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Abstract

The present paper is a review, a thesis of somg weportant contributes of P. Horava, M.
Fabinger, M. Bordag, U. Mohideen, V.M. Mostepanenkang T. Nguyen et al. regarding various
applications concerning the Casimir Effect.

In this paper in theSection 1we have showed some equations concerning the Easifect
between two ends of the world in M-Theory, the @asforce between the boundaries, the Casimir
effect on the open membrane, the Casimir form badasimir correction to the string tension that
is finite and negative. In th8ection 2 we have described some equations concerning asen
effect in spaces with nontrivial topology, i.e.spaces with non-Euclidean topology, the Casimir
energy density of a scalar field in a closed Friadm model, the Casimir energy density of a
massless field, the Casimir contribution and thalteacuum energy density, the Casimir energy
density of a massless spinor field and the Casstmess-energy tensor in the multi-dimensional
Einstein equations with regard the Kaluza—Klein pawiification of extra dimensions.

Further, in theSection 1and2 we have described some mathematical connectiorseaang some
sectors of Number Theory, i.e. the Palumbo-Narduallidel, the Ramanujan modular equations
concerning the physical vibrations of the bosotrimgs and the superstrings and the connections of
some values contained in the equations with sonhgesaconcerning the new universal music
system based on fractional powers of Phi and Pogrec

In the Section 3 we have described some mathematical connectmmseening the Riemann zeta
function and the zeta-strings. In conclusionSiection 4 we have described some mathematical
connections concerning some equations regardin@gsimir effect and vacuum fluctuations. In
conclusion Appendix A), we have described some mathematical connedbetgeen the equation
of the energy negative of the Casimir effect, tlasi@ir operators and some sectors of the Number
Theory, i.e. the triangular numbers, the Fibonacaumbers, Phi, Pigreco and the partition of
numbers.

1. On some equations concerning the Casimir force beten the boundaries and the
Casimir effect on the open membrane. [1]

We will now demonstrate that the Casimir forceaagé separatior. is attractive. We start with
the E, x E, model onJ = R x S'/Z, with a flat, direct-product metric
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ds =n,,dx"dx® + L’dZ, (1.1)

where x*, A=0,... 9are coordinates oR*°, and we have introduced a rescaled coordiaatas the

S'/z, factor such thaizD[O,l]. We assume that the distancebetween the boundaries is constant
and large in Planck units. The geometry (1.1) regmés a classical solution of the theory. Quantum
fluctuations of the fields on#M generate a non-zero expectation va(JgN> of the energy-

momentum tensor, which then modifies the classitatl static geometry oful. At large
separationsL, this effect can be systematically studied in lhreg-wavelength expansion, i.e., in
the perturbation theory in powers 6f /L .

The Poincaré symmetry of the background metric) ({inplies that(TMN> takes the form
(Tyn )X dX" = —E(2)7,50x"dx® + F(z)L%dZ, (1.2)

with E(z) and F(z) are in general some functions of The one-loop energy-momentum tensor in
the flat background (1.1) has to be traceless. ifygies thatF =10E(z), and thereforeE(z) = E,
is a constant and the energy-momentum tensor {dk2¥ the following general form,

(Tun Y AXY = —E, (750X d® ~10L2dZ).  (1.3)

The remaining constari, plays the role of the vacuum energy density indleen-dimensional
theory, and can be efficiently determined by Katit@in reducing the theory fronR"°xS'/Z, to
R', and calculating the effective one-loop energy-rantam tensor(TAB>lo of all the KK modes
in R™. By Poincaré symmetry, we have

<TAB>10 = _quAB’ (1.4)

where EO is the vacuum energy density in ten dimensiongherone-loop effective cosmological
constant.lg0 is related to the vacuum energy dendifyin eleven dimensions by

E,=L[dzE =LE,. (L5)

The one-loop energy densi&) is conveniently given by

= __ 1 _1VF [P L g (pepe)re
E, I(Z]T)lod p;( 1) IO > dle . (1.6)

where the sum ovep, represents the sum over all Kaluza-Klein momestavell as all possible

polarizations in the supergravity multiplet, ar(dl)F‘ is the fermion number. From the ten-

dimensional perspective, the KK reduction gives B28onic polarizations at each mass level
/m/L for m a positive integer, and 128 fermionic polarizasi@t each mass levet /L for r a
positive odd-half-integer. In addition, 64 out bktoriginal 128 massless bosons also survive the

orbifold projection fromS' to S'/Z, . Altogether, (1.6) becomes
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— -dl 1 -m?r2 /212 -r2m?e/2L? «dl 1 s -s?r20/8L2
=—64| —7— - =64 —7—w D (-1 =
E, =-64), (2} 2.° gf b2 () 2,
2
_ odl 1 .
= —64.[0 5@64((* by 4 /8L2), (17)
where 6?4(u|t) is one of the Jacobi theta functions.

We note that this equation can be connected withettpression (B9) concerning the Palumbo-
Nardelli model and the Ramanujan’s modular equatimteed, we have:

= o dl 1 —m? 2 2 2 o df 1 _g2 2
=g 2= m?r?( /2L r2mfel2l? | - g == —1)fes w8 _
E =[5 f| 28 DZZ k2 (e f 2y
2

- g j:%ﬁa,(qim 8L%) =

I d%x‘/_[ 16765 89”"9“"Tr(GwGpa)f (40)—19”""#@”4 )

:j%jolmx(—c;)”2 "2{R+40 CD@”CD——‘H - 1°Trq 2|2)}:>
0
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Rescaling the loop parametér— 7 such that all the dependence bnis outside the integral, we
thus obtain the following expression for the vacuemergy density per unit area of the boundary,

1

E,=-J O (19)

10’

with the L -independent factof given by the integral

215.[ ( |r) (1.9)

It is easy to demonstrate thdt is convergent and positive. First, change theabdes tot =1/7,
and use the modular properties of the Jacobi fuetztions, 6,(0T) = (-iT ) 26,(0~1/T) to obtain



1 (o onp (o
3 :?L dtt*’2g,(0fit). (1.10)

The theta function€2(0|it) is positive definite for reat, and decays exponentially ds- .
Therefore, the integral overin (1.9) is convergent and positive. This showd ti@ vacuum
energy densityE, per unit boundary area as given by (1.8) is negalihus, we have demonstrated

that the Casimir effect between the boundaries®®, x E, model induces, in the leading order of

the long-wavelength approximation, a negative cdsgical constant. It is tempting to conclude
that the negative ten-dimensional cosmological orismplies an attractive force between the two
boundaries.
Using (1.3), (1.8), and (1.5), we obtain the onaploenergy-momentum tensor in eleven
dimensions,

(T )X X" =%(/7ABdXAde ~101%dZ). (1.11)
The Casimir force# between the boundaries (per unit boundary aregiyén by

F=(Ty) = Y0, @iz

Ll 1

whereT,, is the zz component of the energy-momentum tensor (1.11)erorthonormal vielbein.

It is reassuring that in this model the Casimicé&# can also be obtained from the response of the
energy density per unit boundary area to changing

_0E, __107
oL M

o —

(1.13)

We conclude that the leading-order Casimir foroerted on the boundaries in tiig x E; model at

large L is indeed attractive. Notice that this force exBilthe typical Casimir-like scaling familiar
from the conventional Casimir effect in electrodynes.

The interaction between a perfectly conducting gplahd an atom or molecule with a static
polarizibility a is in the limit of large distanc® given by

k= —ihci

ohcr, (114)

and the interaction between two particles withistablarizibilities a and a, is given in that limit
by

&E=-235c% (115
47 R

For very largea the interaction energy is given by the followintegral

k= hc%2 %{g{z /(nzg + ijXdX_II\/‘kZZ + X jxd{%dkzj}. (1.16)



In order to obtain a finite result it is necessdoymultiply the integrands by a functioﬁ(k/km)
which is unity fork <<k_ but tends to zero sufficiently rapidly ffk/k_ ) — «, wherek , may be

defined byf (1) :%.

Introducing the variableu = a’x* / 77°

= Lzhc%{g‘zzx/nz +uf (m/n2 +u /aKn)du—];];\/nz +uf (m/n2 +u /aKn)dudn}. (1.17)

Now we apply the Euler-Maclaurin formula

o] © __i I 1 .
%F(n)—J;F(n)dn— 12F(O)+24x30F (0)+... (1.18)

Introducing w=u +n” we have

00

F(n)= | wl’zf(%jdw, (1.19)

n2

whence

F'(n):—Zan(%TJ, F'(0)=0, F™(0)=-4. (1.20)

The higher derivatives will contain powers(af/ ak ). Thus we find

Ezz—hc us Gig (1.21)
L 24x30 a

a formula which holds as long a, >>1. For the force per chwe find

F= hcii4 = 00132 dynefcrh (1.22)
240a a’

where a, is the distance measured in microns.

There exists an attractive force between two npédes which is independent of the material of the
plates as long as the distance is so large thawwfave lengths comparable with that distance the
penetration depth is small compared with the disgariThis force may be interpreted as a zero
point pressure of electromagnetic waves. (Casifrfid8 “On the attraction between two perfectly

conducting plates”)

We note that%:0,119366207 and j—f;zl830281846are connected with 0,11936438 and

1,83121182 values concerning thew universal music system based on fractional powerd o
Phi and Pigreco.



Also %20’041123351 and 7i2c=0,013707783 are connected with 0,04111130 and

0,01370377 values concerning thew universal music system based on fractional powerd o
Phi and Pigreco.

We will now analyze this response of the metriche non-zero(TMN> of (1.11), in the leading

order in the long-wavelength expansion. Consider fillowing general form of the metric on
RxR’xS'/Z,,
ds’ = —dt* +a*(t)g,dXdx’ + L*(t)dZ, (1.23)

where we have again used the rescaled coordinatdong S'/Z,, with zD[O,l]. The indices
i,] =1..9 parametrize the spacelike slice of the boundaymggry. The metricg; on R is

constrained by the symmetries of the problem t@foeonstant curvature, i.e., its Ricci tens@jr

satisfiesfﬁj = kg, . The initial configuration at =0 corresponds to
A, q1/z, = GyAXdX’ +L5dZ".  (1.24)

At zeroth-order, the metric is flat and the threexf gauge fieldC is zero, and we do not have to
worry about corrections to Einstein’s equationsnirdiigher-power curvature terms or tle-
dependent terms in the Lagrangian. Thus, the ezpsatf motion at first order i, are simply

Ru =876, (Tyn) - (1.25)

Given our one-loop result for the energy-momentansor (1.11), we tak(aTMN> in the form

(T )X X" = —7 < (= dit? + @2(t)g, dXdX’ ~10L2(t)dZ), (1.26)

J
Lll(t)

where L is now allowed to depend an Notice that this adiabatic assumption is compatiith
the requirement of energy-momentum conservatiog:Tify, of (1.26) is conserved in the metric
given by (1.23). The equations of motion (1.25)(fn23) and (1.26) lead to

9 L _ J N2 @ a’g v L J
— T =T 8(a)+aa+IaL+k—8nGuF, LL+—al = 8076, 75 - (1.27)

Since we are looking for the leading backreactibhe initial configuration (1.24) to th(aTMN>
given by (1.26) at smati> Owe expand

L(t)=L, +%th2 +..., a(t):l+%a2t2 +.... (1.28)

Plugging this expansion into (1.27) determines

_ 16796, _ 8079G, _ 88796,
=2 = BT SSUEL (q 99)
oL} B oL}



Thus, we reach the following conclusions:

(1) At leading order inG,,, the spacetime geometry responds to the Casimge foy moving
the boundaries closer together, i.e(f) < L, for (small) timest > 0. At the same time, the

metric on the transvers®® is rescaled by an increasing conformal facifi) > 1.

(2) Interestingly, the naive initial configuration wittk =0, corresponding to two flat
boundaries at finite distance apart, is incompatiith the constraint part of Einstein’s
equations. As we adiabatically bring in the secbadndary from infinity, the geometry of

the transverseR® responds by curving with a constant negative dureagiven byk in
(1.29).

We note that%—5585053 and %—30717794 are connected with 5,6075849 and

30,843458 values concerning thew universal music system based on fractional powerd &hi
and Pigreco.

Consider an open membrane stretched between theawalaries of spacetime, with worldvolume
> =R’xS'/Z, parametrized byc™, p), m= 01 and with p0[0,L]. In addition tox" (o, o),
the bulk worldvolume theory contains the spacetapi@or H"(Jm,,o). All boundary conditions are
induced from thez, orbifold action onx",8” and % . In particular, the fermions satisfy

6°(o™,-p)=+r6°(c".p). (1.30)

In our non-supersymmetricc, x E; model, corresponding to the (+, —) chirality clidhe
chiralities of the E; current algebras disagree, and each boundary deaeparate half of the
original supersymmetry. We expect a worldvolumel@naf the spacetime Casimir effect in the
E; x E; model.

Consider an open membrane with worldvoluRfexS' / Z, stretching along<,..x® = (between

the two boundaries. It will again be more convehigncalculate the correction =L7 to the
vacuum energy density integrated over the compawtmsion, i.e., the effective string tension. The
first contribution to7 comes again from the mismatch between the bounztawglitions on bulk
bosons and bulk fermions on the worldvolume, andsdoot involve the boundarf, current

algebras. Taking into account that we have eigiifenic and eight bosonic degrees of freedom at
each non-zero mass Ievel we obtain

d P N _ odl 1 i _
r= ZL A pm__40§ﬁ94(0(@j szo a2 a,0). )

Also this equation can be related with the expoes$B9) concerning the Palumbo-Nardelli model
and the Ramanujan’s modular equation. Indeed, we:ha

24 »d -
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(1.31b)

o

This again has the expected Casimir form, and ptbaethe Casimir correctiom to the string
tension, as given by (1.31), is finite and negatiMas negative Casimir tension competes with the

positive bare string tensior, = L/;5. While the supergravity approximation breaks ddvefiore

we reach the regime df = /,,, these results suggest that at distaricesmaller than the eleven-

dimensional Planck scale, the effective string tb@tresponds to the stretched open membrane
becomes tachionyc.

2. On some equations concerning the Casimir effect igpaces with nontrivial topology,
the Casimir energy density of a scalar field in alosed Friedmann model, the Casimir
energy density of a massless field, the Casimir cwibution and the total vacuum
energy density, the Casimir energy density of a makess spinor field and the Casimir
stress-energy tensor in the multi-dimensional Eingin equations with regard the
Kaluza—Klein compactification of extra dimensions|[2]

In its simplest case the Casimir effect is the tieacf the vacuum of the quantized electromagnetic
field to changes in external conditions like cortthg surfaces.
It is well known in classical electrodynamics thwtth polarizations of the photon field have to
satisfy boundary conditions

E,=H, =0 (2.1)

on the surfaceS of perfect conductors. Hene is the outward normal to the surface. The intlex
denotes the tangential component which is paralldéie surfaces.
We imagine the electromagnetic field as a infirset of harmonic oscillators with frequencies

w, = c/k? . Here the index of the photon momentum in freecepa J =k = (ki,kz,ks) where all
k are continuous. In the presence of boundadiesk,,k,,7/n/a) = (k.,/m/a), wherek, is a two-
dimensional vectorn is integer. The frequency results in

m

wa&chlk(;j - @2)

This has to be inserted into the half-sum over desgies to get the vacuum energy of the
electromagnetic field between the plates



E@)=2] 0("2‘13)‘9 Sa.s. @

where S - o is the area of plates. The expression obtainedltiaviolet divergent for large
momenta. Therefore, we have to introduce some aegation. We perform the regularization by
introducing a damping function of the frequency ethivas used in the original paper by Casimir
and the modern zeta-functional regularization. Wi correspondingly

_hpdkdk, < ~,
B(a,0)=7 onf 2, LS (24)

and

Efas)= X [ g 7S @9

These expressions are finite for>0, respectively, forRes>g and the limits of removing the

regularization ared -~ @nds — 0Ocorrespondingly.
Let us first consider the regularization done blyaducing a damping function. The regularized
vacuum energy of the electromagnetic field in fiekowski space-time is given by

— 00, 00 :L 3 9
Egy (= 0,0) (Zﬂ)sjd kae ™ LS, (2.6)

where L - o is the length along the z-axis which is perpendicuto the plates

=dk|=ck? +kZ +kZ, k=(k,k, k). The renormalized vacuum energy is obtained by the

subtraction from (2.4) of the Minkowski space cdmition in the volume between the plates. After
that the regularization can be removed. It is gibvgn

Er(a )—Ilm (zkid)k?(_z o e ZaJ' wW,e ‘M]S Ilmjdk1dk2

° K2a® | 5 s, ka a
+neer dt +t2e M - 202 2.7
[Z - nz 2} (27)

wherek? =k +kZ,t = ak,/ 7.
To calculate (2.7) we apply the following Abel-Pdaiormula

00

ZF - [ dtF(t) =

=0

-F(-it)], (28)

and obtain

AT o oo 1
E; (a):—ca3 .[0 ydyyem_lwltz—yzdts, (2.9)




where y =k.a/ 77 is the dimensionless radial coordinate in {kgk,)-plane. Note that we could
put d =0 under the sign of the integrals in (2.9) due teirtttonvergence. Also the signs when

rounding the branch points, = iA of the functionF (t) =+ A* +t* by means of

F(it)-F(-it)=2it? - A (t=A) (2.10)

were taken into account. To calculate (2.9) finally change the order of integration and obtain

ren _ Chnz dt 2 __Chn2 1 dXX3 __Chﬂ'2
E"(0) =5 [} g g T - yPdys=-"% T |y ST esS. (211)

We note that this equation can be related withefye (B8) concerning the P-N model and the
Ramanujan’s modular equation Indeed, we have:

Ern(a) = - chnzj' = lj'y\/idys chit 1 j:dX)éS=— Ch T .

33° 2 7T) e -1 (24>< 30)&3
jd%xf[ on gg"”g””Tr(G,,VGpa)f(w)-ig”vau@w”}=
e esen )
0 10

© COSTEXW oW dx
antilog™ conszhnx “1\;‘\'/2

e " (itw)

(=]

(2.11b)

The force

(the finite force acting between the two parallettral plates from the infinite zero-point enerdy o
the quantized electromagnetic field confined inweetn the plates, wera is the separation

between the platesS >>a® is their area ana is the speed of light) acting between the plases i
obtained as derivative with respect to their distan

F(a)=—aE56n(a)— ”zhcs (2.13)

oda 24Ca

We note that% =0,041123351 and 7i2C =0,013707783 are connected with 0,04111130 and

0,01370377 values concerning thew universal music system based on fractional powerd o
Phi and Pigreco.

Furthermore, aIseI;—z =3,289868 is connected with 3,272542 that is a value conggrthe new

universal music system based on fractional powerd &hi and Pigreco.
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Now, we demonstrate the calculation of the groutadesenergy in zeta-functional regularization
starting from eq. (2.5). Using polar coordinal(d!g,¢k) in the plane(kl,kz) and performing the

substitutionk; = y(rn/a) we obtain

Eo(a,s):;‘_;j:dyy(yz+1)1/2_52(%j_ S. (2.14)

Note that we pus=0 in the powers of some constants, eq.,The integration can be performed
easily. The sum reduces to the well known Riemaata function(t = 2s-23)

Z)=Y

n=1

. (2.15)

:.-.||—‘

which is defined forRet > li.e., Res>§, by this sum.

It can be shown that the use of the valg—3) =1/120 instead of the infinite whes —  Qalue

(2.14) is equivalent to the renormalization of tecuum energy under consideration. In this
simplest case the value of the analytically cordgthwzeta function can be obtained from the
reflection relation

r(gjn—vzzR(z): F(l;zzjn(z‘l)’ZZR(l—z), (2.16)
where I'(z) is gamma function, taken at=4. Substituting(R(— 3) =1/120 into (2.14) and putting

s=0 one obtains once more the renormalized physicatggnof vacuum (2.11) and attractive
force acting between plates (2.13).

We start with a real scalar fiel@(t,x) defined on an intervab<x<a and obeying boundary
conditions

6(t0)=¢(t,a)=0. (2.17)

This is the typical case where the Casimir effeisies. The scalar field equation is as usual

10%(x)_ %), e
c® ot® X2 * 7?2 #(t,x)=0, (2.18)

wherem is the mass of the field.
Let us return to the intervél< x <a and impose the following boundary conditions

#(t0)=¢(t.a), 0,4(t0)=0,4(t.a), (2.19)

which describe the identification of the boundaojnps x= 0 and a. As a result we get the scalar

field on a flat manifold with topology of a circl&'. Comparing with (2.17) now solutions are
possible withg # Oat the pointsx =0,a. The orthonormal set of solutions to (2.18), (2.4&n be

represented in the following form:

11
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¢,(f)(t,x): (Zg%jexp{ii(wnt—knx)], %:(n;lzzc:4+c2kfj , knzz?m, n=0+1+2,... (2.20)
thence
(%) = C ext] £ \/(m2§4+ [ij jt (ijx (2.200)
28 m’c’ Z(ijz B a
h? a

Now we note that the standard quantization of iflel fs performed by means of the expansion
#(t.x) = g0t x)a, + )t x)az|.  (2.20c)

The operator of the energy density is given bydkeomponent of the energy-momentum tensor of
the scalar field in the two-dimensional space-time

o= "5 L0 +P.oll | @200

and thence also

o mfc* & cos2k x
<0(TOO >2—an W - Zah; . (2.20€)

Substituting (2.20) into the eqgs. (2.20c) and (&)20@e obtain the vacuum energy density of a scalar
field on S'

<qToo(X)|0> Zw (2.21)

n_—oo

Here, as distinct from eq. (2.20e), no oscillawogtribution is contained. The total vacuum energy
is

- J-Oa<qToo(X)|O>dx:% i% = hi“)% —m_2°2. (2.22)

The simplest way to perform the calculation of thenormalized vacuum energy without
introducing an explicit renormalization functiontie use of the Abel-Plana formula

i Ith ; +|I

n=0

[F (it)-F(-it). (2.23)
Substituting (2.20), (2.22) and the following egoiat

E, (a)= Ma = Z—f‘Tj:aUk (2.24)

12



into the following equation representing the renalired vacuum energy of the interv(eﬂ, a) in
the presence of boundary conditions

€17 (2)= [ (0.0)- En (20 = El@) ==, (225

one obtains

E(a,m) =1 {Z%‘—f w(kdk} m_e_@{zyﬁm J'\/A2+tdt} mc (2.26)

with A=amc/(27#1) and the substitutiont = ak/(277) was made. Now we putF(t) =+ A2 +1t2
into eq. (2.23) and take account of eq. (2.10).sBuking (2.23) into (2.26), we finally obtain

L Arhc e [P= A hC e E2 - 1
EO (a,m)—_ a jA eZII _1dt—_5jﬂﬁdf, (227)

where =27, pu=mca/lai=27A. In the massless case we haye= , &d the result
corresponding to (2.25) for the interval reads

ren __@ m# :_E
Er*"(a)= = exdi)—ldf o (229

For u>> 1it follows from (2.27)
Er*"(a,m)= —@e'”, (2.29)
N 2ma

i.e., the vacuum energy of the massive field isomegmtially small which also happens in the case of
flat spaces. Thence, we can obtain the followixgression:

En(a,m)= 4mcj°°1/t2 Azdt hcj V‘z ” d& =~ - */_Z; 4 (2.290)

We note that% =0,523598 and i =0,398942 are connected with 0,524595 and 0,393446

NP

values concerning thaew universal music system based on fractional powersf d&®hi and
Pigreco.
A plane with the topology of a cylinded' x R" is a flat manifold. This topology implies that pts

with Cartesian coordinatelx +na,y), wheren=0+1%2 ,...are identified. For the scalar fielg
defined on that manifold the following boundary diions hold:

#(toy)=stay). 04(t0y)=04tay). (2.30)

The scalar wave equation (N +1) -dimensional Riemannian space-time is:

13



m’c

DDK++
(o2

j¢(x) =0, (2.31)

where U, is the covariant derivative, andR is the scalar curvature of the space-time,
E=(N-12)/4N, x=(%,%,....%,). This is the so called “equation with conformalipting”. For

zero mass it is invariant under conformal transtrons.
The metric energy-momentum tensor is obtained Ibying the Lagrangian corresponding to (2.31)

with respect to the metric tensgk . Its diagonal components are

T, hc{(l 25)a¢a¢+(25 jg.. P09~ (@00, + 0 009) +

H;zs} ”;lf g, - &G, —26°Rg }p } (2.31b)
whereG, = R, —%ng is the Einstein tensor, arfg, is the Ricci tensor.

Let N =2, and the curvature be zero as in the caseS'ofR". It is not difficult to find the
orthonormalized solutions to eq. (2.31) with theibdary conditions (2.30). Indeed, we have that:

Eren a m d 2.32
jﬂ -~ p( E &, (232
whereL - o is the normalization length along the y-axis athafollowing equation
EOM(—oo,oo)=ij°°aukL. (2.33)
2770
Note that this result is valid for an arbitrary walof & and not foré :% only. In the massless case

the integral in (2.32) is easily calculated witle flollowing result

Ee"(a)= - h;{; B (23

where 7(2) is the Riemann zeta function witf(3) = 1.202.
We note that the eq. (2.32) is connected with th€229b). Indeed, we have that:

£ (a,m) = 4mcr /t—Azdt hcj \/5 ,u dE ~— \/_hce_:

2

= E*(a,m) = L -~ p(g déL, (2.35)

and that the eq. (2.34) is connected with the248|). Indeed:

ren __E ® g __@ ren :_hCZR(3)
E, (a)_ B9 exdf)—ldg_ 6a = E (a) 2782

14
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The non-renormalized vacuum energy density of eletignetic fields reads

£ (aa)=520)1

J (2,1,)2 didic > (@ +af?,),  (2.37)

where, we have separated the proper frequencidgeahodes with two different polarizations of
the electric field (parallel and perpendiculariie plane formed by, and z-axis, respectively).

The equations for the determination of the pro;neqlienciescqg)’n of the modes with a parallel
polarization are the following:

A (afu)n)z e‘Rz(“Zd){(rlgrl;eRl —If5e Rld) gt — (rlorfzeRl —rirse Rid) e R°a} 0. (2.38)

While the equations for determination of the freagies aﬁ)n of the perpendicular polarized
modes are the following:

A(2)( i)n) = e (a2 {(OuoouzeRld C|1_0C|1_2€_ Fad )2 e — (Ou_ooquzeRld - Q1+OC|1_2€_ Fud )Ze_ROa} =0. (2.39)

Summation in eq. (2.37) over the solutions of €ég88) and (2.39) can be performed by applying
the following argument theorem:

Sekd=g [ s (o)s [ ama (@], @40

where C, is a semicircle of infinite radius in the righteshalf of the complexw. -plane with a

centre at the origin. The second integral on tghtrhand side of (2.40) is simply calculated with
the natural supposition that
lime, (w)=1, lim de, (@)
dw

W — © [

=0 (2.41)

along any radial direction in complex-plane. The result is infinite, and does not depamd :

(12)( ) =
jc+adInA12 (w)_4jcqw. (2.42)

Now we introduce a new variable=-ia in egs. (2.40) and (2.42). The result is

12) _ 1 (= 1.2) [ 2
;“i»n)‘gjw ainati)+= [ de. (243

From egs. (2.38), (2.39) and (2.43) it follows

12) - (£2)(j 2
im Y af = o[ amae)+ 2] de, @44)

a— o

where the asymptotic behaviour 8+ ata — « is given by

15



AY = glfomRe)a-2Red (rlorlzeRld rlE)rl_ze_Rld )2 ' A(ozo) = glforfelazRd (q10q12 - Ou_oou_ze_Rld )2 - (2.45)

0

Now the renormalized physical quantities are fowitth the help of egs. (2.43) — (2.45)
Saf | =S e -lim> o = 1 [ &in alig) (2.46)
n o ren n o ane n o2 Aiz (I E)
They can be transformed to a more convenient forthn te help of integration by parts
o o A E)
2 -1 déin ,  (2.47
[Zaé j ol % el

where the term outside the integral vanishes.
To obtain the physical, renormalized Casimir enelgysity one should substitute the renormalized
guantities (2.47) into eq. (2.37) instead of ed 32 with the result

EX(ad)= -, I [Pkdk [T delinQi€) +nQ,(€)].  (2.48)

where we introduced polar coordinatekjk, plane, and

1) (; - d - Rd )2
A( )(l 3 ) —1_ floffzeRl ~ rlJ(r)r12e ) ~2Rga
=1 +.+Rd _ -4 Rd e !
Nol12€ Nof12€

- -+ oRA = -Rd )2
4 (] e e
o2 o2

In terms of p,¢ the Casimir energy density (2.48) takes the form
ren ho e © : .
EX(ad)= = pdpf, £'déinQi€)+InQ,(i€)].  (2.50)

For the egs. (2.49), we can rewrite the eq. (2254) as follow:

e hooe o rrteRd — e Rd ) a
ES (a,d):mj'1 pdp.[o Ezdﬂ]n(l ( 1012 10'12 j e 2R )

Rd _ ~Rud
r10r12e Mof12€

“ Nt AR At AT A
+|n(1—(°ﬂ0Ollze ho%2® je‘z%a)]. (2.50b)

Ryd

q:oq;z ~Op%h

From eq. (2.50) it is easy to obtain the Casimncdéoper unit area acting between semi-spaces
covered with layers:

rulad)=- R LT e fsdf[l‘ o d ) 1-Q

16



This expression coincides with Lifshitz result the force per unit area between semi-spaces with a
dielectric permittivity &, if the covering layers are absent. To obtain timsting case from eq.

(2.51) one should pul =0 and g, =&,

S R I

The corresponding quantity for the energy densitipivs from eq. (2.50)

ren 2 K &P 2(¢/c)pa Kz -p ’ -2(&/c)pa
E*'(a)= j p pj Edf{ln{ (—K zp] p]+|n{ (—K2+p]e p]} (2.53)

It is well known that eqgs. (2.52) and (2.53) conttie limiting cases of both van der Waals and
Casimir forces and energy densities. At small distaa << A, these equations take the simplified

form

Fe(@)=- 48n2 szdj dfﬂif} —} ., (2.54)

ren - _ 3h 2 i "
E(a)= e b [ dfl( _Je 1] . (2.55)

where we have introduced the Hamaker constant.
In the opposite case of large distanees> A, the dielectric permittivity can be representedtmir

static values af =0. Introducing in eq. (2.52) the variabke(now instead off ) one obtains

2 1 2 -1
Foda)= - [P l(—iigj ex—l} ; (—Eim ex—l} . (256)
20 20 20

2 -1 2 -1
ren 5hc dp K + p X K + pg X
E:'la)=- —20 T e -1 +|| =220 e -1 , (2.57
® ( ) 480a°m* 1 j H Kzo_ pj ] K Kzo_ pgzoj ] ( )

and K,, = (p? —1+ £,0) % &, = £,(0).
We note that the egs. (2.56) — (2.57) can be rthatth the egs. (B8) and (B9) concerning the P-N
model and the Ramanujan’s modular equations. Indeedhave:

2 - 2 N
Kt P « Koot Py | o
£ (3)= 20 e —1| +||—=20_F%20 | oX 1
ss( ) (8><20 4772 .[1 .[ [( Ky~ pj } [( Ko = pgzoj } -
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J-dzsx\/_[

=T%jd1°x(— )2 ‘”{RM@ oD - —‘H *- 1°Tr 0F| )}
0 10

Vo 1 v —
o6 89""9 Tr(G,,VGpg)f(w)——g” aﬂwm}—

J‘ © COSTEXW _mzwvdx
0 Coshm \/ 142
t*w

antilog
1 e_TW@V (itw')

e[ o

-1

2 -1
; (_Kzo * pfzo] e-1| o
Kzo ~ P&y

2
ren — She dp K20+p X
(@)= -2 Rt Pl g
0=~ L 0o (o

jd%xf[ oh gg“”g””Tr(G,,vaa)f(40)-%9””0#@#}=
ot 0o e meva,o0r0- 2 - e =
0 10

© COSTEXW oW iy
0 coshrx \/142
72 W

antilog
e * g (itw)

o [ [

Furthermore, we observe that the functiénis defined by

pzx_ -1 K20+p5202x_ -1
LIJ(e20 67 J'l j [( pj e 1} -{(—Kzo‘ szoj e 1] . (2.57b)

And we note that also this equation can be relaiéid the eq. (B9) concerning the P-N model and
the Ramanujan’s modular equation. Indeed, we have:

2 -1 2 -1
S dp Kot P| Ky * Py |
Y —20 = -1 —<0 =20 -1
(820) (8>< 2)773 1 j H K,y = pj © ] -{( Ky = pé’zoj © } -
1 Vo 1 % —
deGX\/_I: ﬁ_ggﬂpg Tr(G,qupJ)f(w)__g'u ay@vw}_

2
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I - [d°x(-G)"*e '”{R+4@ q:aﬂcb——\H - loTrQ ZIZ)}:

10

- I 2/(10

j © COSTEXW oW

dx| 75
antilog™ COSh”X 1\;‘\'/2

1 e g i)

o

If both bodies are ideal metals the dielectric pawity gz(if) - oo for all & including & - 0.
Putting £,, - ©, W(&,,) — 77/24 we obtain the Casimir result for the force pertarea and
energy density

FO@)=-Z 1 grn(g)=_ 7T 1S 5g)

24Ca*’ S 72Ca%"

Let us apply the Epstein zeta function method toutate the Casimir energy and force for the
electromagnetic vacuum inside a rectangular bok thi¢ side lengths,,a,, and a,. The box faces

are assumed to be perfect conductors. Imposingpahadary conditions of eq. (2.1) on the faces,
the proper frequencies are found to be

af -nzc( 2+n—22+r132
a 8

hunns j . (2.59)
a

There are no oscillations with two or three indicegual to zero because in such cases
electromagnetic field vanishes. As a consequenige, non-renormalized vacuum energy of
electromagnetic field inside a box takes the form

EO(ai’aQ’aS)zg(z i n1n2n3 Z a’bnzn3 i wn10n3 z nn Oj (260)

NNy ,ng=1 n,,ng=1 n;,ng=1 n;,n,=1

We regularize this quantity with the help of thestgin zeta function which for a simple case under

consideration is defined by
2 2 271"
BEARS
a &, 9,

4giﬁ@:z
ai a2 aS Ny,Ny,Ng=—00
This series is convergenttit> 3. The prime near sum indicates that the term fackhll n = 0 is
to be omitted. At first, eq. (2.38) should be tfansied identically to

(2.61)

e
e =g 3 0-0,00,070,00,0 =G 00). (262)
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Introducing the regularization parameterand using definitions (2.61), (2.15) one obtains

h -2s
Eo(a:vaz’as;s) =5 z (‘);lw-lnzzn3( - 5nz,0 _5nl,05ns,0 _5n2,05n3,0):

NNy, Ny ==

:h_m{z{iiiz 1j zgR(ZS-l)(LLiﬂ_ (2.63)
8 a &, 4 a a, g

To remove regularizations(— 0) we need the values of Epstein and Riemann zeietifuns at
t =-1. Both of them are given by the analytic continotof these functions. As IGR(t) the eq.
(2.16) should be used. For Epstein zeta functierréfiection formula analogical to (2.16) is

l ~t/2 +) = -1 E 1-3)/2 iii _
F(Zjﬂ Z,(a,.a,,a5t) = (a,2,3;) F( 5 jﬂ‘ Z{al, . a3,3 tj. (2.64)

whereT (z) is gamma function. The results of their applicaiéoe

111 )__a3a3 . n-_1
Z{ai'az’ae’lJ D Llaanad),  GY)=-5. (269)

Substituting the obtained finite values into eq68} in the limits -~ Owe obtain the renormalized
(by means of zeta function regularization) vacuunergy

ren a,azag acrr( 1 1 1
E*(a.a, a Z,(a,a,,a,4 +_ T+ +=| (266

As usual, the forces acting upon the opposite mdifaces and directed normally to them are

F(ana.8,)=- E‘;en(aiazas), (2.67)

so that the total vacuum force is

F(a.a,.a)=-0E"(a,8,,a,). (2.68)

According to energy sign forces (2.67) can be b@pulsive or attractive depending on the
relationship between the lengths of the sidga,, and a,. Let us start with a massless scalar field

in a two-dimensional boXY < x<a,, 0< y<a, for which the non-renormalized vacuum energy is
expressed by

(ai az)__ Z N, ? a)rinz :#CZ(%-F%J . (269)

n1 n,=1

To perform the summation in (2.69) we apply twibe tAbel-Plana formula (2.8). The explicit
introduction of the dumping function is not necegsafter the first application one obtains
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n2 12 N2 o 12 1
2a, d =2 =% dt, (2.70
* 'hz-l(al azj 0 (ai azj J-nlazlal(azz af} 2t 1 ( )

where the last integral uses the fact that theeifice of the radicals is non-zero only above the
branch point. The result of the second applicatson i

° 11 1) e (V)1 g
Eadlaralreebatollg) e

where

(3)+2i;c;(ﬁj C(2.71)
=N &

(2.72)

J' de/s——lz

2775<nls )
n —1 -1

Renormalization of quantity (2.71) is equivalentthe omission of first two integrals in the right
hand side.
As a result, the renormalized vacuum energy is

Eée“(ai,az):h—m(ismjzhc{ 7l @ZG(ZH. (2.73)

2 (& 48, 1678 @

Thence, from the eq. (2.71) we can rewrite the 23| also as follows:

__(_+_jj tdt+ [t [ \{ j 2461 e 27,3+ ?G(%j

:hc[ 7 _Lal3a, @G(%H. (2.73b)
483, 16787 & &

hic

Es"(a.8,) =

We note that also this equation can be related thitheq. (B8) concerning the P-N model and the
Ramanujan’s modular equation. Indeed, we have:

SHCHERE m[ —(—+—jf tdt-+ [ "dtf; { )“2 24a, 8n2a1 () 222 (Zj i
:h{ A )Y @G(%H

(24x2)a, (8><2)731 & \a

=-[d"x/g [ e 89“"9”"Tr(Gme)f(co)—ig”“aﬂwm}:
:J;%jdmx(—G)m ‘*{RM@ DY P - —\H - giZTrq 2|2)}:>

10
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© COSTEXW oW dx
antilog ~COSIVK En gj\'/z
& +"q (itw)

(=]

(2.73c)

It can be easily shown from eq. (2.71) that &r=a, the contribution ofG(l) to the vacuum
energy is of order 1% and fa, > a, is exponentially small. It is seen from this exgsien that the
energy is positive if

1sﬁ<i

= 274, (2.74)
a,  34(3)

and negative ifa, > 274a, (we remind that/(3) = 1.202).

We note that 2,74 and 1,202 are connected witd6317 and 1,198543 values concerning the

new universal music system based on fractional powerd &hi and Pigreco.

After three applications of the Abel-Plana formated renormalization, the result is the following:

_ | _maa Ba (1 1) (& aa
ES (ai,az,ag)—h{ e tora T4 s ) laaall (2.75)

where function H is exponentially small in all its argumentsaf< a, < a,. If there is a square
sectiona, = a, < a, and the small integral sums containedHnare neglected the result is

ren ..,@ E_ i ZR(3) ﬁ
B (ai’a3)~ai24 (720+ 1677)a1 - (276)

In the opposite casa, = a, > a, the vacuum energy is

ren ..,E
Ey"(ay,a,) -

720 +£i-i(if . (277)

48 16m  48a, 720\ a,

We note that% =0,1308996 and 4% =0,0654498 are connected with 0,131148 and 0,0657780

values concerning thaew universal music system based on fractional powersf d’hi and
Pigreco.

For the casey, = a,, one can easily obtain from (2.75) that the enésgositive if

0.408< % <348 (2.78)
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and passes through zero at the ends of this inte@ugside interval (2.78) vacuum energy of
electromagnetic field inside a box is negative. ther cubea, =a, = a, the vacuum energy takes

the value

Er(a)= 0.0916’;—C . (2.79)

Exactly the same results as in (2.78) and (2.78) @btained from eq. (2.66) by numerical
computation.

We note that 0,0916 0,408 and 3,48 are condegith 0,091844 0,407430 and 3,490711
values concerning thaew universal music system based on fractional powersf &®hi and
Pigreco.

The closed Friedmann model is topologically nomativand naturally incorporates the Casimir

effect. We are interested here by the local charestics of a vacuum. We are interested only in the
energy density

£(n)=(012(xJo), (2.80)

where is a conformal time variable, and the stress-gntggsor is defined in eq. (2.31b). Metric
of the closed Friedmann model has the form

d? =a2(p)dn? -di?),  di? =dy? +sin® x(d6® +sin? &ig?), (2.81)

where a(/7) is a scale factor with dimensions of lendgdls y <7, 8 and¢ are the usual spherical
angles. Furthermore, we have also that:

ds? = a?(y)|dn? - (dx? +sin? x{d@? +sin’ &dg?))|. (2.81b)

Taking into account thaN =3, £ =1/6 and the scalar curvatur@ = 6(a"+a)/a’, where prime
denotes differentiation with respect to confornvalet 7, we rewrite eq. (2.31) in the form

¢"(x)+2§¢'(x)—A<3>¢(x)+(m ~ - +%+1j¢(x):o, (2.82)

where A% is the angular part of the Laplacian operator or?o-sphere,x=(/7,)(,9,¢)- The
orthonormal set of solutions to eq. (2.82) candpesented as

9 00= 0 b00). o=l @83

where the eigenfunctions of the Laplacian operaterdefined according to

__ 1 AR S
o (ro8)= i [ A e ie(eosin, 09). (20
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A=12,.., 1=0L...A-1, Y, are the spherical harmonics alﬁg(z) are the adjoint Legendre

functions on the cut. The discrete quantityhas the sense of a dimensionless momentum, the
physical momentum beingA/a. The time dependent functioy, satisfies the oscillatory equation

00+ lnlon)=0.  wiln)=#+"051) @)

2

with the time dependent frequency and initial ctinds fixing the frequency sign at the initial time

g”(%):\/ﬂln_)’ g, (7) =i, (7). (2.86)

Eigenfunctions (2.83) — (2.86) define the vacuumestat a momenty,. In the homogeneous
isotropic case one may pyt = . Gubstituting the field operator expanded in teohéunctions

(2.83), (2.84) into the 00-component of (2.31b) aaltulating the mean value in the initial vacuum
state according to (2.80) one obtains the non-reatized vacuum energy density

£y )_4;72a ZM( J2s,(n)+1], ,(n)=

1 ]
09 /1|2 + (4)42|9A|2 - 26‘)1)- (2.87)
W
The corresponding vacuum energy density in tangelinkowski space at a given point is
)= e [ Adial). @s9)
arra*(n) o
Subtracting (2.88) from (2.87) with the help of AMBdana formula (2.8) we come to the result
©0)(,7) = g e <y
£, =E +——— ) Aw\n)s,\n7), (2.89
20)=E0)+ 5z D@l ). @89

where the Casimir energy density of a scalar field closed Friedmann model is

22,2

1/2
O()=_ e o KA |, micta’(p)
= (,7) 2]7'2a ( )-[mcdq Ih ezm -1 A= hz . (290)

We note that can be rewrite the eq. (2.89) aldolkswvs:

1/2
O = hc AdA |, m*c?a®(n) &
&enl1)= 5=y 720) | i o w,(7)s,(7). (2.90b)

We note that%:0,05066059]]0,05065904 value concerning theew universal music

system based on fractional powers of Phi and Pigrec
The second term on the right hand side of eq. J2i89the subject of two additional
renormalizations in accordance with the generaicstre of infinities of Quantum Field Theory in
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curved space-time. As a result of these renormaiza the total vacuum energy of massless scalar
field in closed Friedmann model takes the form

£9(7) = EO() + —'C )(Zb"b—b'2—2b4), (2.91)

+
960r°a* (17

whereb = b(/]) = a'(/7)/a(/7). The Casimir energy density of a massless fielcchvlappears in this
expression is obtained from eq. (2.90) for bothstamt and variabla as

3
hc I daxr’ hc (2.92)

©)(n) = =
&) 21a%(n) e ™ -1 480ra’(n)’

Also here we can rewrite the eq. (2.91) as follows:

£l

ren

(1) hc J-w dr _ me . ke

= o & -1 4807%a%(7)  9607a’ ()

= 2] (2b"b-b?-2b*). (2.92b)

Also this equation can be related with the eq. (@8)cerning the P-N model and the Ramanujan’s
modular equation. Indeed, we have:

O = hc = dAX _ hc hc 2o
£al) 2772a“(/7)J'0 e” -1 (24x20)7a%(n) ¥ (24x 40)772a“(/7)(2b b-b"-2b )j
R 1 vo 1w _
= -IdZGX@{-%-gg”"g Tr(G,.G, )f (#)-5 0" 6,,@40} =
o _ 2
- [ [e-) e oo, o000 AL - (e )
0 10 glO
r COST7EXW oW g
antilog ™ co;hz|7x Eh g:\'/z
e ' alw) (2.92¢)

(=]

In the case of massive fields eq. (2.90) can begiated analytically in the limimca)/# >>1
both for the constant and varialdewith the result

5/2
E(y)= “?%) e (2.99)

Thence, we can obtain the following expression:
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22,2

2 1/2 5/2
EO() = he o KA |, mictan) [ _ (medn)/n)the omdpin
(,7) 2]]2a4(/7).[m06(/7)/h ezm -1 hZ 87733 ( ) ( 93b)

Also here, we can to connect this equation withdhe (B9) concerning the P-N model and the
Ramanujan’s modular equation. Indeed, we have:

E0(7) = _hc Jm KA | o mecza(p) | _ (mcdn)/n)"*ne g——
217a’ (i) dmedn)in ™ —1 n? grra’ ()

= [ 5] ~ro-L 970 Tr(6,.6. ) (- 290,60.0]

:j%jolmx(—c;)”2 "2{R+40 CD@”CD——‘H - 1°Trq 2|2)}:>
0

10

j © COSTEXW & W iy
antilog™ COSh”X /142

e tw
1 e * @itw)

o

(2.93c)

All the considerations on the Casimir energy densitscalar field in the closed Friedmann model
can be extended for the case of quantized spiett. fAfter the calculation of the vacuum energy
density and subtraction of the tangential Minkowsgace contribution the result similar to eq.
(2.89) is

[

12)(,) — £/2) 2nc 21
lp)= )+ 2y 3 (£ -3 Jaos). @99

where s, (/7) is expressed in terms of the solution to the taoily equation with a complex

frequency obtained from the Dirac equation aftee #eparation of variables. The Casimir
contribution in the right hand side is

1/2
wa)(y . 2hC (= A ([, 1), _mc’a’(n)
= ( ) 77284(/7) J-mca(’l)/h e + 1(A + 4j|:/1 h2 . (295)

In the non-stationary cas&(7)# 0 two additional renormalizations are needed to inbfze total
physical energy density of a vacuum. The resuét massless case is given by

fic

(172) — 2 i _ Q2 7
O e

bt 5sz (2.96)

where the Casimir energy density of a massles®sfigld is
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2hc .[w("2+1j AdA 17he (2.97)

(1/2) = —_ -
E (’7) 7723.4(/7) 0 4)e* +1 96077284(/7).

Thence, we can rewrite the eq. (2.96) also asvialio

8(1/2)(/7)_ 2hc _“:(/‘2'{' 1) AdA 17xcC + hic

j— - W IZ_Z 4 2
4)e™ +1 960a‘(n) 480n2a4(/7)(6b b-3 2b +5b J

(2.97b)

Also this equation can be related with the eq. (8)cerning the P-N model and the Ramanujan’s
modular equation. Indeed, we have:

W2)(,,) = 2nc el Ej AdA _ 17hc
0= iy b+ 2 e et

fic

"y .2_Z 4 2
+(24x20)n2a4(/7)(6b b-3b 2b +5b j:>
1
J'dZSX\/_[ ﬁ ggﬂpgngr(GyVGpa)f(w)__g'uva/j@v(o}:
:Tziz [ax(-G)7e 2‘{R+40 ®o D - —\H\ 10T () )}
0 10

r COS7EXW oW dx
antilog™ conszhnx “1\;‘\'/2
e +"q (itw)

- . (2.970)
Iog[ \/(102111\/5] . \/[10+47x/iﬂ

The second contribution on the right hand side2d®g), as well as in (2.91) for a scalar case, is
interpreted as a vacuum polarization by the notiestary gravitational field. In the case of a
massive field,the effect of fermion pair creation in vacuum by tke gravitational field is

possible At last for the quantized electromagnetic figh@ tCasimir energy density in the closed
Friedmann model is

11nc
EV()=——==—. (2.98
We note that we have in the egs. (2.95) — (2.98) ftllowing values: %:0,2026423671
17 =0,00179422994; 11 =0,00464388 all values very near to 0,20225425 0,00179942
96C72 2407

0,00464401 values concerning thew universal music system based on fractional powerd o
Phi and Pigreco.

In Kaluza-Klein compactification the manifold is presumed to be stationary. Because of this, the
Casimir vacuum energy density is important for de¢ermination of the parameters Kf and its
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stability. Representing the Casimir stress-enemmsdr byT,;", the multi-dimensional Einstein
equations take the form

1 871G ren
RAB _E RigAB + /\d Jas = _TdTAB ) (2-99)

where AB=01....d-1, G, and A, are the gravitational and cosmological constantsdi

dimensions.
We are looking for the solution of eq. (2.99) whare Poincaré invariant in four dimensions. What
this means is the metrical tensgy, and Ricci tensoR,; have the block structure

(Mo 0 _ 0 0
gAB‘(o hab(u)j' RAB‘(o @b(uﬂ’ (2100

where ., (mn= 0123) is the metric tensor in Minkowski space-tinié*, and h,(u) is the

metric tensor on a manifol&" with coordinatesu (a,b=45,....d —1). It is clear that the scalar
curvatureR, coincides with the one calculated from the metnieasorhab(u). The Casimir stress-
energy tensor also has the block structure

T =Tl Tae'(u)=Toh,(u). (2.101)

Note thatT,, do not depend oo due to space homogeneity. The Ricci tensor on-dmi¢nsional
sphere is

N-1
Rolu)=~—5"ha(u),  (2.102)
where a is a sphere radius. To finf and T, we remind that the Casimir stress-energy tefggr

can be expressed in terms of the effective pote¥tiay variation with respect to the metric

en__ 2 ()
ab \/|dethdb| d.lab '

(2.103)

The variation of the metric tensdr, can be considered as a change in the sphere radius

Multiplying both sides of (2.103) b®, summing overa andb, and integrating over the volume
of S, one obtains with the use of (2.101)

he =/ ov(h)_ = —azd—v (2.104)

1 _
ETZNQN - _J.d u e da?’

where the volume of the sphere is

Q, = d"u,/[deth,|. (2.105)

Thence, we can rewrite the eq. (2.104) also asvisli

—T N[ du[deth,,| = -[d"ur® ég]ab =—a2%. (2.105b)
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To expresslT; in terms of the effective potential a similar kris used. It is provisionally assumed

that the Minkowski tensor is of the forg),, = A whereA is varied. The result is

mn?

TQ,=-V. (2.106)

Now we rewrite the Einstein equations (2.99) sepéydor the subspace®! * and SV using egs.
(2.100) — (2.102) and (2.104), (2.106). The reisult

N(N -1 87G N-1 N(N-1 87G _dV(a
%+/\d: o V(a), - 7 + (232 )+Ad:c4N a%_ (2.107)
Subtracting the second equation from the first, @ntains
4 —
&2) :V(a)—idv(a)’ (2108)
81Ga N da

where the usual gravitational const#tis connected with thel -dimensional one by the equality
G, =Q,G. From dimensional considerations for the massliess we haveT,,=a™ in ad-

dimensional space-time. With account of egs. (2,1@4106) andQ,, =a" this leads to

_ heGy

a4

V(a) (2.109)

Here C, is a constant whose values depend on the dimeailgiorof a compact manifold.
Substituting this into eq. (2.108) we find the smdhsistent value of the radius of the sphere

42 = 87Cy (N +4)Gn

2.110
N(N -1)c? ( )
Then from (2.107) the cosmological constant is
2 _1\2 3
A, =- NZ(N -1 (N + 2)c @111)

167, (N +4) Gh

Thence, the second eq. (2.107) can be written al$ollaws:

- — 2 _1)? 3
N 21+ N(N2 1) N3(N-17(N +22)c ZSZIGadV(a)l (2.111b)
a 2a 16/C (N+4fGr  ¢'N~ da
Thus, the self-consistent radii are possible whiin>1, and C, > 0 In that case the
multidimensional cosmological constant is negatlves seen from eq. (2.110) that=1,,, and the
value of the coefficient in this dependence is eileed by the value o€, . Generally speaking,

one should take into account not of one field butfoall kinds of boson and fermion fields
contributing to the Casimir energy. From this point of view the self-consistent raaté expressed

by
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1/2
8N +4
:{HCN} IPl’ CN :nBCé\‘ +nFC|L\l , (2_112)

where C{' and C!' are the dimensionless constants in the eq. (2.908)en for each field
separatelyn, and n. are the numbers of boson and fermion massless fiellt is important that
C, 21. Thence, we can rewrite the expression (2.112) as$ follows:

_ [8a(N+4) N
- Jm(”BCB +n.CM),,, (2.112b)

and the eq. (2.105b) as follows

%TZNIdNu1/|dethab| =~ [dMuh® /() _ {8”('\' +4) (nCh + nFcF“‘)Pl}d—V. (2.112¢)

h?® N(N -1) da’

Furthermore, we can rewrite the eq. (2.105b) commgdt with the eq. (2.110), and obtain also the
following expression:

—Tde u,[deth,,| = -[d" uhaba;gt‘):—azg;i: (( )4)3 . (2.113)

We note that this equation can be related withahe(B9) concerning the P-N model and the
Ramanujan’s modular equation. Indeed, we have:

1 _ wN() __,dv _ 8C (N+4)Gn
Ml i =
J‘dzex\/_[

Vo 1 v —
L9#9"1t(G,,G,, )t ()~ " aﬂwm} =

2
=j2i2jdl°x(— G)"’e ‘”{RM@ oD - —‘H *- 1°Tr 0F| )}

0 10

167G 8

J- » COSTOXW s
antilog™ coshm '1;,2
e_TW itw'
N aufw) . (2.113b)

ol

It is seen from the following Table that the valugsall coefficients are rather small, being
especially small for the conformally coupled scdlald. The values ofC, from eq. (2.112) are

positive, e.g., forN =3 or 7 regardless of the number of different fieldsr N = 59 the number
of fermions and conformally coupled scalar fieldlswd not be too large comparing the number of
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minimally coupled scalar fields in order to asstie conditionC, = 0 In all these cases eq.
(2.112) provides the self-consistent values ofragactification radius. To reach the valGg = a1l
large number of fields is needed, however. For etameven forN =11 where the value of
Cl =133x10° is achieved, one needs to have 752 scalar fielt/s minimal coupling to have
C, =1. The enormous number of light matter fields reegiito get the reasonable size of the

compactification radius (no smaller than a Planoke@e) is the general characteristic feature of the
spontaneous compactification mechanisms basedeo@dkimir effect.

Table

N 10°CL' (min.) 10°CL' (min.) io°cl

3 7.56870 0.714589 19.45058
5 42.8304 -0.078571 -11.40405
7 81.5883 0.007049 5.95874
9 113.389 -0.000182 -2.99172
11 132.932 -0.000157 147771

We note that the following values: 19.45058 140®) 5.95874 2.99172 1.47771 are very near
to the following: 19.416 11.423 5.933 2.996.4754 values concerning thew universal
music system based on fractional powers of Phi arfeigreco.

Now let us apply the following equation

L (P R R R N

to ideal metals of infinitely high conductivity iarder to find the temperature correction to the
Casimir forceFS(g)(a) between perfect conductors. To do this we us@iiscription by Schwinger,
DeRaad and Milton that the limé — o should be taken before settihgg . Dhen, introducing a
new variabley = 2aq in eq. (2.114) instead (IitD| =k we arrive at

kT &= yd
Fia)=-o25> [ 2. (2118)

4IHS| 0 /Cey_l

This expression can be put in a form

()= FO e 5 (T L T Leoe et \sinme e
Fo(a)=F9(a) 1+#;[(TQJ = Vo cosv(m_l_}smh (m_l_ﬂ , (2.116)

where the effective temperature is definedkas,, =7c/(2a). Note that the quantity in square

brackets is always positive.
Note that we have:
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i =0,0795774110,07982,; % =0,30797900,3099; 7 =31006270310662 all values

concerning th@ew universal music system based on fractional powerg &hi and Pigreco.

Thence, we can rewrite the eq. (2.115) also asvisli

k [
)=- 25

=0

ATE
4
T T
=F9(a) 1+§ !(lj % ﬁTl%cosV(m _F“Jsinh’?’(m _If“ ﬂ ., (2.116Db)
n=1

i Tg )/ N

—

Lo
2aé /¢ ey

At low temperature3 <<T it follows from (2.116)

Fi(a)=FY(a ){1%’{%} } (2.117)

eff

At high temperature limil >>T_,

FLa)=120(). (2.118)

Note that the corrections to the above asymptesalts are exponentially small axd— 27, /T)
at low temperatures and axd— 277T/Teﬁ) at high temperatures. As a consequence, the astimpt

regime is even achieved when the temperature s tard times lower (higher) than the effective
temperature value.
The expression for the free energy density in thafiguration of two dielectric plates at a

temperaturer , is obtained by the integration efFSTS(a) from eq. (2.114) with respect @. The

result is
g o ] oo

The Casimir (van der Waals) force acting betwedislaand a sphere (lens) is:
F,(a)=2/RE®"(a) (2.120)

The non-zero temperature Casimir force in configaraof a sphere (lens) above a disk (plate) is
given by eq. (2.120) as follows:

Fl(a)=2/RF.(a). (2.121)

The general expression for the Casimir and vandaals force between two semispaces made of
material with a frequency dependent dielectric peiity &, is given by eq. (2.52). It is
convenient to use the notatien instead ofe,, introduce the new variablg = 2épa/c instead of

¢, and change the order of integration. As a rdkelforce equation takes a form
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F;(a):—% j:x3dlem%{[%ex_l} {giizg e —1} } (2.122)

We have that:#=0,003166286]0,00319896 value concerning th@ew universal music

system based on fractional powers of Phi and Pigrec
The Casimir force between metallic plates with tBnconductivity corrections up to the fourth
power in relative penetration depth is given frdra tollowing equation

16 &, & 640 T\ 2800[ 1637\ o
FS(a)=FO(a) 1-=—"0 £ 04% _ 1- =0+ 1- = 1. (2.123

We have that: 2i1c =0,046998010,04644008 % =0,21887694110,21884705 values

concerning th@ew universal music system based on fractional powerd &hi and Pigreco.
Thence, we can rewrite the eq. (2.122) also asvitstio

o er gl efe ] e |

2 3 4
SFO()1-20% 4 54% 840, T 19, 28001, 163715, | ;o
3 a a 7 210)a 9 7350 | a

Also this equation can be related with the eq. (%)cerning the P-N model and the Ramanujan’s
modular equation. Indeed, we have:

F;(a):_dﬁj:xsdd {EK pggz e" } [EE+S§ e" 1}1}:
:F§g>(a){1—£5i+2452 (82><10( nzjag 8><350( 163772]%‘}:

3a & 210)a° 7350 ) a*
jd%xf[ on gg"”g””Tr(G,,VGpa)f(40)-—9””0/1@#}=

Titeorcrome ok
0 10

@ COSTIXW gy

antilog™ coshm /142
LW t°w
1 e * qitw)

(2.123c)

RIS
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We consider now the plasma model perturbation ambran configuration of a sphere (lens) above
a disk. The sphere (lens) radiRsis suggested to be much larger than the sphekesdjzratiora.
Owing to this the Proximity Force Theorem is vadiad the Casimir force is given by egs. (2.120)
and (2.53). Introducing once more the variable 2épa/ c the following result is obtained:

¢(q)= MR = oq r=dp ) | (K=pe) _(K-p)
F(a)= 3J-oxdxj'1 pz{ln{l e }Hn{l < e [t. (2.124)

16 (K + pe)

Bearing in mind the need to do perturbative expmarssit is convenient to perform in (2.124) an
integration by parts with respect ta The result is

(k - pef - (k + pef 2 =P (e (k4 pp 2 (K= P)

__ hCR (= 5 c=dp ox (K +pe) | ox (K + pf
Fola)=———— | Xdx| =
s (@) 4878° IO X le p? (K + pe)e* - (K - pef (K + pfe* - (K - p)?
(2.125)

Also this equation can be related to the eq. (B8j)cerning the P-N model and the Ramanujan’s
modular equation. Indeed, we have:

2

(K-pef-(K+ |O£)2§(K P (- pf - (k + py LK)

. BCR e - dp X (K + pef ox (K + p)?
Fy(@)=-o—i— | Xdx| —
de (a) (24x 2)713.3 .[0 X dX-L p2 (K + pg)zex —(K - pf)z * (K + p)zex (K p) -
(2.125)
Vo 1 v =
J'dzsx\/_[ ﬁ ggﬂpg Tr(G/Jvaa)f ((0)_59# aﬂ@l’(o} -

G)"’e 2‘{R+40 oD - —\H\ 1°T 0F| )}

© COSTEXW oW dx
0 coshrx \/142
72 W

antilog
e * g (itw)

ElEsEsl

With regard the egs. (2.124) — (2.125), we havet: tha%{ =0,019894310,01973343
1
4811
based on fractional powers of Phi and Pigreco.

(2.125h)

=0,0066314510,00659023- 0,0067000 values concerning theew universal music system
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Consider two semi-spaces modelled by plates whiehreade of a material with a static dielectric
permittivity £, bounded by surfaces with small deviations froomelgeometry. The approximate

expression for the Casimir energy in this configiorais given by the following equation

U add (a)

U(a)= <

= —hclP(gzo)J'v1 d3r1J'V2 drlr, -1, (2.126)

where the function¥ was defined in (2.57), and we now change the ootat,, for &,. Let us
describe the surface of the first plate by the gqoa

2= Af(x,y) (2.127)
and the surface of the second plate by

2 =a+ Af(x,y,), (2.128)

where a is the mean value of the distance between thegldihe non-normalized potential of one
atom at a heighi, over the plateR, is given by

X1 Y1

L L Aty (g, y) -
U0 v 2)= =N d [ ay [ 2"z x| - x ) + (v, - WP +(z - 2F] 7, 2.129)

whereC is an interaction constant from the following etijpra

S By
. C=, nca (0), (2.130)

N is the number of atoms per unit volume of plaBsnd P,. The result of the expansion up to
the fourth order with respect to the small paramé{é z, may be written in the form

f,(x, 72172(x, ’
UA(Xz,yz,zz)z_CN{ n +.[LLdX1J-LLdle!%(ﬁJ+ Zzzlx(;lz)ﬁ)(ﬁJ +

10z, Z, Z,
77 9_222_ 3 A ’ 21z (112 )., A )
+6X9’2( = 1]1‘1 (xl,yl)(zzj +8X11/2( = 3}‘1 (xl,yl)(zzj } (2.131)

with X =(x, = x, ) +(y, - y,)? + Z2. Here, the limitL - « is performed in the first item, which
describes the perfect plates without deviationsifpdanar case.

We have that for the eq. (2.130):42—7?;:1830281846]l83343685 and for the eq. (2.131):

1—77020,314159265] 0,31475730 values concerning theew universal music system based on

fractional powers of Phi and Pigreco.Furthermore, in the eq. (2.131) the values 21 araite8
Fibonacci’'s numbers.

Now, we start from the Lifshitz formula (2.114):
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el (Ao (e

and rewrite it more conveniently in the form

kT

Fed(a)=- {[r1 (& k)™ -1 +]r;2(8 k. )™ -1] } (2.132)

where r,, are the reflection coefficients with parallel (pendicular) polarization, respectively,
given by

f[z(f.,km){%ﬁ ;;2(& k)= (Z:J':j. (2.133)

In terms of dimensionless variables

y=2aq =2a ‘(' +k? Ezza% (2.134)

Egs. (2.132) and (2.133) can be rearranged to

U 3 MY [ 9 O o O E  FCRED

According to Poisson summation formulac(fr) is the Fourier transform of a functidafx)

cla)= %T [ blx)e™dx  (2.136)

then it follows

ib(l )= 2ni c2it). (2.137)

Let us apply this formula to eq. (2.135) usingithentification

4rak,T
hc

o)=L [" vyt iry), ¢ (2.138)

1678° JIir

whereg?| =1 and
ti7,y)= 18907, y)+ t2(r.y) = (% -1 + (% -1]"  (2.139)

is an even function of.
Then the quantite.(a) from eq. (2.136) is given by
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cesla)=- T 772 I dxcosaxj' yadyf.(x7,y). (2.140)

Using egs. (2.135), (2.137) and (2.140) one finalbtains the new representation of Lifshitz
formula

FsTs(a):ibssO) T nza Z I dfco{lf e Jj vyt (Z.y), (2.141)

where the continuous variabfe=rx.

Also this equation can be related with the eq. (%)cerning the P-N model and the Ramanujan’s
modular equation. Indeed, we have:

Fo(a)= ibss(l) Wz j dé Co{lf eff J J‘ yzdyfss(f y)

I dzax‘/_[ 16765 89”"9“"Tr(GwGpa)f (40)—19”""#@”4 )

N

:T%jolmx(—s)”2 "2{R+40 CD@”CD——‘H - 1°Trq 2|2)}:>
0

10

© COSTEXW oW iy
0 Coshm \/142

e tw
1 e * @itw)

o

Note that in the representation (2.141) the0 term gives the force at zero temperature.
From the eq. (2.118), for high temperatures, wereamite the eq. (2.141) also as follows:

antilog

(2.141b)

(3). (2.141c)

) |=Z.i;ob88(l) 16772a4 ZI d¢ CO{If r j-[ yZdnyS(f y)

For real metals eq. (2.141) can be transformedeaddrm

Fola) =~

167a {I yeyt&(0.y)+ 12(y, y]+22 [: yzdyfss(fn,y)} (2.142)

To obtain perturbation expansion of eq. (2.141femms of a small parameter of the plasma model
o,/ a it is useful to change the order of integratioul &men rewrite it in terms of the new variable

V= g?/ y instead Ofg?
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j: y3dyj dvco{vyl E“J (vy). (2.143)

ﬂ
QD
N—
1
|_\
()]
:L St
(@]
QD
N
I

We note that
%T =0,01989436710,0198759710,01973343

ﬁ =0,006332573910,0063266270,00628125
values concerning thaew universal music system based on fractional powersf d’hi and
Pigreco.

Expanding the quantityf up to the first order in powers @, /a one obtains

foslvy) = ey2— 1 ? (eyyfy 1)2 (1+ ’

/o)
Z)EO'

Substituting this into eq. (2.143) we come to thasi@ir force including the effect of both the
nonzero temperature and finite conductivity

30 1 7 T, 165 [
Fi(a)=F(a ){1 — lLT . g%(())} 34 80

7T
©| 2costt(nt,)+1  2cosHnm,) _ 1  cottlrt,)
le|: Sinh4(71n) HnSinhS(nn) 2n2t,fsinh2(7tn) 277311[? , (2.144)

wheret, =nT, /T . The first summation in (2.144) is exactly the pawature correction in the case
of ideal metals. In the limit of low temperaturé<<T, one has from (2.144) up to exponentially
small corrections

rela)o el 1 T ) 166, _452,3)( T )
FeC(a)= F(a) 1+3(T6J 3a!1 e 1) | (2.145)

In the limit of high temperatureb >>T_, eq. (2.144) leads to

Fes(a)=-

( )(1— 3%) (2.146)

up to exponentially small corrections. Fgy= ofe obtains from (2.146) the known result (2.118)

for perfect conductors.
Also here, the eq. (2.123b), for high temperatunetfy good approximation, can be connected with
eq. (2.146) to give the following expression:

ofa)=- 1 [ e ?{% o] [t

38

—
=
+
o
N—
ILI
- "
1



2 3 4
~FO)(a) 1_Ei+24i%_@ T 5 , 28000, 1637 i3 __ kBTgiR(3)(1-3ij-
3 a a 7 210)a 9 7350 ) a %y 2) a

(2.146D)

With regard the eq. (2.144) — (2.145) we have that:

:7379 0,30797900,309016910,3147573 7 =31,00627668131,4164078
% =0,05066059110,0506590410,05166278 7%: 0,6366197110,636610;
% =0,016125710,01608000,01626124 4—]753 =0181414810,180339891018237254

values concerning thaew universal music system based on fractional powersf d’hi and
Pigreco.

Now we start from the temperature Casimir forceegk. (2.119) and (2.121) acting in the
abovementioned configurations. In terms of theeibn coefficients introduced in eq. (2.133) this
force can be represented as

Fl(a)= kTR jkdkm{ln[l (2(&, ko )o@ |+ Infl-r2(&, k. e | (2.147)

Introducing the dimensionless variablész 2aé,/c and y=2aq, we rewrite eq. (2.147) in the

form
FI (a) kTsz yayfinfi-2(E, vl ]+ mf-r2(E, v ). 2.148)

We rewrite eq. (2.148) in the form analogical tdl@). This is achieved by the Poisson summation
formula of egs. (2.136) and (2.137). The final iesuthe following:

FT th

d/

d{co{nf e jj yayt, (£y), (2.149)

where
fd/(g,y)= fd(j)(g?,y)+ fd(f)(g?,y)z In(l—rfe‘y)+In(l—rzze‘y). (2.150)

Thence, we can rewrite the eq. (2.149) also asviali

th

Fa(a)=

dfco{nf e”jj ydy[ln -rle )+In(1 rze‘)] (2.150b)

We note that: 8i=0,039788735]o,03946685 value concerning th@ew universal music
Vs

system based on fractional powers of Phi and Pigrec
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Also this equation can be related with the eq. (@%)cerning the P-N model and the Ramanujan’s
modular equation. Indeed, we have:

Fo(a)= :CR dfco{n{ E“Jj ydy[In(L-r?e”)+In(l-r2e7 ) =

vo 1 % —_

jd%x\/_[ ﬁ_ggﬂpg Tr(G,qupa)f(qo)_Eg'u aﬂ@u¢}—
G)"%e 2‘{R+4@ CDG”CD——‘H‘ loT Q ZIZ)}:

10
© COS7TEXW oW iy
antilog™ COHSZW '1\;‘\'/2
1 e qiw)

(2.150¢)

o

Eq. (2.149) can be represented in the form anabtpa(2.142)

Fy(a)= kgTzR{j yay £2(0.y)+ £2(y.y) y]+22fnydyfdf(<‘n,y)} (2.151)

Let us first calculate the temperature Casimir dof2.149) in the framework of the plasma model.

Changing the order of integration and introducihg hew variablev=<?/y instead ofg? one
obtains

_ hCR & o 1 Teg
Fy (a)—%n;jo yzdy.[odvco{n?vyjfd( (vy). (2.152)

The expansion off,, up to first order in the small paramei®(/ a is

f,(vy)=2infl-e7)+2-Y yl(l V)i

Substitution of this into eq. (2.152) leads to Hesu

Fo(a)=F (){n—z{ SR S

18050 mooth(zt,) 2, 7 costrt,) 4
S i et 2359

n

Remind thatt, =nT, /T . In the case of low temperaturés<<T,,
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2= el 0 T T 4?[1 S ](Tl]] (2159

We note that:

4?5 =14513190511,45446311,45898034 1789 =1847876811,84836111,85410197
ﬂ2

g =157079632111,5708203911,57378652 EY =4,934802214,92896414,94427191

45
27
system based on fractional powers of Phi and Pigrec
Let an atom of a sphere be situated at a point tieéhcoordinategx,, y,.z,). Integrating the
interatomic potentiall =—C/r, over the volume of corrugated plate, (is a distance between

this atom and the atoms of a plate) and calculativg lateral force projection according to
—-dU /0x, one obtains

=0,72565952410,7272316610,72135955 values concerning theew universal music

. (2.155)

47N C
FW(x,.y,2,) = Az, {CO 27, 5 A A7,

525; z, L

where N is the atomic density of a corrugated plate. EJ155) is obtained by perturbation

expansion of the integral (up to second order)mals parameterA/ z,. The lateral Casimir force
acting upon a sphere is calculated by the integmatf (2.155) over the sphere volume and
subsequent division by the normalization factor= 24CNpNs/(mc) obtained by comparison of

additive and exact results for the configuratiotvad plane parallel plates

N
F. (%1 Yo: %) =?Sjvsd‘°’rFx(A’(xo XYy +Y.Z,+2), (2.156)

where N, is the atomic density of sphere metal. Let us s eq. (2.155) into eq. (2.156)

neglecting the small contribution of the upper smhere which is of orderz,/R<4x10°

comparing to unity. In a cylindrical coordinate ®m the lateral force acting upon a sphere
rearranges to the form

Fo(%: 0. 2) = ”;ZC i\[c JWOI ool e —(Zoizz) [["dgc o{ wc08¢j

d¢ o{— COS¢H (2.157)

R-m dz_ cor
el

+— Asm
2

Preserving only the lowest order terms in smalapeeterx,/ R<10” we arrive at

by z) = f{c osZ% [ o 2P| 2 Rein ¥ | pdp%(‘”wﬂ, (2.158)

41



where J, (z) is Bessel function.
We note, from the egs. (2.155), (2.157) and (2.1&5@}:

4772 =7,8956835217,9108350617,85410197 iO =1,03354255611,03005665

4
l:],62348485]1618033991163627124 all values concerning theew universal music

system based on fractional powers of Phi and Pigrec

Integrating inpo the final result is obtained

— 2 (0) 277(0 AT, 47Rj
F (%) Yor 2,) = 3F (zo)zo[cosT ( Lj Zosm 1 J( ] } (2.159)

where the vertical Casimir fordéd(f) for ideal metal is defined in the following equeati

7ThcR
F(a)=- e (2160)

Thence, the eq. (2.159) can be rewritten also lasifs:

F. (%, Yo, 2,) = {_ ;736 ’g?j(zo)é{coszT”‘OJl(z’Lﬂj A Asin% ’LRO J (4’Lﬂﬂ . (2.159b)

In conclusion, we have the following expression:

Fx(xo,yo,zo)=-ggzg i\{ 277on pdpJo(zwj+220 i 4”("[ pdpJo(‘w’ﬂ

:{— L hc?}(zo)ﬁ{coszﬂ%[z j Lsin% ”‘w(‘”ﬂﬂ. (2.160)
360 ) 7 L L)z L HL

We note that 360 = 24*15 and 60 = 12*5, with(add 12 = 24/2) that is the number of physical
vibrations of the bosonic strings. Thence, we aarcdnnect this expression with the eq. (B8)
concerning the P-N model and the Ramanujan’s moégjaation. Indeed, we have:

n“hcA{ Zmojpdp%(zwj”zo m"jpd/ﬂo(wﬂ

F (%1 Yor 2) = = 507 |
5 28]

360a° L
R 1 ., 1w
—Id%x\/a[_ﬁ_ggﬂpg Tr(Gﬂvaﬂ)f(qo)__gﬂ a/’w"w}:

:Tizjdmx(— Ve "2{R+40 O P - —\H - ngrQ 2|2)}:>
10
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© COSTEXW oW dx
antilog™ conszhnx “142

e " (itw)

ElEsEsl

(2.160b)

3. On some mathematical connections concerning the zestrings, the Palumbo-Nardelli
model and the Ramanujan’s modular functions jpplied to the string theory. [3]

The exact tree-level Lagrangian for effective scdield ¢ which describes open p-adic string

tachyon is
2

1 +
BP :_2 a |: ¢p 2¢+ ¢p 1j|l (31)
g°p-1
where p is any prime number,=-8> +® is the D-dimensional d’Alambertian and we adopt

metric with signature(— +...+). Now, we want to show a model which incorporates p-adic
string Lagrangians in a restricted adelic way. ustake the following Lagrangian

LZC nl

=1 n>1 n?

1 - 1 .
e T e 62
n>1 el

Recall that the Riemann zeta function is defined as

|_| , s=o+ir, o>1. (3.3)
1-p~°

nz1 n

Employing usual expansion for the logarithmic fuoctand definition (3.3) we can rewrite (3.2) in
the form

L= —é{%qf[gj¢+ Q-+ In(l— go)} , (3.4)

Where|¢1 <1. Z(%j acts as pseudodifferential operator in the follfgywvay:

{ap=g

je‘xkz( }p( Jdk, -k?=kZ-k?>2+e, (3.5)
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where (k)= [e™)g(x)dx is the Fourier transform gix).
Dynamics of this fieldg is encoded in the (pseudo)differential form of Riemann zeta function.

When the d’Alambertian is an argument of the Rieman zeta function we shall call such
string a “zeta string”. Consequently, the abowe is an open scalar zeta string. The equation of

motion for the zeta string is

— 1 ixk _k_2 - :i
Z[ jw @ 5 Jeeeanne® Z( 2jqo(k)olk T, @O

which has an evident solutign=0.

For the case of time dependent spatially homogensolutions, we have the following equation of
motion

z(‘atz jqb(t) =(2—1ﬂ) jk0>ﬁ+ge‘ik°‘z(ﬁjw(ko) o= ‘”(2 e

2 2

With regard the open and closed scalar zeta strihg equations of motion are

Z(Dj j'xkz( j()dk S6 g, @8

nz1

U Gk [ j Jok= Z{ (n+39n(z_l)_l(¢““-1), 39)

nz1
and one can easily see trivial solutipr6= . 0
In the Section 2 we have various equations that can be relateld thié eq. (3.7) concerning the

equation of motion for the zeta strings.
We note that the eq. (2.36) can be related witleth€3.7) as follows:

o _—@ WL —_@ ren __hCZR(?))
EO (a)_ A% ede)—ldf_ 6a = E0 (a)_ 2m2 L=
_—atz _ 1 —ikot ﬁ -~ _ d’[)
- Z( 2 Jdt) B (2]]') j\ko\»/iﬂ‘e Z( 2 Jw(ko)dko - 1_(41:) . (310)

The eq. (2.71) can be related as follows:

oo e o8] e )
35(—2tJ¢(t)=(1 Ji- me‘“otz(%jé(ko)dko=1f”(;()t). (3.11)

21)

The eq. (2.73b) can be related as follows:
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B I R
zh{ 7 _ 4B, 8y (azﬂj

188, 168 & |a

= Z(‘—f)w(t) = (i jk0>ﬁ+£e‘i“°tz(ﬁ)é(ko)d& = 1f%) . (312

27) 2

The eq. (2.141b) can be related as follows:

KT

ng(a)zlibss(l) 16772 42.[ dfco{|g eft WZR(?’):

=N Z(_Sf ]qp(t) = ( ! ) j o 2+£e“k°‘z(§]&(ko)dko = 1?%) . (3.13)

27T,

I: ydytolE.y) =

N—

The eq. (2.146b) can be related as follows:

Fela)= —% [0 x%xf%{%ex —1]1 " [EE ¥ 3 1}1} -

2 3 4
A 1_3@”4&%_@ 5 2800 1637 i‘l __ kBT3 (3)(1_3&}:}
3 a a 7 210 7350 ) a )

:Z( azjqa()-(ijw me‘ikotz(%jé(ko)d&=1f”(;()t). (3.14)

27)

4. On some equations concerning the Casimir Effeeind vacuum fluctuations [4]

With regard the Casimir effect and vacuum fluctoasi, the Hamiltonian of the electromagnetic
field can be written in a normal-mode decomposiisn

H :ZZh@(%éM += j (4.1)
k A
Define the vacuum state as the state with no plsatoany mode. Thus the vacuum energy is:

Eo =40 0w =D hay,. (4.2)
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First consider a one-dimensional system where tamdacting reflecting mirrors are placed a
distance L apart. The presence of the cavity allonly discrete modes, with a density of modes

k :%. Thus, we can write for the energy inside thetyavi

=Y hay =) hck =@2u . (43)
k k L v=1
The vacuum energy in the same space without th@rsiis

E :—J'Vdv. (4.4)

Both of these energies are infinite. Thus, the gbkamm energy produced by the presence of the
cavity is

v=1

AE=E,-E,,= MC{ZV judu} (4.5)

Using the Euler-Maclaurin summation formula andveasion factor,lime™, we have

FoN)

E=-T"C (46
120

Therefore, there is an attractive force betweerivttoemirrors

_O0AE _ 7ic
oL 121%°

(4.7)

We now consider three dimensions. If we consideoxawith two sides ( x and y ) of length D, and
the third (z) of length L, where L<<D, the sums foand y can be replaced by integrals, and the
energy difference can be written by:

v=lo

pE =P hclzjdqdk{k%k? 4 ”zj %jdl&jdkyj'dkz(kf+kj+kf)“2 . 48
0 0 0
Using the third derivative in the Euler-Maclaurtmsmation formula, we have

AE = —( e jDZ. (4.9)

7203

Thence, the eq. (4.8) can be rewritten also asviali

gD hc! jdlgjdky(kz bk 4l nzj %Tdkjdkjdkz(kf +kj+k§)uz] ={777223f3jD2'

v=lo
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(4.9b)

Therefore, the forcé_,. and energyE... can be written as:

_ I he

Feas = 772 he cas ~ —nr 13
72C L

___A;
s 24CL*

A. (4.10)

Where 7 is Planck’s constant, “c” is speed of light and”“& area of the mirrors. The signs
correspond to a convention opposite to the standandention of thermodynamics: the force is
attractive and corresponds to a negative pressuegnwhile, the energy is binding energy
corresponding to a mean energy density slightlyllemanside the cavity than in the outside
vacuum. Note that the energy density and pressgg the equation of state of pure radiation. An
important feature of the Casimir effect is thatretleough it is quantum in nature, it predicts aéor

between macroscopic bodies. For two plane-paraitghillic plates of aread=1cn? separated by

large distance (on the atomic scale).of 1um the value of the attractive &, = 1.3x10" N.

From the egs. (4.7) and (4.8), we note that:

1—772 =0,26179938110,2618034010,26229775 7%: 0,31830988610,31830501

%:0,101321183]0,10112712]0,10018883 all values concerning theew universal music

system based on fractional powers of Phi and Pigrec
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Appendix A

On some mathematical connections between the equation of the energy negative of
the Casimir effect, the Casimir operators and some sectors of the Number Theory.

Casimir Effect
From Wikipedia.

4

Ed

Fluttuazioni -
del vuoto

Placche di
Casimir

In physics, the Casimir effect is the force exenvetiveen two extended bodies located in the
vacuum and not due to the action of a gravitatiaoa¢lectromagnetic field, but to the presence - in
the space surrounding the bodies - of a quantunld,fi&known as “zero point”.
Because of the Heisenberg uncertainty principle,ghergy of this quantum field (vacuum energy)
is subject to fluctuations - described in termwidfual particles - which occur, at the macroscopic
level, in the interaction between the two bodies as result of a force.
The phenomenon is named from the physicist He@hgmir, who theorized it in 1948, based on
considerations of quantum mechanics, in the coofskis research on the origin of the viscous
forces in colloidal solutions....

Mathematical formulation

In the original formulation, Casimir has calculatéuke effect for two flat parallel metal plates, bac

a few microns apart, between which a vacuum waatedeand which were not subject to any
electromagnetic field. The theory predicts thatyothle virtual particles whose wavelength was a
sub-multiple integer of the distance between tla¢epl contribute to the energy of the vacuum, in
other words, can exist between the plates onlyetpasticles, the interaction with the inner walls o
the apparatus results a 'push’ out no more exdmbanced by those who are outside. The result is
a non-zero net force that tends to push the platesnst each other and that can be measured.
The Casimir force per unit area (Fc / A), in thee@adl case of metal plates perfectly conducting
between which a vacuum was created, is calculased a

d (E) __ ke __ her
dA A 24Ca*  48Ca*’

R
A
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where

is the reduced Planck's constant, “h” is the Plasakonstant, “c” is the speed of light, “a” is the
distance between the two plates, A is the areheoplates.

The value of the force is negative and indicates its nature is attractive: the energy density
decreases, in fact, approaching the plates.

For example, in the case of plates placed at aadist of 1 micronim), the resulting force per unit
area is 0.0013 N/fn The presence df shows how small is Fc / A and shows the origin ¢uan
mechanical of the strength.

Finally we would like to add something on the ablmrenula of the negative energy produced from
the Casimir effect.

A denominator of this formula

d (E) _  ncr hcrr

I:C —_— —_ —
A dA A 24Ca*  48Ca*’

we can see that there are the numBéfsand480 we have found some connections with triangular
numbers T, the Fibonacci's numbers anthe latter present in the numerator.

a) are both multiples of the triangular number l88eed 240 = 2 * 120 and thus also of form 2T,
sum of the firstl5 even numbers, and the numbers 2T are, with thi@ddf 1, the Lie's numbers

Ln)=rf+n+1

to the basis of the five exceptional Lie's groupsluding E8 = 248 = 31 * 8 very important in the
string theories and perhaps even in the TOE, aukedi to the number 15 by the formula of Lie

15°+15+ 8 =240+ 8 = 248 = E8

Since480=240* 2, 480is also connected to the numbers 2T, W0 =120 * 4 = 4T.

(We note that 480 and 240 are 240 =24 * 10 &80 = 24 * 20, where 24 is a very important
number, because it is the number of the physidahtions of the bosonic strings).

We recall, that the Fibonacci's numbers F(n) aedotirtition of numbers p(n) are near to 2T, and
the numbers of the Lie algebra L(n) are alwayswefbetween a square and the next, being 2n +1
the distance between two successive sqiNatire seems to choose "his" numbers (Fibonacci,

Lie and partitions), for some reason still mysterias, in the central area between a square and
the other

At this "choice" does not seem to escape evenuherrs240and480 of the formula of the
negative energy produced from the Casimir effebicty, also if they aren't themselves triangular
numbers T (but only 2T and 4T with T = 120), ama@ét exactly, and, respectively, the average of
the triangular numbers 231 and 253, because (233)¥2 = 484 / 2 = 242 240, and between 465
and 496 because (465 +493) / 2 =958 / 2 =~4480

b) about thd-ibonaccis numbers, we still have the numiéy as the average betwetBand 17,

in fact, @3+17) / 2 =15, with 17 that is the average betwdeand?21, since {3+21) /2 =17,
and, as we have seen in a),
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240=15" + 15, and480= 2 (15° +15)

c) aboutr, we find that 480 ®°/ 2, in fact, (3.14 .5/ 2 = 961.38 / 2 480,69, furthermore®/ 4
= 961.38 / 4 2240.34 with very good approximation.

So thefinal part of the formula for the Casimir effect could be tbemn as

_ hecn

7a4
2

eliminating the number 480 and maintaining a ggga@ximation in the final result.
Recall, from the Basilea's problem, that

where we have another connection betweand the number 6, but with exponents and

denominators reversedné—ﬁ and%. There might be a connection between the two ftagtu

(We note only that% = 480,69... and% = 1,64493. We have that 480,6%81,49; 1,64498

1,64809 where 481,49 and 1,64809 are both valfreguencies) connected with theew
universal music system based on fractional powerd &hi and Pigrecq

The formula of the Basilea's problem, we rememibenlves the zeta function for exponent n that
is even, in this case n = 2, while in the Riemagia Zunction n = prime numbers p and their
exponent “s” is a complex number.

A
For the exponent n = 4, we hag% and forn = 6 we havé:fi: with 90 / 6 =15and 945/63 45,

thence also here we have the nunitr.. ( furthermore, we note that 63 +1 = 64°~\ith 8 that
is the number of the physical vibrations of theessfrings, thence very important in the string
theories).

4
Furthermore, we have th%% =1,0823232 and% =1,017343062, both very near to the

following values: 1,082039 and 1,018576 cotexbevith thenew universal music system
based on fractional powers of Phi and Pigreco.

Finally, we note that 240 =15* 16 and 480582, and also 120 =15 * 8, all multiplesdt

15, with 15 that is the fifth triangular number, and 30 numbgrfor T = 15. But also 240 and 480
are divisible by 30, being 240 / 30 = 8 and 48G#3I®, also here we note that are powers of 2,
precisely 3 and 4 (and also here we note thaieisgot the number 8, i.e. the number of the physical
vibrations of the superstrings).

Thence, we return to the connection a) with thentyular numbers, using the powers of 2 as factors
of 30, 60, 120240and480, and forl5we have 15 = 1 *15 =215,
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Thence, we have that the triangular numbers T (hiabcoefficients and sums of the first n natural
numbers) and 2T (sum of first n even numbers),Znd 1 = Lie's numbers, related to the
Fibonacci's numbers and the partitions of numberaré always present in Nature, also in the
energy negative formula produced from the Casiffféce (and also by a magnetic generator) and
connected to the teleporter recently patentedari8A.

This could be also the our small mathematics doution aimed at a better understanding of this
new technology, previously considered only scidiat®n.

* See the previously mentioned our paper: "Unaiéeantmetica, o aritmetica-geometrica, per la

TOE (Il principio aritmetico per le teorie di stga, PATS, complementare al PGTS)”, Francesco
Di Noto — Michele Nardelli, and final references.
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The Casimir Operators

In the paper of Ahmet Canoglu: “Construction of @ais Operators of the Group SU(N)” (Journal
of Marmara for Pure and Applied Sciences, 18 (2082) 61 Marmara University, Printed in
Turkey), the relationship between the Weyl genesabm the real and complex representation of
the chain of Lie group SU(N) is studied. And udimgse relations, the connections between the
Casimir operators of degree n and independent Casiperators of these groups are obtained.
For example, the Casimir operators of SU(3) and4ld(e obtained.

Casimir operators and group cohomology are studextensively in mathematics and physics.
Casimir operators commute with all of the generatof the Lie group. The number of independent
Casimir operators of each group is equal to the krawf the group. Hence, SU(N) have N
independent Casimir operators.

In this work, general procedure for SU(N) is givaard the Casimir operators of SU(3) and SU(4)
are obtained in terms of independent Casimir opmEsatrespectively

From the various equations of this paper, we hdtaioed the following three series of numbers

that we have analyzed in terms of mathematical ections with number theory.

3, 4,10, 15, 28, 35, 45, 56, 120, 126, 210 fiesies

3,4,5,7,16, 20, 26, 27, 31, 64, 486, 815 secmites

2,4,5,9,11, 13, 25, 33, 78, 156, 213, 292, 10016 third series

TABLE UNIFIED

First | Secon | Thir | Fibonacci | Lie's Partitions | Numbers | Observations:sma
serie | d d Numbers | of Triangular | Il differences=
S series | serie numbers Fibonacci’s
S numbers
3 3 2 2, 3 3 2 3:;3
4 4 4 3+1=4; 4, 3; 3+1= 3+1=4:4; |1
4 5-1=4;4; |4
4
10 5 5 5; 11 6-1=5;5 |1;2
5:8+2=10 10
15 7 9 8-1=7 7; 6 +1=7 1,2,3
8+1=9 7+2 =9 6 +3 =9
13+2=15 15 10 -1=9
15
28 16 11 13-2=11 15+146; |10+141 |1;2
11, 15 +1=16
28
35 20 13 13, 13 15 -2=13 10 +3=13 1,2,34=5;5
21-1=20 21-1=20 | 22-2=20; 21-1=20
34+1=35 31+4=35 30+535 | 36-1=35
45 26 25 21+5=26 434245 |22 +325 |28 -226 2,34=5,5
21+4=25 22+4=26 28-3=25
42+3=45 45
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56 |27 33 |55+156 |57-156 |22+5=7 |28-1=7 |1,2,3,5
34-1=33 | 31+2=33 | 30+3=83 | 36-3=33
(21+34)/2= 56 55+1=56
275% 27
120 | 31 78 | 34-331 |31, 30+1=31 | 28+331 |1,3,59~8
73+5=78 | 77+1=78 |78 15213
111+9<42 | 135- 120
0 15=120
126 | 64 156 157- 56+8=64 | 66-264 | 1,2,36<5:8,
1=156 77-1364 | 120+6=126 | 131513, 21
111+15 | 135+2145 | 153+3=156
=126 6
57+7=64
210 | 486 | 213 | 23320 211-1= |231-21 210 1, 2,34=5; 108,
=210 210 =210 210+3213 | 20=21; 21
211+221 | 490-4=186 | 465+21=8
3 6
507-21= 496-10=
486 486
815 | 292 |233+5929 | 307- 297-5292 | 300 -8292 | 2; 5, 15~ 13;
2 15292 | 792+2381 | 820-5815 | 23:21;
813+2= |5 59~ 55
815
1041 | 987 +54 = | 1057- 1002+39= | 1035+6= | 6=5:
1041 16=1041 | 1041 1041 16= 13
39:34;
54~ 55
2016 1081+35 | 1958+58= | 2016 35~ 34
=2016 2016 58~ 55

We can easily note that all the numbers of theetsexies are very near to the Fibonacci’'s numbers,
numbers of Lie, (2T+1), partitions of numbers anangular numbers T; in particular, the numbers
of the first series are either triangular numbbkesriselves, or with difference 1.

All the other differences (last column, in absoludue, i.e. negative or positive), or are Fibomacc
numbers, or numbers very near to them. These pityxda not seem, as usual, completely random,
meaning that also in this phenomenon, the numipeaved are in the area Fibonacci, triangular,
etc. and therefore regulated by the ubiquitouseyokskction (and golden ratio), of the exceptional
Lie groups (based on the numbers of Lie’#n#1) and their natural symmetries.

(See alsohttp://www.carlosantagata.it/doc/casimirita.pdf
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Appendix B

In the work of Ramanujan, [i.e. the modular funeig the number 24 (8 x 3) appears repeatedly.
This is an example of what mathematicians call magmbers, which continually appear where we
least expect them, for reasons that no one undelst&amanujan’‘s function also appears in string
theory. Modular functions are used in the matheraltanalysis ofRiemann surfacesRiemann
surface theory is relevant to describing the bedraof strings as they move through space-time.
When strings move they maintain a kind of symmetited ‘tonformalinvariance".Conformal
invariance(including 'scale invarianc® is related to the fact that points on the swefata string's
world sheeneed not be evaluated in a particular order. Ag ks all points on the surface are taken
into account in any consistent way, the physicaukhoot change. Equations of how strings must
behave when moving involve the Ramanujan functMien astring moves in space-time by
splitting and recombining a large number of math@rahkidentities must be satisfied. These are the
identities ofRamanujals modular function The KSV loop diagrams of interacting strings ¢en
described using modular functions. The "Ramanujarction” (an elliptic modular function that
satisfies the need for "conformal symmetry") has"8®des" that correspond to the physical
vibrations of abosonicstring. When the Ramanujan function is generali2dds replaced by 8 (8 +

2 =10) forfermioric strings.

Palumbo (2001) ha proposed a simple model of thé kind of the evolution of the Universe.
Palumbo and Nardelli (2005) have compared this medt the theory of the strings, and
translated it in terms of the latter obtaining:

—jd%x\/ﬁ[——lﬁsﬁ —ég”"g“"Tr(GwGpa)f (w)—%g””aﬁﬂ’} =
Tl _ 1 ~12 K- 2
_~([2K_120'[dlox(_G)1/ze Z‘D{R'FM#CD@#CD—E‘HJ _Q_E))TrVqF2| )] (B1)

A general relationship that links bosonic and femmm strings acting in all natural systems.
It is well-known that the series of Fibonacci's ruers exhibits a fractal character, where the forms

J5-1

repeat their similarity starting from the reductitactor 1/¢ = 0,618033 = 5 (Peitgen et al.

1986). Such a factor appears also in the famogsafrRamanujan identity (Hardy 1927):

06180331/ p=Y2 "1 = Rig) + V5 : (B2
2 14375 ij‘* fo(-t) dt
2 \/g o f (_t1/5) t4/5

J5

3+4/5 1 o £5(=t) dt )|
1+2ex;{\/§j0 f(—t1’5)t4’5j

3
and mT=20-—| R(q)+ B3
20 (a) (B3)

J5+1

where b= .
2
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Furthermore, we remember that arises also from the following identities (Ramamy paper:
“Modular equations and approximationsatbQuarterly Journal of Mathematics, 45 (1914), 350-
372)):

T

= \/ﬁ,o Iog{ (2 : \/E\)/(g+ \/E)} , (B4a)

”:%mg[\/(lmilﬁj+\/[10+47\/§j]' (B4b)

From (B4b), we have that

and

_ T142

A

Now, we note that the number 8, and thence the etsri® =8> and 32=2°x § are connected
with the “modes” that correspond to the physicdiraiions of a superstring by the following
Ramanujan function:

» COSTOXW et
antilog™> COSvK D':2L42
) |
e .
g=1 il . (B6)

Eleatos

Furthermore, with regard the number 24 (12 = 24 Ad 32 = 24 + 8) they are related to the
physical vibrations of the bosonic strings by tbkofving Ramanujan function:

Iw COS7EXW oW iy
antilog™ cons;hnx Dt%\;‘\frz
e + g (itw)

A ]

Thence, we can obtain the following mathematicalnextion between the eq. (B5) and the formula
of P-N model, i.e. the bosonic strings:

_ 26 _ R _1 MO VO _1 y7% =
Jd X@[ o 59797166 )t~ aﬂwm}
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:jijdmx(—G)”ze-Z“’ R+49 q:aﬂcb—l\ﬁ \Z—K—lonr QF |2) =
> 2K1o ! 2l # g, e
" COSTIXW e g
antilog ™ c_oiszfv]vi‘u D“tzzljvz
e * g(itw)

. (B8)

T

And between the eq. (B6) and the formula of P-N ehdthence the superstrings:
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In theSection 1 and 2we have various equations that can be relatddtivit egs. (B7) and (B8).

Appendix C
From “Scienza news” (Le Scienze, January 2012)
Physics

Light from nothing

An experiment has obtained the dynamic Casimirceffm which virtual photons
become real

A mirror that oscillates at the speed of light, g@extes quanta of light from nothing. This is, in
short, is the result of an experiment publishetiNature"”, which represents the first experimental
demonstration of a quantum phenomenon called “dymamCasimir effect.”
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The demonstration was obtained by the group of SBbpher Wilson, of the Swedish Chalmers
University of Technology. According to quantum magits, even the vacuum escapes to the
uncertainty principle, and therefore can not be #aat it is completely empty: it is filled insteadl
"virtual particles” that emerge and disappear at y an time.
These "vacuum fluctuations" are essential to erpllie expansion of the universe and the
evaporation of blacks holes, among other phenome€ha.theory predicts that the presence of
virtual particles can have real consequences. Tdwn@r effect is that the virtual photons of the
vacuum can exert pressure on stationary objects.
In 1970 Gerald Moore theorized a dynamic versionhgs effect: bodies moving accelerated can
induce the reaction of real photons from vacuum ctélations.
The main problem in the experimental demonstraiothis effect is that the movement must reach
speeds close to that of light to produce measurableesults.
Wilson's group to find the solution to this probldmilding a system very similar to a mirror which
vibrates at speeds necessary for the detectioheophenomenon: a superconducting circuit that
produces an electric surface similar to a mirror in vibration.
Measurements made on this system identify a radiatiduced from the movement that is
consistent with theoretical predictions dynamici@aseffect.

Researchers have tried to exclude causes that ewgrage this effect in a spurious, not due to
vacuum fluctuations.

Among these, some possible defects or backgrounge ngenerated by the apparatus
experimental.

The creation of photons out of nothing does notat@the first law of thermodynamics, since it
takes more energy to move the mirror compared tat tbbtained by light quanta
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Michele Catanzaro
FISICA

Luce dal nulla

Un esperimento ha ottenuto 'effetto Casimir dinamico, in cui fotoni virtuali diventano reali

Uno specchio che oscilli alla velocita del-
la luce genera quanti luce dal nulla. E que-
sto, in estrema sintesi, il risultato di un
esperimento pubblicato su «Nature», che
rappresenta la prima dimostrazione speri-
mentale di un fenomeno quantistico chia-
mato «effetto Casimir dinamico». La dimo-
strazione & stata ottenuta dal gruppo di
Christopher Wilson, della svedese Chalmers
University of Technology.

Secondo la meccanica quantistica, ne-
anche il vuoto sfugge al principio di in-
determinazione, e quindi non si puo dire
che e completamente vuoto: & invece per-
vaso di «particelle virtuali» che emergono
e scompaiono in ogni momento. Queste
«fluttuazioni del vuoto» svolgono un ruolo
essenziale per spiegare I'espansione dell'u-
niverso e l'evaporazione dei buchi neri, fra
gli altri fenomeni. La teoria prevede che
la presenza di particelle virtuali puo ave-
re conseguenze reali. L'effetto Casimir con-
siste nel fatto che i fotoni virtuali del vuoto
possono esercitare una pressione su ogget-
ti stazionari. Nel 1970 Gerald Moore teoriz-
z0 una versione dinamica di questo effet-
to: corpi in movimento accelerato possono
indurre la reazione di fotoni reali a parti-
re dalle fluttuazioni del vuoto. Il principale
problema nella dimostrazione sperimenta-
le di questo effetto ¢ che il movimento de-

ve raggiungere velocita prossime a quelle
della luce per produrre risultati misurabili.
11 gruppo di Wilson ha aggirato questo
problema costruendo un sistema del tutto
analogo a uno specchio che vibra alle ve-
locita necessarie per la rilevazione del fe-
nomeno: un circuito superconduttore che
produce una superficie elettrica simile a
uno specchio in vibrazione. Le misurazio-
ni realizzate su questo sistema identifica-
no una radiazione indotta dal movimen-
to consistente con le previsioni teariche
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dell'effetto Casimir dinamico. I ricercato-
ri hanno cercato di escludere le cause che
potrebbero generare questo effetto in ma-
niera spuria, non attribuibile a fluttuazioni
del vuoto. Fra queste, alcuni possibili difet-
ti o il rumore di fondo generati dall’appa-
rato sperimentale. La creazione di foto-
ni dal nulla non viola la prima legge della
termodinamica, visto che ¢ necessaria pilt
energia per muovere lo specchio rispetto a
quella ottenuta dai quanti di luce.

Michele Catanzaro



Appendix D

In the new musical system based on Phi and Pi.gneeowill find the connections with sigma,
Pi.greco and the most important harmonic relatigogsstThere is also a column 10/x. In this system,
all the notes have this connection as well as #wof 1,2 (which creates the connection with
Pi.greco). There are other harmonics connectioss ilaportant that, however, may be connected
with the values concerning the equations of thengttheory. The system is perfectly framed:
begins with the factor 0,75 and ends with the cotiae 12. The corresponding to the factor 0,75 is
13,33333 but no longer enters the system becaeseotles are completed. There are 36 notes for a
range Phi that applied to the circle of 360 degesates 10 subdivisions (a decagon, the DNA,
etc...).

This was the initial intuition that meant that tBeg. Christian Lange has reconsidered the musical
system based on Phi and Pi.greco.

This is the link to see the Table with all the esuof the various frequencies concerning the
musical system based on the aurea sectirafdn.

http://nardelli.xoom.it/virgiliowizard/sites/defatfiles/sp_wizard/docs/Sistema%20833333%20su
%20833333_PiGreco_Terzitoni%2040Hz_0.pdf
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