
12

rR
r

r
r vt +++
+ 22 1
1  

rR
r

r
r vs +++
+ 22 1
1

 
 For pairs with unequal free coefficients (and consequently odd )(

tt rr st − , Lemma 10), (22) 
transforms to 

2/2/)( 1,1,111
Nr

jrjrrr mcAAst t

tttt
+=− ++++             (35) 

The right part can be rational, an integer or zero. Since the sums jrA ,1+  are all odd, parity of the left 
part in (35) is defined by the term )( 11 ++ −

tt rr st , which can be odd, even or zero. So, solution of (35) 
for odd )(

tt rr st −  is uncertain, and such pairs should be used as initial pairs for the next presentation 
level )2( +tr . As it was mentioned (a note after Lemma 10), for odd )(

tt rr st − , the term 
0)( 11 ≠− ++ tt rr st .  

 Recall that before the level )1( +tr , the pairs with unequal free coefficients had no solution, 
while (34) has no solution for even )( 11 ++ −

tt rr st , corresponding to pairs with equal free coefficients. 
In this regard, the level )1( +tr  reverses the groups of pairs. The "uncertain" group of pairs is now 
composed of pairs with unequal free coefficients (and accordingly with odd )(

tt rr st − ). These pairs 
(in columns 1 and 2 in Table 4) should be used as initial pairs at the next presentation level )2( +tr .  
 
Transition in the presentation level )2( +tr  
Level )1( +tr supplied initial pairs with unequal free coefficients. This means that we do not have 
anymore distinct groups with equal and unequal free coefficients at level )2( +tr , as before, since 
the initial pairs with unequal free coefficients produce mostly pairs with unequal free coefficients, 
with occasional inclusion of pairs with equal ones. Previously, we have seen that the parity of 
parameter )( rr st −  defined the absence or uncertainty of solution. However, beginning from level 

)2( +tr , this parameter lost association with groups of pairs with equal and unequal free 
coefficients. This is due to the fact that the right part of equation (35) can be an integer, a rational 
number, or zero per pair basis, and so we should consider the use of parameter )( rr st −  this way. 
We will still have a half of "no solution" and a half of "uncertain" pairs, but only for a block of four 
pairs, corresponding to each initial pair. This is the assembly of such "uncertain" pairs from each 
block, which goes to the next level. Table 5 shows pairs for level )2( +tr .  
 
Table 5. Pairs presented with a factor of 22 +tr , obtained from initial pairs in Table 4, for which 

)( rr st −  is odd. First two rows correspond to cells (1,1), (1,2) in Table 4. It is assumed that trr = . 
 

 0 1 2 
 tr+1 2tr+2 2t r+2+1 
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sr+1 2s r+2+1 2s r+2 
1 

11
12 rr

r vt ++
+  

11
1 22 r

r
r

r vs +++
+  

12
22 rr

r vt ++
+  

1
1

2
2 222 r

rr
r

r vs +++ +
+

+  
1

1
2

2 22 r
r

r
r vt ++ +

+
+  

12
2 22 r

r
r

r vs +++
+  

2 
1

1 22 r
r

r
r vt +++  

11
12 rr

r vs ++
+  

12
2 22 r

r
r

r vt +++
+  

12
2 22 r

r
r

r vs +++
+  

1
1

2
2 222 r

rr
r

r vt +++ +
+

+  

12
22 rr

r vs ++
+  

. . . . . . . . . . . . 
12 +r  . . . . . . . . . 

 
Table 5 continued 

3 4 
2t r+2 
2s r+2 

2t r+2+1 
2s r+2+1 

12
22 rr

r vt ++
+  

12
2 22 r

r
r

r vs +++
+  

1
1

2
2 22 r

r
r

r vt ++ +
+

+  

1
1

2
2 222 r

rr
r

r vs +++ +
+

+  

12
2 22 r

r
r

r vt +++
+  

12
22 rr

r vs ++
+  

1
1

2
2 222 r

rr
r

r vt +++ +
+

+  

1
1

2
2 22 r

r
r

r vs ++ +
+

+  
. . . . . . 
. . . . . . 

 
When r=(rt+2), (22) transforms to 

4/2/)( 1
2

,2,222
Nr

ijrijrrr mcAAst t

ttt
+=− +

++++             (36) 
where index 'ij' denotes the cell number. The right part of (36) can be rational, an integer, or zero. 
When the left part is an integer (the case, when it's zero, will be considered later), (36) has no 
solution for any )( 22 ++ −

tt rr st  for the rational or zero right part, and, consequently, this branch is 
completed. (Compared to continuing branches, the completed branch delivers double fraction of 
pairs, for which (15) has no solution, since in this case two equal "no solution" and "uncertain" 
fractions compose one "no solution" fraction.) If the right part is an integer, (36) has no solution 
when )( 22 ++ −

tt rr st  has the opposite parity, and the solution is uncertain for another parity of 
)( 22 ++ −

tt rr st . The number of combinations of parameters 2+tr
t  and 2+tr

s , corresponding to each parity, 
is equal to two from four in this case, and so we still have equal division between the "no solution" 
and "uncertain" pairs. However, at this level, we have no distinction between the odd and even 
values of 2+tr

t  and 2+tr
s  in the same way, as before, when there was an association with equal and 

unequal free coefficients. Such distinction can be done only at the next presentation level )3( +tr . 
All pairs at level 2+tr  correspond to "uncertain" equations, except for the cases when the pair 
branch is completed. 
 The case of 0)( 22 =− ++ tt rr st  is also an "uncertain" one, since there is a possibility that two terms 
in the right part are equal in absolute values and have the opposite algebraic signs. 
 Note that values ijrt

A ,2+  are different, so that the right parts of corresponding equations, 
transformed to a form (22), may have dissimilar parities (as well as may be rational or zeros) for 
different pairs. (The right part can be an integer, provided 0≠c  in (22), otherwise the right part is 
equal to trrNm −2/1 , which is always rational for trr > , so that such a branch is completed.) 
Therefore, starting from this level, one should consider each pair separately (Fig. 2). (In fact, it is 
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possible to show that at level )2( +tr , when 0≠c , integer right parts of these equations have the 
same parity. However, this is not necessarily true for the next levels, so we use the same generic 
approach for this level and above.)  
 With regard to accumulation of a total "no solution" fraction, we have the same common ratio 
of 1/2, although it is obtained differently - not per group, as previously, but per pair, and then such 
"per pair" fractions are summed up, in order to obtain the total "no solution" fraction. We will 
consider this assembling process in detail later.  
 
So, we found that the corresponding equations for pairs in both groups (meaning groups of pairs, 
having either even or odd values of )( 22 ++ −

tt rr st ) converge to equations, which have no solution for 
one parity of )( 22 ++ −

tt rr st , and accordingly for one half of pairs (according to Lemma 10), while 
solution is uncertain for the other parity, corresponding to the second half of pairs. So, the common 
ratio for a geometric progression, defining fractions of "no solution" pairs, will remain equal to 1/2. 
However, because we can specify particular pairs, corresponding to odd or even )( 22 ++ −

tt rr st , at the 
next level only, this common ratio accordingly should be assigned to a presentation level, where 
such a specification actually happens; in this case, this is the next level )3( +tr . At level 2+tr , all 
equations, corresponding to initial pairs, have the same form (22), and consequently, the same 
"uncertain" status. All pairs (except for completed ones) are "uncertain" pairs.  
 
Presentation level )3( +tr  
We will need the following Lemma to address zero values of 0)( =− rr st  in equation (22). Note 
that 0)( =− rr st  only when both parameters are equal (and, of course, have the same parity), 
including when both are equal to zero. When )( rr st −  is odd (parameters have different parity), 

0)( ≠− rr st . 
 
 Lemma 11: Equation (22), that is trrNr

rrrr mcAAst −+=− 2/2/)( 1 , is equivalent to equation 
trrNr

rrrr mcAAst −+=− 2/2/)( 111  in terms of parities of both parts, with the substitutions att rr 21 −=  
and bss rr 21 −= , where a and b are integers. If the second equation has no solution based on parity 
or rationality considerations, then the first equation also has no solution, and vice versa. 
 
Proof: According to the notion of presentation of odd numbers with a factor of r2 , the terms rt  and 

rs  are integers, having ranges of definition )( ∞<<−∞ rt  and )( ∞<<−∞ rs . The only property, 
which is of importance with regard to such a presentation, is that these parameters should be defined 
on the whole set of integer numbers, in order to include all possible numbers, corresponding to a 
particular presentation; for instance, the term )2( rr

r vt +  should produce the whole set of the 
appropriate "stroboscopic" numbers in the range ),( ∞−∞ , located at the distance r2  from each 
other. As long as this condition is fulfilled, that is such a set can be reproduced, we can make an 
equivalent substitution for parameters rt , rs . For instance, the substitution att rr 21 −=  is an 
equivalent one. Indeed, it preserves the range of definition )( 1 ∞<<−∞ rt , and accordingly produces 
all numbers, which parameter rt  produces (only with a shift of )22( ra×−  for the same values of rt  
and rt1 ). However, this shift makes no difference with regard to the range of produced numbers, 
since our range ),( ∞−∞  is infinite in both directions. On the other hand, when 0)( =− rr st , we have 
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0)( 1 ≠− rr st , and vice versa. So, for 0)( =− rr st , such a substitution produces an equation with a 
non-zero left part.  
 Substituting  att rr 21 −=  into (22), one obtains the equation 

trrNr
rrrrr mcAaAAst −++=− 2/2/2)( 11             (37) 

When 0)( =− rr st , we have 02)( 1 ≠=− ast rr . Also, the appearance of the even term raA2 does not 
change the parity of the right part, nor the substitution att rr 21 −=  changes the parity of the left part 
(if it is not zero; if it is zero, the substitution still provides an even increment). Thus, with regard to 
parities, (22) and (37), indeed, are equivalent equations. 
 If the equivalent equation (37) has no solution, then the original equation (22) has no solution 
too. The proof is as follows. Let us assume that (37) has no solution, while (22) has a solution, so 
that  

trrNr
rrrr mcAAst −+=− 2/2/)( 1  

Adding raA2  to the left and right parts of this equation, one obtains an equivalent equation, which 
also should have a solution. 

trrNr
rrrrr mcAaAAsat −++=−+ 2/2/2)2( 1             

According to the substitution, att rr 21 −= , so that rr tat 12 =+ , and the obtained equation transforms 
to (37), which should also have a solution. However, according to our assumption, it has no solution. 
The obtained contradiction means that the assumption that (22) has a solution is invalid, and, in fact, 
it has no solution.  
 Similarly, we can assume that (37) has a solution, while (22) does not, and show that then (22) 
should have a solution, which would contradict to the initial assumption.  
 Although we proved the equivalency of equations with regard to their solution properties in a 
general case, we need such equivalency only for the case when the left part of equivalent equations 
is zero (because 0)( =− rr st  or 0)( 1 =− rr st ). The proposed substitution then makes the left part of 
the equivalent equation a non-zero value, and the inference about the absence of solution or its 
uncertainty can be made based on parities of the left and right parts. Certainly, one can do an 
analogous substitution for rs , or both parameters. This proves the Lemma. 
 
Table 6 shows an example of pairs for the presentation level )3( +tr . Four initial pairs are from cells 
(1,1)-(1,4) in Table 5. If (36) has no solution for even )( 22 ++ −

tt rr st , then these are pairs (1,3), (1,4) in 
Table 6, which satisfy this condition. Accordingly, pairs (1,1) and (1,2), for which )( 22 ++ −

tt rr st  is 
odd, are "uncertain" pairs, which should be used as initial pairs for the next, )4( +tr , level. If, on the 
contrary, (36) has no solution for odd )( 22 ++ −

tt rr st , then (1,1) and (1,2) are the "no solution" pairs, 
while (1,3), (1,4) become "uncertain" pairs, which should be used as initial pairs for the next level. 
This way, all new pairs, four per each initial pair, are divided into two halves as before, so that the 
common ratio of geometrical progression remains equal to 1/2. The case 0)( 22 =− ++ tt rr st  is 
addressed by Lemma 11 through equivalent equations. 
 In the same way, as we considered one pair above, we should consider the rest of initial pairs in 
Table 6 and find out, which two pairs should be used as initial pairs for the next level. Then, the 
same procedure should be repeated for each initial pair at level )3( +tr . 
 Then, the cycle is repeated for the next two levels )4( +tr  and )5( +tr , and so forth, to infinity, 
since there are no anymore threshold values of r, at which the right part could change the parity (if 
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it's an integer), and the corresponding equations their form and properties. The following Lemma 
generalizes the discovered order. 
 
Table 6. Pairs of odd numbers with a factor of 32 +tr . Initial pairs are (1,1)-(1,4) from Table 5. It is 
assumed that trr = . 

 0 1 2 
 2+rt  

2+rs  
32 +rt  

12 3 ++rs  
12 3 ++rt  

32 +rs  
1 

12
22 rr

r vt ++
+  

1
1

2
2 222 r

rr
r

r vs +++ +
+

+  
13

32 rr
r vt ++
+  

1
12

3
3 2222 r

rrr
r

r vs ++++ ++
+

+  
1

2
3

3 22 r
r

r
r vt ++ +

+
+  

1
1

3
3 222 r

rr
r

r vs +++ +
+

+  
2 

1
1

2
2 22 r

r
r

r vt ++ +
+

+  

12
2 22 r

r
r

r vs +++
+  

1
1

3
3 22 r

r
r

r vt ++ +
+

+  

1
2

3
3 222 r

rr
r

r vs +++ +
+

+  
1

12
3

3 222 r
rr

r
r vt +++ ++

+
+  

13
3 22 r

r
r

r vs +++
+  

3 
12

22 rr
r vt ++
+  

12
2 22 r

r
r

r vs +++
+  

23
32 rr

r vt ++
+  

2
2

3
3 222 r

rr
r

r vs +++ +
+

+  
1

2
3

3 22 r
r

r
r vt ++ +

+
+  

13
3 22 r

r
r

r vs +++
+  

4 
1

1
2

2 22 r
r

r
r vt ++ +

+
+  

1
1

2
2 222 r

rr
r

r vs +++ +
+

+  
2

1
3

3 22 r
r

r
r vt ++ +

+
+  

2
12

3
3 2222 r

rrr
r

r vs ++++ ++
+

+
1

12
3

3 222 r
rr

r
r vt +++ ++

+
+  

11
1

3
3 222 r

rr
r

r vs +
+

+
+ +++

 
Table 6 continued 

3 4 
32 +rt  

32 +rs  
12 3 ++rt  
12 3 ++rs  

13
32 rr

r vt ++
+  

1
1

3
3 222 r

rr
r

r vs +++ +
+

+
1

2
3

3 22 r
r

r
r vt ++ +

+
+  

1
12

3
3 2222 r

rrr
r

r vs ++++ ++
+

+  

1
1

3
3 22 r

r
r

r vt ++ +
+

+  

13
3 22 r

r
r

r vs +++
+  

1
12

3
3 222 r

rr
r

r vt +++ ++
+

+  

1
2

3
3 222 r

rr
r

r vs +++ +
+

+  

13
32 rr

r vt ++
+  

13
3 22 r

r
r

r vs +++
+  

1
2

3
3 22 r

r
r

r vt ++ +
+

+  

1
2

3
3 222 r

rr
r

r vs +++ +
+

+  

1
1

3
3 22 r

r
r

r vt ++ +
+

+  

1
1

3
3 222 r

rr
r

r vs +++ +
+

+
1

12
3

3 222 r
rr

r
r vt +++ ++

+
+  

1
12

3
3 2222 r

rrr
r

r vs ++++ ++
+

+  
 
 Lemma 12: From the presentation level )2( +tr , the "no solution" fraction is accumulated 
across two sequential levels, and then the pattern repeats for each two successive levels, to infinity. 
Some branches can be completed at level )2( +tr , but otherwise this level provides no explicit 
division into the "no solution" and "uncertain" groups, as it was the case for the previous levels. 
Except for the pairs, corresponding to completed branches, the pairs become initial "uncertain" 
pairs for the next presentation level. At level )3( +tr , all new pairs are divided into the "no solution" 
and "uncertain" groups (according to odd or even parity of )( rr st −  in equation (22)). The 
"uncertain" pairs become initial pairs for the next presentation level, and the two-level cycle repeats 
to infinity. 



Shestopaloff Yuri K. Proof of Fermat Last Theorem based on successive presentations of pairs of odd numbers. 
(Version 4). http://doi.org/10.5281/zenodo.3786524. Copyright © Shestopaloff Yu. K. 17 Feb. 2020   21

 
Proof: Previously, we have seen that the Lemma is true for the paired levels )2( +tr  and )3( +tr . Let 
us assume that Lemma is true for the previous )1( −+ drt  level, which then supplies initial 
"uncertain" pairs for the level )( drt + . We need to prove that Lemma is true for the next two levels 

)( drt +  and )1( ++ drt . Initial pairs may have equal and unequal free coefficients.  
 Let us consider an equation for a pair with free coefficients v and w. 

NNN
dr

drN
dr

dr mwsvt
t

t

t

t
1

)1(2)2()2( +
+

+
+

+ =+−+ μ            (38) 
where 2≥d . 
According to Lemma 6, it can be transformed to an equation 

dNdr
drdrdrdr mcAAst t

tttt
2/2/)( 1+=− +

++++             (39) 

where ∑
−

=
+

+−−
+

+
+ ++=

1

0

1 )2()2(
N

i

i
dr

driN
dr

dr
dr wsvtA

t

t

t

t

t
, N = 2n + 1.         

The right part of (39) can be an integer, rational or zero. The left part is an integer (if 
0)( =− ++ drdr tt

st , the left part can be transformed to an integer, using Lemma 11). When the right 
part is rational, (39) has no solution for any drt

t +  and drt
s + , and the branch is completed. If the right 

part is even or odd, (39) has no solution when )( drdr tt
st ++ −  has the opposite parity. Solution is 

uncertain for the other parity of )( drdr tt
st ++ − , since both parts of (39) have the same parity in this 

case. However, at this level, we cannot specify particular parity of )( drdr tt
st ++ − , which should be 

done at the next presentation level )1( ++ drt . When c = 0, (39) has no solution, since the right part 
is a rational number, while the left part is an integer or zero, and so the branch is completed.  
 
Table 7. New pairs for the initial pair [ vt dr

dr
t

t ++
+2 , ws dr

dr
t

t ++
+2 ]  at the presentation level 

)1( ++ drt  with a factor of 12 ++drt .  
 0 1 2 
0 drt

t +  

drt
s +  

12 ++drt
t  

12 1 +++drt
s  

12 1 +++drt
t  

12 ++drt
s  

1 vt dr
dr

t

t ++
+2  

ws dr
dr

t

t ++
+2  

vt dr
dr

t

t +++
++

1
12  

ws dr
dr

dr t

t

t ++ +
++

++ 22 1
1

vt dr
dr

dr t

t

t ++ +
++

++ 22 1
1  

ws dr
dr

t

t +++
++

1
12  

 
Table 7 continued 

3 4 
32 +rt  

32 +rs  
12 3 ++rt  
12 3 ++rs  

vt dr
dr

t

t +++
++

1
12  

ws dr
dr

t

t +++
++

1
12  

vt dr
dr

dr t

t

t ++ +
++

++ 22 1
1  

ws dr
dr

dr t

t

t ++ +
++

++ 22 1
1  

 
 Even if the branch is completed for some pair, we still can assume that it is "uncertain", and use 
it as an initial pair at the next presentation level. There, the new pairs, corresponding to this initial 
pair, are then divided into the "no solution" and "uncertain" groups. The fraction of the former goes 
to the total "no solution" fraction, while the latter is used as initial pairs for the next level, besides 
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other uncertain pairs. (Such an arrangement, without completed branches, is more convenient for 
calculation of the total "no solution" fraction.) 
 Table 7 shows new pairs for the next presentation level for the initial pair from (38). At this 
level, we can choose the needed parities of pair's terms drt

t + , drt
s + , expressed through 1++drt

t , 1++drt
s , 

in order for (39) to have no solution. For instance, if (39) has no solution for even )( drdr tt
st ++ − , then 

the "no solution" pairs are (1,3), (1,4). Accordingly, solution is uncertain for pairs (1,1), (1,2), since 
both parts of (39) have the same parity in this case. Consequently, these pairs should be used as 
initial "uncertain" pairs for the next presentation level. 
 We can see from Table 7 that when a pair of an actually completed branch is used as an 
"uncertain" pair for the next level, it produces no new pairs with some specific features, which could 
prevent their corresponding equations to be transformed into a form (39). We still obtain pairs, 
satisfying conditions of Lemma 6, to which the same equation (22) is applicable. For instance, when 
v = w, then c = 0 in (39), and so the branch is completed. However, if we use it as an initial pair for 
the next presentation level )1( ++ drt , then we are free to choose new pairs, corresponding to either 
even or odd values of )( drdr tt

st ++ − , since the corresponding equations have no solution for both 
scenarios. Then, the pairs with the opposite parity )( drdr tt

st ++ −  will proceed to the next level as 
uncertain initial pairs. As before, such a division produces two equal groups of pairs, and so the 
common ratio of the geometrical progression remains equal to 1/2. 
 So, with the assumption that Lemma is true for the previous level, we confirmed the same 
pattern earlier discovered for the coupled levels [ )2( +tr , )3( +tr ]. According to principle of 
mathematical induction, this means that Lemma is true for any 2≥d . This proves the Lemma. 
 
In this Lemma, we also studied the useful property, considering completed branches as non-
completed ones. This property is formulated below as a Corollary.  
 
 Corollary 7: Pairs, corresponding to completed branches, can be considered as regular 
"uncertain" pairs, which can be passed to the next level as initial pairs, so that such a branch is 
actually assigned a non-completed status.  
 
 Lemma 13: At presentation levels above )1( +tr , and in the absence of completed branches, the 
number of pairs in "no solution" and "uncertain" groups are equal, when such a division takes 
place. 
 
Proof: According to Lemma 12 and Corollary 7, all pairs, both regular ones, with "no solution" and 
"uncertain" components, and the pairs, which could be completed, but continue to participate in the 
next levels as non-completed pairs, can be presented in a form of Table 7. The solution properties of 
equations, corresponding to pairs in Table 7, are defined by equation (22), or more particular, by 
equations in a form (39), whose solution properties depend on the term )( drdr tt

st ++ − . (Unless the 
right part is rational, in which case equation has no solution for all parities, and the branch is 
completed. However, according to Corollary 7, we can still consider such a pair as a regular non-
completed pair.) 
 The division of four pairs into two equal "no solution" and "uncertain" groups is based solely on 
the parity of )( drdr tt

st ++ − , as Lemma 12 showed, with one parity corresponding to a "no solution" 
group, and with the opposite parity corresponding to "uncertain" group. The number of pairs, 
corresponding to one parity, is therefore equal to π2 , where π  is the number of initial pairs, number 
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two is the number of parity combinations of drt
t + , drt

s + , producing the same parity of )( drdr tt
st ++ − , 

see Table 7. For the opposite parity of )( drdr tt
st ++ − , the number of produced pairs is also π2 . Thus, 

the number of pairs in "no solution" and "uncertain" groups is the same. This proves the Lemma. 
 
4.8. Calculating the total "no solution" fraction 
Using Corollary 7, we consider all levels as if they have no completed branches. Then, according to 
Lemmas 9 and 10, until the level )2( +tr , all levels have two equal groups of pair combinations. One 
corresponds to a "no solution" fraction, and the other to "uncertain" fraction, so that the common 
ratio q = 1/2. Substituting these values into (32), one obtains 

tt

t

rrr
r qqfF )2/1(1)2/1/())2/1(1(2/1)1/()1( 111

21 −=−=−−= −+−
+        (40) 

The "no solution" fraction for the level )1( +tr  is defined by (31) as follows (the last term of a 
geometrical progression), taking into account that 2/12 =f . 

tt

t

rr
r qff )2/1(21

21 == −+
+                (41) 

Since in the absence of completed branches the "no solution" and "uncertain" fractions are equal, 
according to Lemma 10, the "uncertain" fraction of pairs, which is passed to the level )2( +tr , is the 
same as the "no solution" fraction (41). This "uncertain" fraction, according to Lemma 13, is equally 
divided into "no solution" and "uncertain" fractions at each second level, beginning from level 

)3( +tr , so that the first term of the geometrical progression, representing the "no solution" fraction 
of two following coupled levels, is  

)2/1(13 ×= ++ tt rr ff                 (42) 
Then, each next two levels add a half of the previous "uncertain" fraction", which is equal to "no 
solution" fraction. Let }12,2{ += LLD , ...2,1=L  This way, )( Drt +  defines the levels' numbers for 

)2( +≥ trr . Levels, at which pairs are divided into two groups, are levels )3( +tr , )5( +tr , …, 
)12( ++ Lrt , so that the total "no solution" fraction, obtained by summation of "no solution" 

fractions of all levels above the )1( +tr  level, is equal to 

))2/1(1()2/1()2/1()2/1(])2/1...()2/1()2/1(2/1[)2/1(
1

32
,2

Lr
L

i

irLr
Dr

ttt

t
F −==+++= ∑

=
+  (43) 

when 12 += LD , and  

))2/1(1()2/1()2/1()2/1(])2/1...()2/1()2/1(2/1[)2/1( 1
1

1

132
,2

−
−

=

−
+ −==+++= ∑ Lr

L

i

irLr
Dr

ttt

t
F  

when LD 2= .                 (44) 
In the last case, the division into the "no solution" and "uncertain" groups did not happen yet at the 
first level of coupled levels, since it occurs at the second level of the couple, as it was earlier 
discussed. This is why the power is (L - 1), but not L. 
 The total "no solution" fraction, accordingly, is defined as DrrDr ttt

FFF ,211 ++++ += . For 
12 += LD , we have 

LrLrrr
DrrDr

tttt

ttt
FFF ++

++++ −=−+−=+= )2/1(1)2/1()2/1()2/1(1,211       (45) 
It follows form (45) that in the limit 

1))2/1(1(limlim 1 =−= +
∞>−++∞>−

Lr
LDrL

t

t
F              (46) 

The same is true for (44). So, when we consider all branches as non-completed, in the limit, equation 
(15) has no solution for all possible pairs of odd integer numbers. Of course, it may look awkward, 
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considering completed branches as non-completed, but, as Lemma 12 and Corollary 7 showed, this 
is a legitimate procedure. 
 
Accounting for completed branches. Let us assume that level r has k completed branches, to which 
the "no solution" fraction rkf  corresponds. Let us assume that these branches were not completed, 
and consider the pairs, corresponding to these branches, as regular ones, with "no solution" and 
"uncertain" components, to infinity. In other words, we assume that there are no more completed 
branches in the following presentations of these k pairs, to infinity. (In real situation, if there are 
such pairs, we can also consider them as non-completed pairs, according to Corollary 7.) In this 
scenario, the fraction rkf  would be divided equally (Lemma 13) between the "no solution" and 
"uncertain" fractions on each subsequent level (or on the second level in coupled levels beyond the 
value of )1( += trr ), so that the total "no solution" fraction, accumulated at level L, is defined as 
follows. 

])2/1(1[)2/1(
1

L
rk

L

i

i
rkLr ffF −== ∑

=
+              (47) 

In the limit, (47) transforms to  
rk

L
rkLDrL ffF =−= ∞>−+∞>− ])2/1(1[limlim             (48) 

So, in the limit, we obtained in (48) exactly the same "no solution" fraction, which was taken by k 
completed branches. Since, according to (46), in the scenarios with non-completed branches the total 
"no solution" fraction is equal to one, the result (48) means that accounting for completed branches, 
in the limit, produces the same "no solution" fraction of one.  
 Thus, (15) has no solution in integer numbers in case of completed branches too.  
 
4.9. Cases 2 and 3 as equivalent equations 
For the case 3, we have 12 += na ; 12 1 += kx ; 12 1 += py . Then, (1) transforms to (14). 

1212
1

12
1 )2()12()12( +++ =+++ nnn mpk             (49) 

Using an approach, similar to one for equation (15), it is possible to prove that it has no solution. 
The shorter way could be to show the equivalency of (15) and (49) in terms of solution properties. 
Then, since (15) has no solution, that would mean that (49) has no solution too.  
 The notion of equivalent equations. It means that for each set of input variables for one equation 
there is one and only one matching set of corresponding input variables for the other equation, such 
that the terms in both equations are the same. For instance, with regard to equations (15) and (49), 
defined on the set of integer numbers, their equivalency would mean that for any combination of 
terms )12( +k , )12( +p , m2  in (15) there is only one combination of  terms )12( 1 +k , )12( 1 +p , 12m  
in (49), such, that )12()12( 1 +=+ kk , )12()12( 1 +−=+ pp , 1mm = , so that with such a substitution 
equation (15) becomes equation (49). Similarly, the substitution )12()12( 1 +=+ kk , 

)12()12( 1 +−=+ pp , mm =1  in (49) produces equation (15). It was proved that (15) has no solution 
in integer numbers, so that it has no solution for any combination of these terms. However, on the 
set of all possible pairs of odd numbers, on which both equations are defined, these are equivalent 
equations, as it will be shown. Then, since (15) has no solution, (49) will have no solution too.  
 
 Lemma 14: Equation (15) is equivalent to equation (49) on the set of integer numbers. If one of 
these equations has no solution in integer numbers, then the other equation also has no solution. 
 
Proof: Since the odd power does not change the algebraic sign, we can rewrite (15) as follows. 
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121212 )2()12()12( +++ =−−++ nnn mpk             (50) 
k, p and k1, p1 in (15), (49) are integers defined on the range ),( +∞−∞ . So, we can do a 
substitution 11 −−= pp . 

1212
1

12
1 )2()12()12( +++ =+++ nnn mpk             (51) 

where k=k1. In this transformation, the range of parameters and equations' terms remains the same, 
that is )( ∞<<−∞ p , )( 1 ∞<<−∞ p , and so ))12(( ∞<+<−∞ p   ))12(( 1 ∞<+<−∞ p . Thus, equation 
(50), which is (15), became equation (51), which is (49). The substitution 11 −−= pp  is an 
equivalent one, because (i) it does not change the range of the substituted parameter, neither it 
changes the ranges of the terms, defined by these parameters; (ii) this is a one-to-one substitution. 
 Similarly, we can obtain equation (15) from (49), using substitution 11 −−= pp  in (49). 

121212
1 )2()1)1(2()12( +++ =+−−++ nnn mpk            (52) 

This transforms into equation (15). 
121212 )2()12()12( +++ =+−+ nnn mpk              (53) 

where k1= k. 
 Thus, (15) and (49), indeed, are equivalent equations.  
 Now, we should prove that if one of these equations has no solution, then the other equation 
also has no solution. For that, let us assume that equation (49) has no solution, while the equivalent 
equation (15) has a solution for the parameters ),,( 000 mpk , that is 

12
0

12
0

12
0 )2()12()12( +++ =+−+ nnn mpk             (54) 

Doing an equivalent substitution 110 −−= pp , one obtains 
12

0
12

1
12

0 )2()12()12( +++ =+++ nnn mpk             (55) 
Equation (55) (which is the original equation (49)), accordingly, has a solution for the parameters 

),,( 010 mpk . However, this contradicts to the assumption that (49) has no solution. So, the equivalent 
equation (15) also has no solution. Similarly, we can assume that (15) has no solution, while (49) has 
a solution, and find through similar contradiction that (49) has no solution. 
 This completes the proof of Lemma. 
 
It follows from Lemma 14 that it is suffice to prove that only one of the equations, (15) or (49), has 
no solution, in order to prove that both equations have no solution. Previously, we found that (15) 
has no solution in integer numbers. So, according to Lemma 14, (49), which presents case 3 for 
equation (1), also has no solution. 
 
5. Case 4 
In this case, na 2= ; 12 += px ; my 2= , 12 += kz . Equation (1) can be presented in two forms. 

nnn mpk 222 )2()12()12( =+−+              (56) 
nnn kmp 222 )12()2()12( +=++              (57) 

Because of the even power na 2= , we may consider (56) and (57) as defined on the set of integer 
numbers. 
 Let us consider (57). It can be rewritten as follows. 

222 ])12[(])2[(])12[( nnn kmp +=++             (58) 
We will use Theorem 1 (p. 38) from Chapter 2 in [5]. The Theorem says the following: All the 
primitive solutions of the equation 222 zyx =+ for which y is even number are given by the 
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formulae 22 NMx −= , MNy 2= , 22 NMz += , where M, N are taken to be pairs of relatively 
prime numbers, one of them even and the other odd and M greater than N.  
 All solutions of (58) are defined as follows. 

LNMp n )()12( 22 −=+ ; MNLm n 2)2( = ; LNMk n )()12( 22 +=+      (59) 
Here, in accordance with the aforementioned Theorem 1, M and N are pairs of relatively prime 
natural numbers, one of them even and the other is odd, and M > N. Substituting (59) into (58), we 
can see that by dividing both parts by 2L , it can be reduced to an equation, whose terms have no 
common divisor. So, if a solution of such an equation exists, it can be reduced to a primitive 
solution, and vice versa - any non-primitive solution can be obtained from a primitive solution. 
Thus, it is suffice to consider only primitive solutions. 
 For the primitive solution, using the first and the third formulas from (59), we can write. 

)()12( 22 NMk n +=+                (60) 
)()12( 22 NMp n −=+                (61) 

Equations (60) and (61) are independent. Indeed, there is no way to obtain one from another by 
transformations. (Formally, the independence can be proved considering the matrix rank of these 
equations in a linear representation). 
 Below, we assume that M and N are interchangeably equal to )12( +c  and )2( d , and M > N.  
  
5.1. The case of odd  n  
 
 Lemma 15: Equation  

nnn kmp 222 )12()2()12( +=++                
has no solution in integer numbers, when n is odd. 
 
Proof: Let 12 += qn . We will consider scenario 1 first, when M= )12( +c , N= )2( d   

)()12( 22 NMk n +=+                (62) 
Applying binomial expansion to the left part, one obtains. 

2212
12

0

12 41441)2)(12()2( dcckqkC iq
q

i

q
i +++=+++−+

−

=

+∑         (63) 

It transforms into  

)(4)2)(12()2( 2212
12

0

12 dcckqkC iq
q

i

q
i ++=++−+

−

=

+∑           (64) 

Dividing (64) by two, one obtains 

)(2)12()2( 222
12

0

12 dcckqkkC iq
q

i

q
i ++=++−

−

=

+∑           (65) 

The right part is even. The left part is odd when k is an odd integer, )( ∞<<−∞ k . In this case, (65) 
has no integer solution. 
 The note that k is an integer number is important. Indeed, we can make such an assumption 
because when k is negative, equation (62) has no solution for any k, since the left part of (62) in this 
case is negative, while the right part is positive.  
 Similarly, we consider equation 

)()12( 22 NMp n −=+                (66) 
2212

12

0

12 41441)2)(12()2( dccpqpC iq
q

i

q
i −++=+++−+

−

=

+∑         (67) 
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Transforming this equation and dividing both parts by two, one obtains 

)(2)12()2( 222
12

0

12 dccpqppC iq
q

i

q
i −+=++−

−

=

+∑             (68) 

This equation has no integer solution for odd integer p, since the left part is odd, and the right part is 
even in this case. Similar to k in (62), p is an integer )( ∞<<−∞ p . Indeed, when p is negative, (66) 
has no solution too, since the left part becomes negative, while the right part, due to the condition M 
> N, is positive, so that (66) has no solution for negative p.  
 Table 8 presents values of parameters for the first scenario (row 1). Odd values of k=2t+1 and 
p=2s+1 correspond to )12( +k = )34( +t  and )12( +p = )34( +s , where t and s are integers.  
 
Table 8. Values of parameters for the considered scenarios, when (62) and (66) have no solution. 
 

Scen. M N k p 2k+1 2p+1
1 2c+1 2d 2t+1 2s+1 4t+3 4s+3 
2 2d 2c+1 2t+1 2s 4t+3 4s+1 

 
Since equations (62) and (66) are independent, the obtained values of )34( +t  and )34( +s can be 
paired in equation (57) with any odd number. (When expressed with a factor of four, these are the 
numbers )14( +s  and )34( +s  for )34( +t , and )14( +t  and )34( +t  for )34( +s ). Three found 
pairs, for which (57) has no solution, are shown in Table 9 in bold. The missing pair is 
[ )14( +t , )14( +s ]. 
 
Table 9. Found pairs of odd numbers (bold) for scenario 1, for which there is no integer solution. 
 

 0 1 2 3 4 
a 
 

k 
p 

2t 
2s+1

2t+1 
2s 

2t 
2s 

2t+1 
2s+1

b 2k+1
2p+1

4t+1 
4s+3

4t+3 
4s+1

4t+1 
4s+1

4t+3 
4s+3

 
Let us consider scenario 2, when M is even and N is odd (row 2 in Table 8). Equation (62) has no 
solution for the odd integer k in this case (it is obvious that swapping M and N in (62) does not 
influence the previous result), )( ∞<<−∞ k . Equation (66) transforms as follows. 

14441)2)(12()2( 2212
12

0

12 −−−=+++−+
−

=

+∑ ccdpqpC iq
q

i

q
i         (69) 

Transforming this equation and dividing both parts by two, one obtains 

)(21)12()2( 222
12

0

12 ccdpqppC iq
q

i

q
i −−=+++−

−

=

+∑             (70) 

This equation has no integer solution for even integer p )( ∞<<−∞ p  The obtained values of odd 
integer k and even integer p correspond to numbers )34( +t  and )14( +s , where t and s are integers. 
Since these numbers are obtained independently, each can be combined in pair with any odd 
number. The resulting combinations, shown in Table 10, are in bold. This time, we obtained all 
possible combinations of odd numbers, expressed with a factor of four.  
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Table 10. Found pairs of odd numbers for scenario 2 (from Table 8), when (57) has no integer 
solution. 

 0 1 2 3 4 
a 
 

k 
p 

2t 
2s+1

2t+1 
2s 

2t 
2s 

2t+1 
2s+1

b 2k+1
2p+1

4t+1 
4s+3

4t+3 
4s+1

4t+1 
4s+1

4t+3 
4s+3

 
So, we need to prove that equation (57) has no solution for the pair of odd numbers 
[ )14( +t , )14( +s ] from scenario 1. Let us substitute the found pair [ )34( +t , )34( +s ] from Table 8, 
for which (57) has no solution, into this equation. One obtains 

nnn smt 222 )34()2()34( +=++               (71) 
Since (71) is defined on the set of integer numbers, we can use Corollary 4 and do equivalent 
substitutions of )34( +t  by ))14(( 1 +− t , and )34( +s  by ))14(( 1 +− s , where 1t  and 1s  are integers, 
thus obtaining an equivalent equation. 

nnn smt 2
1

22
1 ))14(()2())14(( +−=++−             (72) 

which, due to even power, can be rewritten as 
nnn smt 2

1
22

1 )14()2()14( +=++              (73) 
Since (71) has no solution, and (73) is equivalent to (71), this means that (73) also has no solution. 
This proves that (57) has no solution for the pair [ )14( +t , )14( +s ]. Now, we found that (57) has no 
solution for all possible pairs of odd numbers with a factor of four in Table 9, so that (57) has no 
solution for both scenarios. 
 This proves the Lemma. 
 
5.2. Even n 
 Lemma 16: Equation nnn kmp 222 )12()2()12( +=++  has no solution in integer numbers when 
n is even. 
 
Proof: Let qn 2= . Then, (58) can be presented as follows. 

2244 ])2[(])12[(])12[( qqq mpk =+−+             (74) 
According to Corollary 1 (p. 52) from Chapter 2 in [5], equation (74) has no solutions in natural 
numbers (because of the even power, this also means that (74) has no solution in integer numbers). 
The corollary is read as follows: There are no natural numbers a, b, c such that 244 cba =− .  
 Since qk )12( + , qp )12( +  and qm 2)2(  cannot be natural numbers, )12( +k , )12( +p  and )2( m  
cannot be natural numbers too. Indeed, if one assumes that these are natural numbers, then, raised to 
appropriate powers, such numbers have to be natural numbers too, which contradicts to the 
aforementioned Corollary.   
 So, equations (57), (58) have no solution for even n.  
 The same result can be obtained using the property that there is no Pythagorean triangle, whose 
sides are squares. Indeed, we can rewrite (74) as follows. 

444 ])12[(])2[(])12[( qqq kmp +=++             (75) 
Corollary 2 on p. 53, Chapter 2 in [5], says: There are no natural numbers x, y, z satisfying the 
equation 444 zyx =+ . This means that (74) and (75), and consequently (57) and (58) for even n, 
have no solution in natural numbers. However, because of the even power, the result is valid for 
integer numbers too. This proves the Lemma. 
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 Thus, we proved that (56) - (58) have no solution in integer numbers for odd and even n.  
 
6. Conclusion 
We found that in each of four cases, corresponding to equation (1), the appropriate equations have 
no solution in integer numbers. This means that (1) has no solution in integer numbers.  
 Introduced concepts and approaches can be applied to other problems of number theory. 
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