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Abstract

This paper studies the existence of prime numbers on the constant
gaps defined as
Gap = (ab, (a+1)b)
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1 Proposition of the problem

Definition 1.0.1. Let two positive integer numbers be a and b. Then, being b
a constant, we define a constant gap as

Gap = (ab,(a+1)b)

Some interesting question that arises and which this paper addresses is: assum-
ing b is constant, is there necessarily a prime number in a given G, 3?

From the definition, and looking at the literature, it can be found that if we let
b be a constant and a = 1, the answer is yes. This result is called Bertrand’s
Theorem. The following question of interest that arises is to study what occurs
when b remains constant and a = 2. And what if ¢ = 37

In other words: which is the highest value for a, such that there is necessarily a
prime number in a given constant gap G, 7



2 Lower bound for a

In this Section we will adress the question posed, trying to find the highest
posible lower bound for a, such that there is not necessarily a prime number in
a given constant gap G p-

2.1 Previous considerations.

e It is worth noting that every gap G, contains exactly b — 1 numbers,
whereas the number of prime and composite numbers less than b is b — 2,
as the number 1 is neither prime nor composite.

e One can also observe that any positive integer n in a given gap G, is
composite if and only if n = pq, where p is some prime number less than

V(a+1)0.

e Finally, it can also be noted that p < b for a < b+ 1, since p,y1 =b+1
implies that
2
prir = (b+1)

and
(b+1)>> (b+2)b

2.2 Important Lemmas

Consider the gap G1 = [pk, npi] where py is some prime number and npy < b,
and the gap G,,, = [mpg, (m + n)pg] with pi being the same prime number and
(m —1)pi < ab < mpy.

It is trivial the fact that G; C Gy, so there are exactly n multiples of prime
number py less than b.

It is also trivial the fact that G,, C G4, but there can be n or n + 1 multiples
of prime number p;, contained in the gap G, as showed by the following:

Lemma 2.1.1. Let it be Gy, C G p-Then, if (m +n)pr —ab < b, the gap Gap
has ezxactly n + 1 multiples of prime number py, whereas if (m + n)py — ab > b,
the gap G, has exactly n multiples of prime number py,.

Proof. If (m 4+ n)py, — ab < b, then G, = [mpg, (m + n)pg] , which contains
exactly n + 1 multiples of prime number p, whereas if (m + n)py — ab > b,
then G,, = [mp, (m +n — 1)px], which contains exactly n multiples of prime
number p.

It can be seen that (m + n)py — ab < b when mpy — ab < b — npy, and (m +
n)pr — ab > b when mp, — ab > b — npy.



Lemma 2.1.2. Gap G, has exactly the same number of multiples of 2 as the
number of multiples of 2 (including itself) which are less than b.

Proof. As the inequality mpy —ab > b—npy, stated in the proof of Lemma 2.1.1.
holds for p = 2 independently of the values of m, b and n, then there are exactly
the same number of multiples of 2 as the number of multiples of 2 (including
itself) which are less than b.

Lemma 2.1.3. Let it be Ay the set of composite numbers multiples of some py,
of any gap G, . The inclusion-exclusion principle guarantees that the number of
composite numbers of any gap G, p is equal to
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Lemma 2.1.4. The number of intersections (I) of some prime py of any gap
Gap such that a > 0 is always equal or greater than the number of intersections
of pr in the gap Gop.

Proof. Some number is not an intersection only if is a power of some prime
number (including the prime number itself). In gap Gy, there are all the prime
numbers which are prime factors in any other gap G, . Finally, the number
of powers of some prime p;, in gap G, can be at most equal to the number of
powers of pi in G p, and this only could happen if the only power of py in Go
is py itself.

Lemma 2.1.5. Forp; > %, odd, any gap G, has at most 2 multiples of prime
number py, and one of them is multiple of 2. Therefore, gap Gq 4 has at most 1
multiple of some prime number py > % which is not an intersection.

Proof. If py > %, then there can be no multiple of py less than b; therefore, by
Lemma 2.1.1., the gap G, has at most 2 multiples mpy or (m + 1)py. When
picking two consecutive positive integers m and m-+1 randomly, then m or m+1
is even. Thus, mpy or (m+ 1)py is multiple of 2. Excepting the case of this odd
multiple being a perfect power of p; or multiple of some prime number p; > b,
the other multiple would be also an intersection. This implies that, if the gap
Go,p has n multiples of prime number p; and of them I are intersections, and
Gap has n + 1 multiples of prime number py, then I 4 1 of this multiples are
intersections.



Lemma 2.1.6. For p; < g, odd, and a < b+ 1, if the gap Gy has n multiples
of prime number py, and of them I are intersections, and G has n+1 multiples
of prime number py, this additional element of the gap Gy, = [mps, (m + n)px]
is an intersection. Thus, from the n + 1 multiples of prime number py in the

gap Gayp, I + 1 are intersections.

Proof. As per Lemma 2.1.2, gap G, has exactly the same number of multiples
of 2 as the number of multiples of 2 (including itself) which are less than b.
Thus, if the gap G, has exactly n + 1 multiples of prime number py, then the
“extra” multiple must be necessarily odd.

If pp < g, then |G,,| > 3, and thus any composite number ¢ € G, must be
multiple of p; and some other odd prime number less than b, even if there is
other composite number being some power of pi. Per Lemma 2.1.2. there are
at least two odd composite numbers,so at least there is one of them multiple of
pr and some other odd prime number less than b which is not py itself. Thus,
the additional element of the gap G,, = [mpy, (m + n)pg] is an intersection.

2.3 Main result

Now it is possible to enunciate and prove the main result of the paper.

Theorem 2.3.1. Letting a,b € N, b > 2 constant and a < b+ 1, there exists at
least one prime number in the gap G .

Proof.

Applying the inclusion-exclusion principle, and considering the Lemmas ex-
posed, the number of composite numbers of any gap G, can be at most the
sum of all the prime and composite numbers of gap Go ;, which, as stated at
the Previous considerations section, account b — 2 numbers.

Since every G, has exactly b — 1 numbers, we can conclude that at least there
is necessarily a prime number in a given G, for an arbitrary a < b+ 1 and b
constant.

2.4 Further considerations

From the theorem and the Lemmas used, we find that there is a necessary
condition to be satisfied in order to state that there is not necessarily a prime
in a given G :



Necessary condition.

e There must exist at least some composite number n = pq in the given
Ga.p, where p and ¢ are prime numbers or multiples of prime numbers
greater than b.

As the minimum composite number n = pq where p and ¢ are prime numbers
or multiples of prime numbers greater than b, is p = ¢ = b+ 1, then, assuming
that the application of the inclusion-exclusion principle yields that the number
of composite numbers of any gap G, equals to the sum of all the prime and
composite numbers of gap G, the value a = b+ 2 becomes the solution to the
question of which is the lower bound for a, so there is not necessarily a prime
number in a given G .

This lower bound could be much higher, since the lower bound a = b+2 assumes
that the application of the inclusion-exclusion principle yields that the number
of composite numbers of any gap G4, equals to the sum of all the prime and
composite numbers of gap G, when empirically we find that this ocurr in very
few cases. Moreover, the difference between the number of intersections in gap
G and in gap Go, widens when b increases, principally because the difference
between the number of powers of some prime number p;, in gap G and in any
gap Gy increases for bigger values of b.

As it is showed in the table below, which contains the different lower bounds of
a for the values of b between 0 and 100, it seems that the growth of the lower
bound grows exponentially compared to the growth of b. In fact, the established
lower bound a = b + 2 is the best possible only for b = 2 and for b = 6.

Also, it can be noted that there is an increasing oscilatory trend, suggesting
that for bigger values of b, the difference between the lower bound of a for b and
the lower bound of a for b 4+ 1 grows exponentially too.



Beginning of first gap Ga,b

b Lower bound (a) i 5
with no prime numbers
2 4 8
3 8 24
4 & 24
5 18 90
6 15 30
7 17 119
8 25 200
9 13 117
10 20 200
ool 29 319
12 44 528
13 87 1131
14 81 1134
15 35 525
16 83 1328
17 79 1343
18 74 1332
19 70 1330
20 67 1340
21 118 2478
22 330 7260
23 58 1334
24 223 5352
25 172 4300
26 229 5954
27 179 4833
28 471 13188
29 292 8468
30 360 10800
31 506 15686
32 367 11744
33 586 19338
34 577 19613
35 645 22575
36 545 19620
37 424 15688
38 743 28234
39 503 19617
A0 637 25480
41 766 31406
42 467 19614
43 937 40291
44 579 25476
45 698 31410
46 683 314138
a7 542 25474
48 1443 69264
49 641 31409
50 628 31400




51 616 31416
52 604 31408
53 2026 107378
54 1661 89694
55 571 31405
56 1834 102704
57 551 31407
58 2989 173362
59 1820 107380
60 2242 134520
61 2842 173362
62 2515 155930
63 2475 155925
64 2938 188032
65 2399 155935
66 2849 188034
67 4960 332320
68 2293 155924
69 5227 360663
70 5250 370300
1 5215 370265
72 4695 338040
73 2136 155928
74 5004 370296
75 2079 155925
76 4872 370272
77 2025 155925
78 1959 155922
79 4687 370273
80 7210 576800
81 1925 155925
82 12852 1053864
83 4461 370263
84 4408 370272
85 4243 360655
86 15273 1313478
87 4256 370272
88 10544 927872
89 12809 1140001
50 5468 492120
91 4069 370279
92 11344 1098848
93 3878 360654
54 3939 370266
55 13826 1313470
96 3857 370272
97 13992 1357224
58 13849 1357202
59 14589 1444311
100 16718 1671800




Lower bound (a)
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3 Corollaries

As corollaries of the theorem stated before, there can proved many important
conjectures in number theory, (e.g., Oppermann’s, Andrica’s, Brocard’s, and
Legendre’s).

3.1 First corollary: Oppermann’s Conjecture

Oppermann’s Conjecture [1] can be expressed as follows:
Vn > 1€ N,3P,,P,/n* —n< P, <n?> < P, <n’+4n

This is equivalent to the Conjecture proved, for the casesa =b—1 and a = b
put together, so the Conjecture proof implies directly Oppermann‘s Conjecture
proof.

3.2 Second corollary: Legendre’s Conjecture

Legendre’s Conjecture[2] states that for every natural number n, exists at least
a prime number p such that n? < p < (n +1)%

As (n+1)%2 =n? + 2n + 1, and according to Oppermann’s Conjecture proved,
we know that:
n?<P,<n*+n<P<(n+1)?

Therefore,
n? < P, < Py < (n+1)?

Subsequently, it is demonstrated Legendre’s Conjecture.



3.3 Third corollary: Brocard’s Conjecture

Brocard’s Conjecture[3] states that, if p, and p,11 are two consecutive prime
numbers greater than two, then between p? and p? 41 exist at least four prime
numbers.

According to the conjecture’s statement,
2 <pn <Pnt1

As the minimum distance between primes is two, we can state that:

Pn <M < ppi1
Where M is some natural number between p,, and p, 1. Subsequently,

ph < M? < p$z+1
As M > p, + 1, and according to the demonstrated Oppermann’s conjecture,

p2 < Py, < p?+pp <P < M?
Idem, as p,+1 > M + 1, and according to Oppermann’s Conjecture proved,
M? < P.<M?*+M< Py<p?,

Therefore,
P2 <P, <P, <P.<Py<pr,,

Subsequently, it is demonstrated Brocard’s Conjecture.

3.4 Fourth corollary: Andrica’s Conjecture

Andrica’s Conjecture[4] states that for every pair of consecutive prime numbers

Pn and Pn+1y /Pn+1 — y/Pn <1

According to the demonstrated Oppermann’s Conjecture, the maximum dis-
tance between p,, and p,41 is:

n2+n+1§Pn<(n+1)2<pn+1§n2+3n+1

It is easily verifiable that:

V2 t3n+tl—vVn2+nt+l<l1

For every value of n. As n? +3n +1 >p,.1, and P, > n? + n + 1, then

VPnrl —/Pn <1



Therefore, it is demonstrated Andrica’s Conjecture.

3.5 Fifth corollary: a new maximum interval between ev-
ery natural number and the nearest prime number

According to the exposed in the fourth corollary, it can be stated that the
maximum distance between every natural number and the nearest prime number

will be:
n+3n—m>+n+1)=2n-1

Therefore, and stating that:
n=vnt+n+1
It can be determined that:
Vi € N,3Py, Byf(n— 2V —1)) < Pa <n < By < (n+ (27— 1))

And therefore, we can define a new maximum interval between every natural
number and the nearest prime number as:

Vn e N,3P/n <P < (n+ (2y/n—1))

3.6 Sixth corollary: the existence of infinite prime num-
bers of the form n* +k/0 <k <n

According to the demonstrated Oppermann’s Conjecture, it can be stated that
every prime number p; will be of the following form:

pi=n*+k/0<k<n

Subsequently, as it is widely proved the existence of infinite prime numbers, and
every prime number can be expressed as n? & k/0 < k < n, then it is proved
the existence of infinite prime numbers of the form n? £ k/0 < k < n.
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