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1 Proposition of the problem

De�nition 1.0.1. Let two positive integer numbers be a and b. Then, being b
a constant, we de�ne a constant gap as

Ga,b := (ab, (a+ 1) b)

Some interesting question that arises and which this paper addresses is: assum-
ing b is constant, is there necessarily a prime number in a given Ga,b?

From the de�nition, and looking at the literature, it can be found that if we let
b be a constant and a = 1, the answer is yes. This result is called Bertrand's
Theorem. The following question of interest that arises is to study what occurs
when b remains constant and a = 2. And what if a = 3?

In other words: which is the highest value for a, such that there is necessarily a
prime number in a given constant gap Ga,b?
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2 Lower bound for a

In this Section we will adress the question posed, trying to �nd the highest
posible lower bound for a, such that there is not necessarily a prime number in
a given constant gap Ga,b.

2.1 Previous considerations.

• It is worth noting that every gap Ga,b contains exactly b − 1 numbers,
whereas the number of prime and composite numbers less than b is b− 2,
as the number 1 is neither prime nor composite.

• One can also observe that any positive integer n in a given gap Ga,b is
composite if and only if n = pq, where p is some prime number less than√

(a+ 1) b.

• Finally, it can also be noted that p < b for a ≤ b + 1, since pn+1 = b + 1
implies that

p2n+1 = (b+ 1)
2

and
(b+ 1)

2
> (b+ 2) b

2.2 Important Lemmas

Consider the gap G1 = [pk, npk] where pk is some prime number and npk < b,
and the gap Gm = [mpk, (m+ n)pk] with pk being the same prime number and
(m− 1)pk < ab < mpk.

It is trivial the fact that G1 ⊂ G0,b, so there are exactly n multiples of prime
number pk less than b.

It is also trivial the fact that Gm ⊂ Ga,b, but there can be n or n+ 1 multiples
of prime number pk contained in the gap Ga,b, as showed by the following:

Lemma 2.1.1. Let it be Gm ⊂ Ga,b.Then, if (m+ n)pk − ab < b, the gap Ga,b

has exactly n+ 1 multiples of prime number pk, whereas if (m+ n)pk − ab ≥ b,
the gap Ga,b has exactly n multiples of prime number pk.

Proof. If (m + n)pk − ab < b, then Gm = [mpk, (m+ n)pk] , which contains
exactly n + 1 multiples of prime number p, whereas if (m + n)pk − ab ≥ b,
then Gm = [mpk, (m+ n− 1)pk], which contains exactly n multiples of prime
number p.

It can be seen that (m + n)pk − ab < b when mpk − ab < b − npk, and (m +
n)pk − ab > b when mpk − ab ≥ b− npk.
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Lemma 2.1.2. Gap Ga,b has exactly the same number of multiples of 2 as the
number of multiples of 2 (including itself) which are less than b.

Proof. As the inequality mpk−ab ≥ b−npk stated in the proof of Lemma 2.1.1.
holds for p = 2 independently of the values of m, b and n, then there are exactly
the same number of multiples of 2 as the number of multiples of 2 (including
itself) which are less than b.

Lemma 2.1.3. Let it be Ak the set of composite numbers multiples of some pk
of any gap Ga,b. The inclusion-exclusion principle guarantees that the number of
composite numbers of any gap Ga,b is equal to

k∑
i=1

| Ai | −
∑

1≤i1<i2≤k

| Ai1∩Ai2 | +...+(−1)j+1
∑

1≤i1<...<ij≤k

| Ai1∩...∩Aij | +...

...+ (−1)k+1 | A1 ∩A2 ∩ ... ∩Ak |

Lemma 2.1.4. The number of intersections (I) of some prime pk of any gap
Ga,b such that a > 0 is always equal or greater than the number of intersections
of pk in the gap G0,b.

Proof. Some number is not an intersection only if is a power of some prime
number (including the prime number itself). In gap G0,b there are all the prime
numbers which are prime factors in any other gap Ga,b. Finally, the number
of powers of some prime pk in gap Ga,b can be at most equal to the number of
powers of pk in G0,b, and this only could happen if the only power of pk in G0,b

is pk itself.

Lemma 2.1.5. For pk > b
2 , odd, any gap Ga,b has at most 2 multiples of prime

number pk, and one of them is multiple of 2. Therefore, gap Ga,b has at most 1
multiple of some prime number pk > b

2 which is not an intersection.

Proof. If pk > b
2 , then there can be no multiple of pk less than b; therefore, by

Lemma 2.1.1., the gap Ga,b has at most 2 multiples mpk or (m + 1)pk. When
picking two consecutive positive integersm andm+1 randomly, thenm orm+1
is even. Thus, mpk or (m+1)pk is multiple of 2. Excepting the case of this odd
multiple being a perfect power of pk or multiple of some prime number pi > b,
the other multiple would be also an intersection. This implies that, if the gap
G0,b has n multiples of prime number pk and of them I are intersections, and
Ga,b has n + 1 multiples of prime number pk, then I + 1 of this multiples are
intersections.
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Lemma 2.1.6. For pk < b
2 , odd, and a ≤ b+1, if the gap G0,b has n multiples

of prime number pk and of them I are intersections, and Ga,b has n+1 multiples
of prime number pk, this additional element of the gap Gk = [mpk, (m+ n)pk]
is an intersection. Thus, from the n + 1 multiples of prime number pk in the
gap Ga,b, I + 1 are intersections.

Proof. As per Lemma 2.1.2, gap Ga,b has exactly the same number of multiples
of 2 as the number of multiples of 2 (including itself) which are less than b.
Thus, if the gap Ga,b has exactly n+ 1 multiples of prime number pk, then the
�extra� multiple must be necessarily odd.

If pk < b
2 , then |Gm| ≥ 3, and thus any composite number c ∈ Gm must be

multiple of pk and some other odd prime number less than b, even if there is
other composite number being some power of pk. Per Lemma 2.1.2. there are
at least two odd composite numbers,so at least there is one of them multiple of
pk and some other odd prime number less than b which is not pk itself. Thus,
the additional element of the gap Gm = [mpk, (m+ n)pk] is an intersection.

2.3 Main result

Now it is possible to enunciate and prove the main result of the paper.

Theorem 2.3.1. Letting a, b ∈ N, b ≥ 2 constant and a ≤ b+1, there exists at
least one prime number in the gap Ga,b.

Proof.

Applying the inclusion-exclusion principle, and considering the Lemmas ex-
posed, the number of composite numbers of any gap Ga,b can be at most the
sum of all the prime and composite numbers of gap G0,b, which, as stated at
the Previous considerations section, account b− 2 numbers.

Since every Ga,b has exactly b− 1 numbers, we can conclude that at least there
is necessarily a prime number in a given Ga,b for an arbitrary a ≤ b + 1 and b
constant.

2.4 Further considerations

From the theorem and the Lemmas used, we �nd that there is a necessary
condition to be satis�ed in order to state that there is not necessarily a prime
in a given Ga,b:

4



Necessary condition.

• There must exist at least some composite number n = pq in the given
Ga,b, where p and q are prime numbers or multiples of prime numbers
greater than b.

As the minimum composite number n = pq where p and q are prime numbers
or multiples of prime numbers greater than b, is p = q = b+ 1, then, assuming
that the application of the inclusion-exclusion principle yields that the number
of composite numbers of any gap Ga,b equals to the sum of all the prime and
composite numbers of gap G0,b, the value a = b+2 becomes the solution to the
question of which is the lower bound for a, so there is not necessarily a prime
number in a given Ga,b.

This lower bound could be much higher, since the lower bound a = b+2 assumes
that the application of the inclusion-exclusion principle yields that the number
of composite numbers of any gap Ga,b equals to the sum of all the prime and
composite numbers of gap G0,b, when empirically we �nd that this ocurr in very
few cases. Moreover, the di�erence between the number of intersections in gap
Ga,b and in gap G0,b widens when b increases, principally because the di�erence
between the number of powers of some prime number pk in gap G0,b and in any
gap Ga,b increases for bigger values of b.

As it is showed in the table below, which contains the di�erent lower bounds of
a for the values of b between 0 and 100, it seems that the growth of the lower
bound grows exponentially compared to the growth of b. In fact, the established
lower bound a = b+ 2 is the best possible only for b = 2 and for b = 6.

Also, it can be noted that there is an increasing oscilatory trend, suggesting
that for bigger values of b, the di�erence between the lower bound of a for b and
the lower bound of a for b+ 1 grows exponentially too.
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3 Corollaries

As corollaries of the theorem stated before, there can proved many important
conjectures in number theory, (e.g., Oppermann's, Andrica's, Brocard's, and
Legendre's).

3.1 First corollary: Oppermann's Conjecture

Oppermann's Conjecture [1] can be expressed as follows:

∀n > 1∈ N,∃Pa, Pb/n
2 − n < Pa < n2 < Pb < n2 + n

This is equivalent to the Conjecture proved, for the cases a = b − 1 and a = b
put together, so the Conjecture proof implies directly Oppermann`s Conjecture
proof.

3.2 Second corollary: Legendre's Conjecture

Legendre's Conjecture[2] states that for every natural number n, exists at least
a prime number p such that n2 < p < (n+ 1)2.

As (n + 1)2 = n2 + 2n + 1, and according to Oppermann's Conjecture proved,
we know that:

n2 < Pa < n2 + n < Pb < (n+ 1)2

Therefore,
n2 < Pa < Pb < (n+ 1)2

Subsequently, it is demonstrated Legendre's Conjecture.
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3.3 Third corollary: Brocard's Conjecture

Brocard's Conjecture[3] states that, if pn and pn+1 are two consecutive prime
numbers greater than two, then between p2n and p2n+1 exist at least four prime
numbers.

According to the conjecture's statement,

2 < pn < pn+1

As the minimum distance between primes is two, we can state that:

pn < M < pn+1

Where M is some natural number between pn and pn+1. Subsequently,

p2n < M2 < p2n+1

As M ≥ pn + 1, and according to the demonstrated Oppermann's conjecture,

p2n < Pa < p2n + pn < Pb < M2

Idem, as pn+1 ≥M + 1, and according to Oppermann's Conjecture proved,

M2 < Pc < M2 +M < Pd < p2n+1

Therefore,
p2n < Pa < Pb < Pc < Pd < p2n+1

Subsequently, it is demonstrated Brocard's Conjecture.

3.4 Fourth corollary: Andrica's Conjecture

Andrica's Conjecture[4] states that for every pair of consecutive prime numbers
pn and pn+1,

√
pn+1 −

√
pn < 1

According to the demonstrated Oppermann's Conjecture, the maximum dis-
tance between pn and pn+1 is:

n2 + n+ 1 ≤ Pn < (n+ 1)2 < pn+1 ≤ n2 + 3n+ 1

It is easily veri�able that:√
n2 + 3n+ 1−

√
n2 + n+ 1 < 1

For every value of n. As n2 + 3n + 1 ≥pn+1, and Pn ≥ n2 + n + 1, then√
pn+1 −

√
pn < 1
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Therefore, it is demonstrated Andrica's Conjecture.

3.5 Fifth corollary: a new maximum interval between ev-

ery natural number and the nearest prime number

According to the exposed in the fourth corollary, it can be stated that the
maximum distance between every natural number and the nearest prime number
will be:

n2 + 3n− (n2 + n+ 1) = 2n− 1

Therefore, and stating that:

n =
√
n2 + n+ 1

It can be determined that:

∀n ∈ N,∃Pa, Pb/(n− (2
√
n− 1)) ≤ Pa ≤ n ≤ Pb ≤ (n+ (2

√
n− 1))

And therefore, we can de�ne a new maximum interval between every natural
number and the nearest prime number as:

∀n ∈ N,∃P/n ≤ P ≤ (n+ (2
√
n− 1))

3.6 Sixth corollary: the existence of in�nite prime num-

bers of the form n2 ± k/0 < k < n

According to the demonstrated Oppermann's Conjecture, it can be stated that
every prime number pi will be of the following form:

pi = n2 ± k/0 < k < n

Subsequently, as it is widely proved the existence of in�nite prime numbers, and
every prime number can be expressed as n2 ± k/0 < k < n, then it is proved
the existence of in�nite prime numbers of the form n2 ± k/0 < k < n.
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