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Abstract

In the present paper in tHeection 1 we have described some equations concerning ubp c
anomalous dimension in the planar limit of N = $&uYang-Mills from a Thermodynamic Bethe
Antsaz (TBA) system, the Luscher correction atregrooupling and the strong coupling expansion
of the function F. In th&ection 2 we have described some equations concerning -gpanameter
family of Wilson loop operators in N = 4 supersynirite Yang-Mills theory which interpolates
smoothly between the 1/2 BPS line or circle, ppally some equations concerning the one-loop
determinants. In th8ection 3 we have described some results and equatiome ghathematician
Ramanujan concerning some definite integrals andirdimite product and some equations
concerning the development of derivatives of omlén positive integer) of various trigonometric
functions and divergent series. Thence, we haveritbesl some mathematical connections between
some equations concerning this Section and theidBscl and 2. In thé&ection 4 we have
described some equations concerning the relatiprisgtiwveen Yang-Mills theory and gravity and,
consequently, the complete four-loop four-point dmge of N = 4 super-Yang-Mills theory
including the nonplanar contributions regarding gaige theory and the gravity amplitudes. In
conclusion, in théppendix A andB, we have described a new possible method of faetayn of

a number and various mathematical connections sathe sectors of Number Theory (Fibonacci's
numbers, Lie's numbers, triangular numbers, PQrelo, etc...).

1. On some equations concerning the cusp anomalous dimsion in the planar limit of N
= 4 super Yang-Mills from a Thermodynamic Bethe Ansaz (TBA) system, the Luscher
correction at strong coupling and the strong couphg expansion of the function F

The bulk excitations are in a fundamental repregent of each of the twcsﬁ(2|2) factors of the

SG(ZIZ)2 symmetry of the Z-vacuum. We can think of thempasticles with two indices¥, ,,



where A labels the fundamental of the firsﬁ(2|2) and B labels the fundamental of the second

SG(ZIZ) factor of thesG(2|2)2 symmetry of the infinite chain. This central exdem determines the
dispersion relation for the excitations
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We consider an open string ending on a D5 brantewtheps AdS, x S?, or AdS, xS*. There is a
whole family of BPS branes of this kind that aribgsadding flux for theJ (1) gauge field on the
brane worldvolume on th&” or AdS,. In fact, in the limit of large electric flux oim¢ AdS, x S*

brane we get a boundary condition like the Wilsoopl one. In fact theAdS, x S* branes can be
interpreted as Wilson loops in the k-fold antisyntricerepresentation of) (N). In all these cases
one can choose the BMN vacuum in such a way thapreserve théG(ZIZ)D of the spin chain.

Therefore, we would get the same matrix structorettie reflection matrix, again assuming that
there are no boundary degrees of freedom.
We have the crossing equation

R(p)R(p)=a(p-pf, (1.4)

where the bar indicates the action of the crossragsformation. Herea(pl, pz) is the bulk
dressing phase. We are goingpoalong the same contour in momentum space thathaese in

the formulation of the bulk crossing equation. bidiéion, we also should impose the unitarity
condition

R(p)R(-p)=1. (15)

We now write the ansatz

1+, 1

Rip)= g

Here o is the bulk dressing phase. This would be ourenahoice for a phase factor. The explicit
factors of x* have been chosen only to simplify the final formwVe have an unknown factor
7.(p). Now (1.4) becomes



as(p)os(p)=— (1.7)

We can now solve this equation and obtain:
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This expression is valid Wheh<|>1. The value for y in other regions is given by analytic
continuation. We have also introduced the functtb(x) which is given by the integral for all
values ofx. When|x <1 these two functions differ by

litent]

ix(x)=i®(x)+log 27@()”)1() :

(1.10)

The ambiguities in the choice of branch cuts fer lbgarithm cancel out when we computg in

(1.8). Note that )((x)=)((— x). This is a particular solution of the boundaryssiag equation.
Instead of (1.2) we defing=i¢ and E, =ip, and use the same formulas as in (1.2). Hpis the
mirror momentum ande,, is the mirror energy. In order for these to bd veawill need to pick a
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Here z* just denote the values of in the mirror region.

When we have a boundary, this time/space flip tuhesboundary into a boundary state. Then a
suitable analytic continuation of the boundary eetilon matrix characterizes the boundary state.
The boundary state creates a superposition of rparticles. The total mirror momentum should be
zero since it is translational invariant. So, scagaally the state has the form

qu KAABB qAAanBB|O>+"' (113)

with
K™2(q) =[R2, 7 )[he™= . (1.14)



The formula (1.14) can be obtained by performing /2 rotation of the boundary condition. Due
to the independence of reflection events from andauy, we can exponentiate (1.14) to get the full
boundary state. Similarly, we can form a future rtary state. This is a boundary state that
annihilates the particles. It is given by

(8= 0+ (0] S2K plae'alt .. (019
with |
Kusss(a) = [R-l[_i_,—%ﬂ Copy (116)

Thence, we can rewrite the eq. (1.15) also as fallow
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When L is very large the leadingl -dependent contribution comes from the exchanghisfpair
of particles and we can write the correspondingrdaution as

In the relativistic case (1.16) would b&(8) =

Of = —T%e‘mm(“)t(q), t(q)=Tr[K(q)K(q)], (1.17)

thence,

00

X =- ! %e‘ZLEm(q) Tr[K (a)K(q)]. (1.17b)

This formula is correct whenever the integral msté.
In our case, the phase factoy, has a pole agy=0. The physical interpretation of this pole at
g =0 is that the boundary state is sourcing singleiglag states in the mirror theory. Obviously

such source has to contain only zero momentumcpesti
A careful analysis leads to the formula

é= —I%Io 1+ 2507 [K (@)K (o) = —%e‘LEm(O)\/qur[K(q)K(q)]q:0 . (1.18)

In the last equality we extracted the leading temnthe integral, which comes only from the
coefficient of the pole. Notice that the dependence is precisely what we expect from the
exchange of a single particle.

To write down the full Luscher formula we need tomputet(q) also for the bound states of the

mirror theory. We find the following formula:



(1.19)
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From the following relation

(1.20)
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we obtain the expression for energy up to 3-loafeor
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in perfect agreement with the expansion of thefithg expression:
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Now we consider an open string operator of the derZLB,(H,w) and compute the leading
correction to the energy for large, this correction goes as &t \We will compute the
correction forg = 0,8 # 0 at leading order in the strong coupling expansiorthis case we have a
string that moves onAdS, xS°. We fix the solution on theAdS, part. ThisAdS, solution is
completely characterized by the extent of the apatorldsheet coordinate , which we take to run
between[—s/2,s/2]. In particular the spacetime energyof the solution is fixed, once is fixed.
As we vary the parameters we will see thawill change,& will change, and so wilh - L.

So we now concentrate on the solution on$iewhich we parametrize as

x +ix, =€ \1-p*(0),  x +ix, = p(o)??. (1.23)

Inserting this in the Euler Lagrange equationstiier string and imposing the Virasoro constraints,
T, =1 one finds two integrals of motior, and y . They are given by

B= +(91/N2 (1.22)

r=p%" (1.24)

and
P2 (p)
1- p°

=02 - (y2 —1),02 +y°p*.  (1.25)

The boundary conditions are'(0)=0, p(s/2)=1. Let us definep, to be the value op ato =0
where the derivative vanishes. It is a root of

0=-0>-(P-1)o2 + V0. (1.26)

By using (1.25) we can write the following express
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D=-12-()? -1)p? + 2p* = (0% - P2 )2 (0? + B2)- (P -1)). (1.30)

This happens whep, -~ @ndy - 1 and/ - 0. We need to scale them as

N

y=1l+¢ /2 fzsg, p:\/zv, (1.31)

where v is a new rescaled variable andis fixed ase — 0 Now, to leading order it we find

that (1.26) becomes
52 1472
O:—%—v§+v§, or #

(1.32)

The integral ford, (1.28), becomes negligibly small away froo= p, since there a factor of

multiplying. So it receives all its contributiorofin the smallp region, namely the finit& region,
see (1.31). We can write

0 _1p 1 =~  7=tand (133) D=(2-v)V+v¥-1). (1.34)
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We can similarly compute the integral fer

(1.35)
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where we useg, =\/EVO and the result (1.33), and the definition®fin (1.34). Furthermore, we

can rewrite the eqs (1.35-1.37) also as follows:
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Here we have split the integral in two terms, tingt feceives contributions only from the small

region and the second, which can be done expliaiitit no need to take the smadi limit. We
now want to computé. . We will compute instead
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We know that for6 = 0 the result should vanish due to the BPS condifitrus we find that

L

A-L= g(l—cose)l‘E—?e 20 (1.44)

If we changed the angle in the AdS part, then astef 1 in (1.44) we would get some function of

¢ . However, since we know that fd#=¢ we should get zero due to the BPS condition, we
conclude that for generic angles we get

L

A-L= g(cos@—cos@)i—?e 29 =0.

(1.45)

In order to compare this to the expected answan ftbe Luscher type correction we need to
evaluate the functiorir in the following expression



F(ag) = elobThobi ok hopria)

at strong coupling. This involves evaluating thedion ® in (1.8), (1.10) atl¥ at g=0. When
g =0, we have that

-1/ 27%(0) = Z*4(0) = i(\/1+ a’/l16g°) - a/(4g)): i(1+4—z + j (1.46)

which is very close td, where the strong coupling expansion is tricky. Wéed to compute

2 . .
logF =id(y)-id(L/y) Ej -9 sinhd7gsint | 4 47)
my, (1+ y ) - 4y’sin’t 4rgsint

with y = Z%(0). Then they dependent factor can be well approximated by

(y“—l) _a 1
L+ y2)2—4y25in2t‘y:x[a](°)~_g e & | (1.48)
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We now insert this into the integral (1.47), antitgpe integral into two pieces

logF =1, +r, (1.49)

1 . 8
— |4rgsint = 2alog{;g} +o(l/g) (1.50)
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where we have definetl= v/(87g) in the integral forr, and taken they — o limit. Furthermore

we note that:
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Summarizing, we get that the leading strong cogpdipproximation is

26&1923
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We have contributions from the explicit functionghe following equation
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C =(—1)aa2F(a,g)§.'FTeA°°"V, (1.54)
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which can be expanded to any order independentlyeo-system solution. These give

a{éﬁ;ﬂ Flagf= 4(3‘\/ a’ +16g° jzei(cb(zé*a])cb(zc[f])m(l/z{,a]) ofu/2l)) _
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We can rewrite the fermionic convolutions in the TBduation

D, ={RY “Dlog(ll” B4 £ Iog( U7 j [@10 + B 2]Dlog +—?:?f o (1.56)
1+
b? -1
as
(1.57)

281 Hlogw - 2859 flogd = K, ﬁlog% +K,, Dogwo.

It is important to recall that we need only the- O limit of this. For the ordeg* of the first term

in (1.57) we get

1679" ¢ (0)=3279" (155
3 3a

The second term in (1.57) is



K,y Clogwe = Zfdea,y(O,V)['Og(— )+ 2g°(WH(v) + o (V) - (WH() + P ()} g* +

—Zg

+ 2w () +dP(V))g* +..], (1.59)

where itsg* order is

56n“g o _ ﬂ“g“+2(4ﬂ2 +32’7“jg4:_12”494+8”294. (1.60)
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Thus, the totalg* order of (1.57) is
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For the remaining convolution in (1.562|R%Y + 89, |Tlog(1+%,) we use

w

a—

RL(0,v)+ BE,(0,v) = Ky (v) +

a,

WD

Koz +0(g?). (1.62)

2

j
We note that the eq. (1.57) can be rewritten adsimldows:
(10) p _ opl10) Kk Flogy
2R, UogW - 28, Llog® = K, Dlogg +

+2fdea,y(0,V)[log(- )+2g2(WO(v) + 0 () - (WO) + PB()f g* + 2(WA(v) + DD (v))g* +..],

-2g

(1.62b)

We go to Fourier space, where the term orgleis

2 ~ %(2) 8 | 167 a-1 L
2 K K =——— M- e 2. (1.63
za L b+2j bz 3 3 a ( )

=

We Fourier transform back and evaluatedor 0 and we get

a-3
T
¢ S Ko D%| :32722_32772_8772. (1.64)
G b’|., 3 3 3

2

Thus, forA_,,, up the 3-loop order we have

conv
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conv 3 45  3a?

}94 +0(g°). (1.65)

Which, together with (1.55), gives rise to

C, =4(-1)g? +8(—1)a[772 4 }g“ +16(—1)a[i _ar +A)};6 + O(gg). (1.66)

a’ 3 a* a*

2. On some equations concerning a two-parameter faly of Wilson loop operators in N = 4
supersymmetric Yang-Mills theory which interpolatessmoothly between the 1/2 BPS line or
circle, principally some equations concerning theme-loop determinants

With regard the calculation of the 2-loop graphstf® Wilson loop with a cusp in the case of non-
zero 6, the resulting expression can be written as autime contribution of ladder graphs and the
interacting graphs

int

(2) :_(COSQ_COS¢)2 w% 1+ Zei¢ Z+ei¢’
Vlad ((019) sin2¢ .[0 5 |Og 1+ 7617 |Og —r

V@ (0,6)=v2(0.6)+V(¢.6)

V,{P(¢.6) = 4(cosf - cosy) EdZY(ZZ, Z* +2zcosp+ 11). (2.1)

The integrand in the last expression is the “sdaiangle graph” — the Feynman diagram arising at
one-loop order from the cubic interaction betwe®eé scalars separated by distances given by the
arguments

Y(X122’X223’X123): )ﬁjz =‘>§ - Xj‘z. (2.2)

1 1
2 d4W 2 2 2
l [ =W, =W, =

This integral is known in closed form. Fa&f,, X2, < X7, it is equal to

Y[, 32,32 = — {ﬁ - 2Li2(—1+ S_Zt - Aj - 2Li2(—1_ S’;t - Aj ¥

XGA| 3

—Insint + 2In(1+ s—2t _ Ajln(l_ S;t _ AH

X L % _ >
s==2, t==2, A=,{l-s-t)-4st. (2.3)
X3 X3 W )

Thence, we have that:

V(. x8) = = [d'w

1 _
=W, —wfpe —wf*
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:21 i_zuz(l+s—t—Aj_ZLiz(l—s+t—Aj+
XA 3 2 2

~Insint + 2In(1+ S_Zt - Ajm(l_ S”;t . Aﬂ . (2.3b)

This expression is valid fos,t <1 with the principle branch of the logarithms antbgarithms. If
X%, is the largest, then the result is the same fandtiivided bys and the replacemert - 1/s
andt - t/s. Likewise whenx}, is the largest. In our case, if we take>2n , fBen forz<1 the
first two arguments of in (2.1) are less than unity and in that regivhevaluates to

Y=- zs:nw(% ~ Li, (- z¢%) - Li, {1+ z67) - log(2)logl1 + z6?) + log(- €°)logl1 + ze‘"”)j . (2.9)

The integration then gives

[[azy = (n=gln+ale )
0 3sing

With the prefactor we find the final expressionlidgdy analytical continuation foraD< ¢ <) is

V()= 2C0F —Cosg

W20 3 g m-g\m+@o. (2.6)

The first integral in (2.1) can also be done anedytty. Again one should take care in choosing
branch cuts for the logarithms, where the principlench is for small . The result is

V2 (,6) = ~a oS~ cosg) {Lis(ez"”)— Z(3)-i w(Liz(eZW’)+ %j +%¢f} . @7

sSin® @

Thence, form (2.1), we have the following expression

2 i :
V()= -2~ cosa E’%og( T Jlog( e j -

sin’ @ z 1+ 2z z+e'?
__(cosB-cosp)’| | . (ao) Ay 1 (o). )L T
-l ) )f b ) 1]

The finite expression for the regularized 1-loopeefifve action is:

Mo =——=lim| —In .
M 2e-0-= 277 def Of def Of detO;

q +oo 2 £
g j dw e*wf def OF 2.8)

The small¢g expansion is realized sendikg—  (€quivalently p — o) in the expressions or the
following determinants
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sinh(2K ) 2.9)
= @

detO, O
e
8K,y + K sinh(K,Z(a )) %0 qg)ﬁ{%’qz) . (2.10)
e e CETE YR

! 2K,

detOf O

An efficient way to proceed, considering for exaenghe determinant for the operat@x, is to

transform as follows
a, =6 +K +iK', (2.11)

which allows to identify the imaginary part of tasgument of the hyperbolic function

slgJic Jan( k)

2K Z(a,) = 2K,Z(8,) - 2K, cn(ﬂl\kf) i, (2.12)

In applying this approach to the fermionic deteramity one notices that a shift analogue to (2.11)
changes thesinh in cosh. One can then first compute the,  expansion ofaz(ai‘kz)/aa)

where the dependence @ on « is via a, and then perform an indefinite integration over
From examining the expansion of the determinanssratl k we find the form

deto, =>' D'k?,  i=012F, (2.13)
1=0

where eactD") is a rational function inx times sinh(7zw) and cosHrmv).
The zero-th order contribution to the regularizéfdative action (2.8) in this limit reads then

ETEYEM v} S
I

==l dwln{zl o O(‘g ﬁf)iths(m")} =0. (2.14)

At order k? the result is

nl4a? - 3)wsinh(rw) , 3207 cost{rm) nle? - 2)cost{m) .\ (402 +1)sinh(7z0)

1oy lg  (4a?+1f (b +af _,  4aP(er+) 2\ +1}
T 4cos7zo) sinf(7
4o +1 W +1
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2wsinh(7) | ) 7{e? - 3)cosH{ )

T
RO B 2% A sl o A I S
sinh(7zw ~ sinhl/w) | 8° (2.15)

o +1 w

At order k* one finds

317&)(192wﬁ+272w4 2200/ - 5)5|nf‘(nw) ( (3 4(‘)2)2(‘)2+ 3840 Jcosi(nw)

9 1 e 16(407 +1 glac? +1)  (4a? +1f
—w == [y
g A7 4cosH )

4¢f +1

(”(4“’2 3)5‘)3”;"(7750) 320/ COS*(ﬂCO)J 77(90) +370" - 7207 - 24)cost(nw) _{2&0“ +1207 +3 |
(407 +1f et +r] )| ) 64e (o7 +1) 8w/ (e +1)

o) )

-2 ). cosH/mw +1)sinh(m) )
B [ e

A
(772(602 —3)2a)+ 6’ ]Siﬂh(ﬂ&)) N 3ﬂ(3a)6 +17¢)' - 550° —5)cost(nw)

3w +1) (o +2) | 64{e? +1)f
smh(nws
o +1

(2t ot (e

S, S ) + Zcosl(zzw) . (ZCOS'(W)T

+

(wz+1)3( : (ajz+1) 3 o 2( - )) _ 29 _3%(3)
o sinhlrzo sinh\7zy, sinh{7zw) \’ 128 16
e +1) w w

1 18)

3. On some results and equations of the mathematai Ramanujan concerning some definite
integrals and an infinite product and on some equa&bns concerning the development of
derivatives of order n (n positive integer) of varous trigonometric functions and divergent
series.
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On some results and equations of the mathematician Ramanujan concer ning some definite integrals
and an infinite product

Consider the integral

[ . coszmxdx \
o {1+x2/a’fL+ xC (a+1f L+ X2 i(a+2) ..

(3.1)

wherem anda are positive.
It can be easily proved that

i) Je @ J o () | e e 9

wheren is any positive integer. Hence, by splitting

1

’ y r 3 33
W+ 1a2fL+ 32 (a+1)}. 1+ X2 /(a+ n-1)] 3.3)
into partial fractions, we see that it is equal to
2r (2a){r (a+n)}? a _2an-1 a+l  2a2a+l) (n-1(n-2) a+2
{r@Fr(nrza+n)|a®>+x* 2 n+2a(a+1f+x° 2l (n+2a)(n+2a+1)(a+2f +x?
3.9)
Multiplying both sides bycos2mx and integrating from O t® with respect tox, we have
J-w r COSZFTI)Sd)S — 7f(2a){r(a+ n)}2 {e—Zam _@ n-1 e—Z(a+1)m +}
o 1+ /a’fL+ P (a+1 )41+ ¢ @+ n-17p  {r(@}°r(n)r(2a+n) 1 n+2a
3.3)

The limit of the right-hand side, as— o, is

1
r(a + j
) {e_zam _ 28 rfartm 2a(2a+1) g 2ar2m _ } =1 n 2) sech®m.  (3.6)

1 2! 2 r(a)

1
Jm cos2mxadx L 1 Jr I'(a * 2)
o L+ x2/alfL+ X l(@a+1)).. 2 r(a)

(3 e (G T G el o9

15

sedh®m....... (3.7)

Since




the formula (3.7) is equivalent to
[ Ira+ iX)|20052mxdx=%\/Er (a)r (a+%)sedﬂzam ....... (3.9)

Let
I: f (x)F(nx)ax=g(n), (3.10) and J':q»(x)F(nx)dx: x(n). 3.11)

If we suppose the function§,¢, and F to be such that the order of integration is iretiéht, we
have

J. f (x(xjax = | dyJ' X)g{ y)F (nxy)dx = J'qp(y (ny)dy. (3.12)

We have, for example, the formulae

J—ooc052nx dx = 1 ©  cOoSs2nxdx _ \/§
0

. (3.13) . (3.14)
cost/x  2costn 2(1+ 2coshzn)

° 1+ 2cosf§m

j: e cos2nxdx = %\/;e‘“z . (3.15)

By applying the general result (3.12) to the ingéég(3.13) and (3.14), we obtain

dx S dx

3I: coshvx(1+ 2cosh2nx) b - (3.16)
coshnx(1+ Zcosrg mj
or, in other words, ita3 =§n2, then
al’ dx =8|, (3.17)
o coshax(1+ 2coshrx) o cosh( 1+ 2coshm)

In the same way, from (3.14) and (3.15), we obtain

- eXdx e dx
al| —— =B 3.18
\/_IO 1+ 2coshax IO 1+2coshgx’ ( )

with the conditionaf =gﬂ; and, from (3.13) and (3.15),

\/EJ-: c:shax

with the conditionaf = 7. (Formulae equivalent to (3.18) and (3.19) wexegiby Hardy).

dx = \/EJ-O —(C h@( IX , (319)

16



Suppose now thad,b, and n are positive, and

J' #a, x) o nxdx w(a,n). (3.20)
Then, if the conditions of Fourier’s double intdgtreeorem are satisfied, we have

jjw(b,x)cf’snxdx%n;a(b,n). (3.21)

Sin

Applying the formula (3.12) to (3.20) and (3.21k wabtain
%ﬂf Aa, x)@b, nx)dx = j:t//(b, xky(a,nx)dx. (3.22)
Thus, whena =b, we have the formula
%njj Ax)edmd)ax = [y (xp(m)ex,  (3.23)

where

oo cos
t)= x) . txdx; (3.24
)= [} )bk 2.2)
and, in particular, ih=1, then

%nj:{w(x)}zdx: [[le(xFax. (325

— P 1 LY
w(a’x)_{1+x2/a2}{1+x2/(a+1)2}... (@>0). (3.29

then, by (3.7),

semza%x. (3.27)

1
vlax)= %\/7_7 r(r(a)zj

Hence, by (3.22),

j j sechz“b; xdx; (3.28)

J. Aa, x)lb, x)dx = ( ;jr(

2r(a)r(p)

and so

17



1 1
J'°° ’ L ' L 1\/7_Tr(a+2jr(b+2jr(a+b)
0 {1+ x2/a2}{1+ x2/(a+1)2},..{1+ x2/b2}{1+ x2/(b+1)2}___ 2 r(a)r(b)r a+b+1j
2
49)
a andb being positive: or
) 1 I'(a)l'(a+1jl'(b)l'[b+1jl'(a+b)
[ Ir@+ix)r(o+ix} dx == 2 2 (3.30)
0 2 1
r(a+b+j
2
\/7_T2_7T1_1 \/7_128_778_2
We notethat(T —ZGI?—E, and > EII?—ZEII?—;.
As patrticular cases of the above result, we hahen =1,
o X dx a
. I . 31
IO sinh7x {1+ x? /a2 fiL+ X2 (a+1)}..  2(1+2a)’ (3:31)
whenb = 2,
.[oo X _dx . a’ . (332)
o sinh7x {1+ x2/a’fL+x* (a+1)}.. 2(1+2a)3+2a)"

and so on. Since I'I{1+ x2/(a+ n)z} can be expressed in finite terms by means of roghe
functions when2a is an integer, we can deduce a large number efigpformulae from the
preceding results.

Suppose now that = £ in the following expression:

+a)r(1+ B coshrr(a + BW3 - cosn(a -
da. pAS.a)= F(lira(1+ Zﬁ?)l;‘%ué’)t 20/){ hﬂ(an(gz) +3aﬂ + ﬂz() IB)} - 839

We obtain: |
e G e R R e

Similarly, putting S =a +1 in (3.33), we obtain:

IEPEE TNRESE /A A0 I

1+a 2+a r(2+3a)

Again, since

18



et

it is easy to see that

R

36)

It is known that, if the real part af is positive, then

tan (x/ a)

logr(a)= (a—%jloga a+—|oan+2J' dx. (3.37)

From this we can show that, if the real partois positive, then
1 m a® a® a® coshrmr~/3 - cosrmr »tan*(x/a)’
—log2mr + —= +logs | 1+ — |1+ — | 1+ = |...p =lo +2| ———dx
207 g{( L J( 2 J( 3 J } g( m b em -1

From this and the previous section it follows that

= tan "t x°
.[O T_ldx , (339)

€

can be expressed in finite termanifis a positive integer. Thus, for example,

= tan™ X° 1 T i3
—dx:—lo 277————Io +e™°]: (3.40
[ 9211~ dh+e); (3.40)
tan X o3
——Io 12714 —Io —-e?m3 |- (3.41
Jy g &= gloatar— =g dh-e*); (3.41)
and so on.
It is also easy to see that
12 22 3? 4? 101 1 1 1 j
- + - +.== - + - +.. |+
P+n® 22+n® F+n® 42+ 3l1+n 2+n 3+n 4+n
4 2-n 4-n 6-n
+— - + —..r. (342
3{(2—n)2+3n2 (4—nf+3n  B-n] + 3 } (3.42)

Since

19



n _ 1 3 5

= + - .. A4
P+x> F+x° B+x° - (343)

4C0$h%7'5(

it is clear that the left-hand side of (3.42) candxpressed in finite terms if is any odd integer.
For example,

12 ~ 22 N 32 ~ 42 N
B+1 22°+1 3F+1 42+1

= %(1— log2+ ﬂsedﬂ%ﬂ\@j . (3.44)
The corresponding integral in this case is
= X dx e (-1) _1(1 1 1 1
J’ —_ —j + S == + - ..+
o sinh7x n® + x° 2x S+ n®+x° “3ln n+l n+2 n+3

_4 nt2 ___ n+4 n+6
3|(n+2F+3n> (n+4f+3n*> (n+6) +3n?

—} (3.45)

and so the integral on the left-hand side of (3eHs) be expressed in finite termsnifis any odd
integer. For example,

5
Io X dx :}(|ogz—1+nsedq%m/§j. (3.46)

sinh7/x1+x® 3

3.1 On some equations concerning the development of derivatives of order n (n positive integer) of
various trigonometric functions and divergent series.

We have the following expression:
o @ u(x=1/2) _ y-u(-x-1/2) o (@ — arux)qur2
O O Y o ol
0 e -1 0 e -1

_ = sinh(ux) | _ 1
—.[0 Wdu = 7Ttan(75(), |X| <§. (347)

ttX—l/Z _ t—X—l/Z

0 t-1

Deriving the eq. (3.47§2n) times, with respect ta, we obtain:

A 2n) 7t 2“"1 2 2n | 2ng-2rik
I “S.,f;([f‘g du = rtan(7)] ™" = 7 an[tan(m] lﬂk;( 1) (-27)"k . (3.48)

Operating on the eq. (3.48), we obtain:

n

J-O u”"sinh(ux) du = Aftan()]” = #””ZQ[tar‘(ﬂX)]Zhﬂ wz(—l)kk”e‘z’m‘. (3.49)

“sinh(u/2) i et

Putting, in the eq. (3.49)an(7x) =t , whencerx = arctarft), we obtain:

20



o] U
—arctant
J‘°°u sm){narc ar{ )}
0

— n+l C 2h+1
SinHu72) du =77 ;bht . (3.50)

Deriving the precedent eq. (3.50) with respedtt)o and putting aftert =0, we have:

] U

u smk{narctar(t)} .
imD, [ == ="y, (3.51
£ IIO sinhu/2) u 7TI0 sinh(u/2)du oy, (351)

2n+1

whence

2 L ko 2n+1) _ 2°"™3(2n+1) 1
ﬂj‘ouz la /226 kdu = _z ( ) ( )z

5 = — - (3.52)
k=0 ”k>o(;+kj2 ? n |<zo(:|.+2k)2 2

We have the following expression:

S A R S e R R 2 ke

k=1

(3.53)

and we remember that:

Z(on)=2 (2n7;2 i B,/ (3.54)

where B,, is the Bernoulli's number of inde2n , while (s) is the Riemann zeta function, defined

by ¢(s)= Z— Re(s)>1.

k>l

Applying the eq. (3.53), we obtain:

B S PP
z (1+ 2k)2n+2 [1 2 ]Z(Zn + 2) ’ (355)

k=0

and thence:

]7.2n+1b0 _ 22n+3(727n +1 [1 2 (2n+2 ]Z 2n + 2) - 2(2['7]T+1)| (22n+2 —1)((2!’] + 2), (356)

but:

2n+1 2n+2
<'7(2n+ :2) ::Eg_____ZZfi___|E32n+2|

(2n+2) (3:57)

and thence:

22n+1 -
b =5 (" -1B,.|. (3.58)
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With regard this equation, the valueslgffor n variable from 1 to 6 are: 2, 16, 272, 79363792
and 22368256. We note that 272 is divisible foahfl 7936, 353792 and 22368256 are all divisible
for 64. It's interesting to observe that 64 fsad we know that 8 is the number of the physical
vibrations of the superstrings that can be exptebgehe following Ramanujan equation that has 8
“modes” corresponding to the vibrations above noemd, i.e.,:

© COSTEXW oW gy
anti log™ COShm '1\;‘\;2
e_T itw
-1 adiw) (3.59)

3 10+11/2) | ((10+742

log .|| ——— [+ || ———
4 4

If a series, Z'Ah— = f( ) is divergent, forx>a, (a, constant), multiplying, both sides of the

n=0
previous relation, fore™, and integrating, with respect to, between the limits zero and infinity,
we obtain another divergent series, defined by:

[Cert(ax=3 2 2" xedk. (3.60)

nz

Now, we have the following relation:

X :ZBK%. (3.61)

e -1 k=0

Applying to this relation, the integration of e§.€0), we have that:

j = dX_Za(k'j X‘e™dx = sz 1__+ZBZk (3.62)

k=0 k=1

Now we compute the integral that is to the leftdhaide of the (3.62). We obtain:

= xedx _ = xe e dx W(k+2) 7
hiem =l mer ol e ks ;(k e L G6d

Thence, from the (3.62), we obtain:

Zsz =

k=1

772
T, (369)

N w

The left-hand side of the (3.64) is just a divetgsaries, that is represented from the value of the
right-hand side of this expression.
Substituting in the (3.61); x to x, we have:

——ZBK(—). (3.65)

k=0

22



For |x|2277, the precedent relation is divergent, thence, yappl to the same relation, the
integration of eq. (3.60), we have:

@ o =X ® X @ 1 T
e dx=| e dx = xe Ky = =" (3.66
L -1 IO 1-e~ g')jo g‘)(1+ kf 6 (3.66)
j xedx =Y B (-1 =1+ +282k (3.67)
k>0 k=0 k=1
Equalling the results of the two last relations,atsain:
282k:i—§, (3.68)
o1 6 2
that is identical to the (3.64).
Now, we have the following integral formula:
dx (7)™
© 2n _
[ (inx) T _(Ej E,|. (3.69)
BecauseE,, > 0QandE,, ., < Q we have:
~ ] 2 2n+1 - o dX
e = (2] [ 2. @0
Applying, to the eq. (3.70) the following geomedaliseries:
1 1 t t*
—==-—=+——-—+..,, ¢c>0, t>0 (3.70b
+t ¢ ¢ ¢ ¢ ( )
we obtain:
1 dx 1
— dy (for x=¢")
T j 1+f(InX) 21+x° I =17 +4y° 1+ezy
772
1 1 o 1 1
= dy = dz. (fory=7mz 3.71
J-'°°772+4y2 coshy '[‘°°1+422 cosHrz) (fory=rz) (3.71)

Now, we consider the series

—1)¢( 2k
z(k—i)l(kak. (3.72)

k=0

The series (3.72) is a convergent seriesbﬂot% , and is divergent fojx > % The absolute values

of the coefficients of the powers of the serie¥23.are the famous Catalan’s numbers, and the
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primes values, for k =0, 1, 2, 3,..., are the follogv 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,
16796,... From the (3.72), we obtain:

(-2 (ijxk =z(‘l)k r2k+1) (-1 2% [ ;jr k+1)

k20k+1l‘(k+1)r(k+1)x Sk+1ym T(k+2)r (k+1

_1 1 Z(_4)kr(k+2j (3j ——Z( 4)x ftkz (1- t)g_ldt. (3.73)

B \/TTF(:BJ k=0 r(k+2) TTizo
2
Applying the (3.70b) to the (3.73), we obtain:
(-1) 2my?  d
P jtz ~t) dt=2("Y Y (fort=—Y ) =
I(20k+1 1+4xt o 1+yl+y+4xy 1+y
1
_2 %-1 1 1+4x dy _2 1 ﬂ(sinfj_l+zl+4xjm yzldy _
7790 1+y 1+y+4xy)- 7T - 4 2 7T —4x %0 1+ y(1+ 4x)
-1
_ 1 +21+4x 1 .ﬂj :\/1+4x—1’ (3.74) .
—-2X 7T 4X J1+4x 2X
-1 ( 2k / -
z( 1) xk:ﬂ. (3.75)
k=0 k+1 k 2X
Now we consider the series
1
- (Inx)*=—=—. (3.76
S = 679

q-1

The right-hand side of (3.76) has been obtainedyayp the (3.70b). Multiplying for1x+

0< Re(q)<1, both sides of (3.76) and integrating with resgeck, between the limits O ané,
we obtain another divergent series, defined by:

A (e 2|<&_l _ o X1 dx
> (-2)[ (inx) 1+de_j0 T+ x 1 (nxf (3.77)

k=0

Operating, we have:

sin/m

3 (- j:(lnx)”%dx:Z(—l)kfok) wﬁdx:Z(—l)kDgz”( a j; (3.78)

o xIt dx o e% dz
= ) for x=¢€* 3.79
IO 1+ x1+(Inx)° j-°°1+e21+ z ) &79)
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From the compute of the integral on the right-hsia@ of (3.79), we obtain:

1 (1
oo =any st 7 {Z_qj+2 iy codmen). )
1+ 1+ 7 k>0 h+1 -1 2 CO% k>0 h+1 -1 2 Cogl .
2 2
(3.80)

1Mathematical connections

We note that eqgs. (1.18) and (1.21) can be conthedth the egs. (3.30) and (3.59) if we consider

2
(@j :77:[-);—2 Zi Indeed, we obtain:
Vid

&= —I%Iog{ﬂ e & or [K (q)K (o)} = - 2e \/qZTr[K )J‘ o=
Y X .
=¢= _416;72 3847 61447 d )} -
r(ar{a+ 3 rer{b+ a+b)

1 =
r(a +b+ j
2
© COSTEXW

e”™vdx | 5
antilog™ C?fzh”’( 1\;‘\'/2

= I:|F(a+ ix)r (b +ix)“dx = %\/I_T

1. e i) . (381)
3 | N[muﬂi} \/(10+7\/§j]
0 s |7 4

We note that the eq. (1.52b) can be connectedtivitlegs. (3.45) and (3.73). Indeed, we obtain the
following mathematical connections:

B | 22 (y*-1) sinhdrgsint | _
logF =i®(y)-ie/ y)_l_ngt 1+ y?) - ay?sin’t ° { 4rgsint |-

= 2a jdt 1 " 4rgsint + jdt 7 +Af':12772 Iog{1 ve }= 2a|og{8€g} +o(1/g)+
Mo | sint+ 0
169°

+2[aloga-a-logr(a+1)]=
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LXK _Ej“iﬁf(l) _E(E_ 1,11, J+
o sinh/x n® +x® 710 | 2x? vV2+x2 | nf+x* 3ln n+l n+2 n+3

V=

_4{ n+2 n+4 n+6 }

3 (n+2)2+3n2_(n+4)2+3n2+(n+6)2+3n2_
(U (2K) o (- T(k+D) ) 22 r( j k+1)
:”ém(ij _é K+l r(k+Dr(k+1) ';J k+1\/_ rk+ )
(- 4)kr[k+1jr(3j .
1 1 2)\2) «_ 2 ok Lkl 2
_\/’_Tr(?’jg? v 2] X _7%“)(—4) X[t 2 [L-t)dt. (3.82)
2

Now, we note that we can to connect the eq. (2with) the (3.66) and we obtain the following
mathematical connection:

sin® @ z 1+ ze™? z+e'?

:—4(‘:059_'2005‘”)2{Lis(ezw)—z(s) {Ll (2'¢')

sin“g
d—je

We note that the eq. (2.16), can be connectedtivitleq. (3.30), if we consider

Jr)

Vlgg)(w,e):_(cosﬁ—cow) [ dz, g( 1+ ze'_’”]log( z+e'_¢’j_

:sje

x(1+k) 1 i
k>OJ' xe Wkigy = kz:‘)(l+k)2 5 (3.83)

N/ _’_Tgizi and with the eq. (3.59). Indeed, we obtain thdéofahg mathematical

2 4 7 Arm
connections:

' (mfont + 2720 - 2000 -Sfsntim) o= aas i | et |

9 1 e 1640 +1)f Baer +1 (47 +1)

:——I dw *
r; pp I8 4AcosH )

40/ +1

(77(40)2 B)a)smh(nw) 32w/ cosi(nw)} 77(9w + 370" - 720F - 24)cost(nw) N ( 280" +120F +3
(407 +1f et +r] ) | ) 64e (o +1) 8w/ (e +1)

o) o)
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N (a? - 2f sinh{7z) e - 2)cosi(nw (40 +1)sinh(rzo) )
B wils ) sl

Az

(nz(af 3w, 6 ]Smh(nw) , 373 +17a/" - 5507 - 5)cost{r)

3w +1 (o +1f | 64{a? +1) .
2wsinh(7v) 77(402 3)cosi(nw) w T T 2
[T 5™ | frastmrente (st | oty

2(%} ) S'r"‘(w’w) _Z(Sinf‘(ﬂw)jz 128 16

] , _rer(as S rb)(b+ 2 e+
:>j Ir(@+ix)r(b+ix) dx ==+ 2 2 =
0 2 1
F(a+b+j
2
Jm cosntxvv’e_mzw dx
antilog > COSh/K Y142
—n—zw' W
1 e * @litw)

-0 . (3.84)
3 | N[muﬂi) \/(10+7\/§j]
0 s |7 4

4. On some equations concerning the relationship tveeen Yang-Mills theory and gravity and,
consequently, the complete four-loop four-point amiitude of N = 4 super-Yang-Mills theory
including the nonplanar contributions regarding the gauge theory and the gravity amplitudes.

At tree-level, the Kawai-Lewellen-Tye (KLT) relatis given a complete description of the
relationship between closed string amplitudes gpehaostring amplitudes. For example, the open
string amplitude for gluons is

dx,..d K X, & & -k [
AWDJ‘_Xl(vabCXn M % = x| ex;{Z(()q X oK b =) Hmti“m . (41)

where
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abc

dx, dx,dx.
K&—&X&—&X&—&X'(4a

The correspondingy -graviton tree amplitude in string theory is

d?z..d? &, & LE LE -k LE  _ %m
Mnﬂjﬁ I_l (zi—z]_)k.tkl QX{Z((Z_Z:)2+K (g_zjj) HXEK‘ zi—zj)k,ERID

where
d2z d?z.d?
A, = L0A0 L (44
2.~ z[12 - 7|z - z|

z,,2,,z, are any three of the, and ‘multi-linear’ means linear in each and eachg, . In this

expression we have taken the graviton polarizatiector to be a product of gluon polarization
vectors

eV =¢gl'e’. (4.5)
The KLT relation for four-point amplitude is:

M=(1,234) = -is,A"™(1,234)A™(1,243), (4.6)

with M and A represented from the expressions (4.3) and (4.1).
Applying the relation (4.6) yields the four-gravitamplitude

A
|\/|};ee(1,2,3,4)=16'K :

4.7)

A relation we will use also is the following:

stuM "=(1,2:34) = -i(st[Ar=(1234)]f . (4.8)

The one-loopN =8 four-graviton amplitude is,

M n(1230) = 5 s MEm(123) (05 + 1 80)+ 7 65)
®.9
with the integral functions defined as:
d®p 1

) .10
27 P(p-k)(p—k -k (priy 0

:"(82:%0) = | (
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These amplitudes were first obtained by Green, &chvand Brink in the field-theory limit of
superstring theory.

The key relation for evaluating the = 4 two-particle cuts exactly to all loop orders is,

. 1 1
ree(_ ps 12 0% )x Ar®(-¢% 34,03 )= —istA"™(1,234) .
XA (- 03 12,05 )x Ar=(- 13 34,03 ) = -istAr=( ] s A

(4.11)

Using the KLT relation (4.6) we can use eq. (4.id)obtain the equivalent relation fad = 8
supergravity,

> MYR(=,22,0,)xME=(= 1, 34,,)= —SZ( DA 120,  A=(= 1, ’3’4’&)}(
N =8states N=4states

x( z Aztlree(fz ,1,2,—£1)x Alttree(gl 13’4’_€2)j =

N =4states

— 2 2| atree 2 1 _
A (234 SR e
. 1
=is’stuM ;*( 1234 . (412
) ( ) (€1_k1)2(€2_kex)z(gl_kz)z(gz_k4)2 ( :
We perform a partial-fraction decomposition of td@nominators,
S _ 1 1 S 3 1 1

- = + = +

(El_ki)z(gl_kZ)z (gl_ki)z (El_kz)z; _(fz_ks)z(gz_l%)2 (fz_ks)z (Ez_k4)2,
@)1

to obtain theN = 8basic two-particle on-shell sewing relation,

z Métlree(_gl ,],Z,EZ)X Mzttree(_gz ’314’61) -

N =8states

:istqu{ee(lZSA)[ o _1k1)2 + (€1—1k2)2 }[ @ _1k3)2 + 0 _1k4)2}- (4.14)

We may recycle the sewing relation (4.14) to obtan-particle cuts of higher-loop amplitudes.
Consider the two-particle -cut with a tree amplitude on the left and a or@plamplitude on the
right,

oo d®¢ |\ e |\ 11100
Mfl p(12,3’4ls_cm=jWN=BZstatag_iMi (—fl,lz,ﬁz)f—zzl\/lil p(_52'314"61)

(4.15)

2=¢3=0"

Inserting eq. (4.9) foM;"*® and applying the sewing relation (4.14), we have

D
M j_lwp( 1'2’314)( s—cut — —stuM ztlree.[ ((;ﬂglo S(gz - k3)2 (gz - k4 )2 X

x{( 1—1 F (zl—lkﬂ fi_i {@2 =0 —mzk_; ’
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X [*741_Ioop (S! (gz - k3)2)+ *741_Ioop ((gz - ks)z’ (gz - k4)2)+ jj_lwp ((gz - k4)21 S)]@:@:O . (4-16)
The unwanted propagators cancel and our final restemarkably simple

Mf_lmp(12,3,4)‘ . =StuM ‘tlreeSZ(j“Z—loop,P(S,t)_'_jf—loop,P(slu)_'_j42—loop,NP (S't)+j42—loop,NP (s,u)}

s—cut ?

(4.17)
where the scalar integralg’"°®" and 3"**"* are defined in the following equations:

jz loop, P S p d q 1 ,
(5252~ [ o w00 o~k S+ e g KT
j42—loop NP %2 323 jd p d q 1 . (418)

" p(p-k )V (p+af(p+a+k)Va*(a—k)f(a—k -k,

A straightforward Feynman parameterization of titegrals (4.18) gives

gz (s)= T2 (aragf1-Ta 0y (sta)f e, ) 7, x=pe. @419

In extracting thel/ £ pole term forD = n- 2¢ it is legitimate to replacg'*®* (s,t) with

R LW CRNCIEY R ICH R ED

(4m)
For the caseb =7 -2¢, where we can set= fdom the beginning, we get:

dyy?(1— y)?{ dx X L 7T 4o
pOIe_25( Iyy yj [L-x1-y(A-y)]? ~ 2s(an) 10° #21)

jz—loop,P,D:7—2£
4

For D =9-2¢, settinge = Owould lead to

jz—loop,P,D=9—2£
4

pole — 48(1:71) 498960[ [y 3/2 [35 (16y (1 y) 77y(1 y)+132)

+8sty(1- y)(2y(1- y)+11)+80t2y2(1 yP|. 4.22)

We find that the(x, y)-integral for thes® term can be conveniently written as the sum of tevons,

jz—loop,P,D=9—2£
4

2
pole,szterm = 48(8477_)9 .[:dy.[;dX[Cl(X, y) + CZ (X’ y)] ’ (423)

where

Gy} = AL E o ) (otle-30)
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] X5/2+£

30 [ yE- Y

[y(e-

C,(xy)= (4.24)

We can rewrite the eq. (4.23) also as follows:

jZ—Imp,P,D:Q—Zg
4

_ s jldyfdx [ya-y)J /(- 2yl y) + (- x)(2- 3X))

pole,szterm_4€(4n-)9 0 480 [1 X(l y(l Y)) ol

.\ [y(l— y)]z x5/2+¢ |
360 [1-x{1-y{1-y)I"**

(4.24b)

The integral ofC, converges fors =0, and lexdyCl(x, y):—57T/11088. The integral overC,
requires analytic continuation in. Somewhat more generally, we need

s W
LoV Rle -ea-a-Lrea+ei-yi-y)= ("_qr_(iii))r(q”)ﬁdy[y(l—y)]px

—a+q+lte |:|

JFla-ea-q-1+ga-q-&y{-y)+[yl-vy)

x{r(a+£)r(—a +q+1+e)
r(2e)r(q+1)

Lﬁggigﬁgg:g:tgz F(26,0+L-a+q+2+¢&y(1- y))} . (4.25)

where p and q are positive integers ana is a positive half-integer. In the lim& -  the factor
of 1/I'(2£) in eq. (4.25) causes the term containing it toiskgnand the surviving hypergeometric
function can be set to 1. Performing the remairtngtegral gives

(paa)= Tt gy o r(a_?_l)r(qﬂ) Carprar2)

Ma-e) a)r(2-a+p+q+2))
(8)2
Thus I(p,q,a):O (after analytic continuation irz) unlessa < p+q+2. In the present case,
p=209=0, anda = 9/2 so the integral o€, vanishes.
The final result for the planar double-box poleDat 9-2¢ and D =11-2¢ is then
gzlompoo2e| | = 45(41177)9 99’77 92(— 458 +18t + 2t?),  (4.27)

pole_ L 1 3210054 88(531: + 21$2t2 + 305(3 +1Z4) (4 28)
48 (4m) 19691100

jz—lwp,P,D=11—2£
4

The non-planar double-box integrals are handletbgoasly, with the results:

-t 7
e 2e(am) 15°

jz—loop,NP,D=7—2£

(4.29)
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1 _7T 2
= 7 2t 4.
e 4e(any 83160( St u)’ (4.30)

jz—loop,NP,D=9—2£
4

T [a0383 ~1138¢ +144%°).  (4.31)
48¢(47)'" 165405240

j2—loop,NP,D:11—2£
4

Thence, from the eq.(4.24b), we obtain the follayxpression:

I e yl-y)+ - x)2-3x)

2-loop,P,D=9-2¢ —

j“ pole,szterm .[ J- 480 [1 X(l y(l y))]13/2 £
[y(l y)] X5/2+£
360 [1—x(1—y(1—y))]9’2'£:

. —o- 1 4
A P —45s* +18st + 2t?).  (4.32
) e ag(an) 99792( )} @32

We note that this equation can be related to tmebsu 24 (480 = 24 * 20; 360 =24 * 15; 99792 =
4158 * 24) that is connected to the physical viora of the bosonic strings by the following
Ramanujan function:

j«» COSTEW i g
0 coshrx /142
nz

LS t2w'
e * q,(itw)

A )

Indeed, we obtain the following mathematical cotioec

antilog

§27100p,P,D=9-2¢ = .[ J‘ 4 5/2+£( X y(l y) (l X)(Z 3X))
4 pole,s?term 480 [1 X(l y(l y))]13/2 £
12+&
+ [Y(l y)] X 92—
360 [1-x(1-y(L-y))
N 45(41177)g 997;92(_ 45 +18 27

© COS7TEXW oW iy
0 coshrx \/142
712

LS t*w
e ¢ qitw)

]

4 antilog

(4.32b)
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The two-loop MSYM (maximally supersymmetric N = &ang-Mills theory) four-point amplitudes
for the planar contribution, is:

MP(e) = %st(sl Ast)+t12(t,5), (4.33)

The two-loop scalar integral(f) is defined in the following equation:

(2) ey —d /2 ddpddq 3
I, (S,t) ( e’ )J- Z(p—kl)z(p—kl—kz)z(p+q)2q2(q—k4)2(q—k3—k4)2' (4.34)

The three-loop planar amplitude gives the expfanin of the integrand,

MO (g) = —%st(szl #2(s,t) + 281 (1, 5) + 121 (t,5) + 21 P (s,t)).  (4.35)

The two three-loop mtegrallsﬁ3 , appearing in the four-point amplitude (4.35g:ar
1P7(s,t) = (~ie” d/2)3j d"pd rdq
(P -l )
X 1 >, (4.36)

(p+rfré(a=-rf(r -k -k a*(a -k, ) (a -k —k,)

and
d d,.~d 2
I(S)b S,t - Iegy ~d/2 d pd rd q(p+r) %
4 ( ) ( ).[ p2q2r2(p_k1)2(p+r _k1)2
1

(4.37)

“lorr k- (prr+kPa-K P+ praf(praf’

where dimensional regularization with=4 - 2¢ is implied.
Mellin-Barnes (MB) integrations are introduced irder to replace a sum of terms raised to some
power by their products raised to certain powerthecost of having extra integrations:

YZ

A+z !

1 1 1 p+ie
(K] P2 VAN E2)

(4.38)

where-Red < <0.
An eightfold MB representation can be derived wiltle eleventh index corresponding to the

numerator[(p + r)z]_a“. For our integral with the powers =...=a, = &nda, =-1, this gives

3y 1 w

10 (s,t) = - C 2g)e(— For (2n J-HOO I ~ dezl( l_! dz, r(- )J(lsj M(1+3e +w)x
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JEBe-wr(i+z +z,+2)(-1-e-2-2) (1+7+2)
( ri- Zz)r)(l(_ z)r (L-7)r(1-2¢ +)zl +2,+2)
((1-e-z-7-2z)2+e+z+2+7,+2) (o
><I'(—1—4£—25)F(1—z4—z7)r(2+2£+z4+25+26+z7)>< Ferzrz-z)r2-wrz)
M-1+w-z-7)xM(z,+2, -2 U+ z+z) (-1+w-2,-z -z )x[(-e-2+2,- % -7 - Z,)
Fl-e-w+z+z+7+2)x(l+e-2-2,-2,+z+7+27). (439

There is a factor of‘(— 25) (i.e. the two gamma functions) in the denominagorthat the integral
is effectively sevenfold.

The starting point is to take minus the residuezat -2+ &£+ X, —z —z, —z,— z, and shift the
integration contour correspondingly. The valueh®f tesidue is then symmetrized Ry~ X,. This
sum leads, in the limik,x, - 0, to the following fourfold MB integral:

(3)b,c—c-c,res —_ e r (_ 3£)r (1+ 3‘9)
D) (S’t) ( )+3g r( 28)
I+'°°j F1+zl “1-e-2-2)(-2z)r(-e-2)r(-2)
<@l L] r1 -2 (-25+7+7+2)
STz +z+z)(+e+z,+2)(-1-e+2,-2)(-1-2-2,) (1+2,)
F(—2—4£—zl—z4)l'(—1+2£—zl—z4)l'(3+zl+z4)
xM(-1+e-z-2,-2-2) (2+z+2)(-2-e-2-2) (2-c+2+2 +2,)
x[2y+ L+y(-3e)+ (- 2¢)-y(l+3¢e) -9+ 7+, + 2) +y(-1- 7~ 2,)-¢(-2-4e -2 - 2,)
t(-1+2e -z -2)+y(-1-e+2,-2)-¢(-1+e-2-2,-z-2)+Y(2-e+z +z +2,)],
(4.40)

where L =In(s/t).
In the integral over the shifted contour iy, one can setx, =x, =0 to obtain the following
fivefold integral:

Igs)b,c—c—c,int (S,t) —-_ 2+e::y . r(1+ 3€)r (_ 38)
(-sf(-tf  r(-22)
o L Sy FU+z)r(rerz+2) (-2 (-e-2)r(-2)
2} e da[] % -z - 2)
JTl-e-2-2z)(+z+2+2)(-1-2 -27,)
rl-2e+z+2,+2)(-2-4c-2-2,)
JT+z)(e-2-2-2)(-2+e-2-2,-2,-2,-7)
rl+e-z-z-z) (l+e+z,+2+2)
xFl+z)r(-1-e+z,-2) (-26+2,+7+2)xT(2-c+z+2,+7+2,+2) (-2, -2),
(4.41)

where the asterisk on one of the gamma functiomdiés that the first pole is considered to be of
the opposite nature. With regard the evaluatio®af0) and (4.41), in an expansiondn after the
resolution of the singularities g, one obtains 60 contributions where an expansibithe

integrand in& becomes possible. Eventually, one reproduces dhewing leading asymptotic
behaviour:
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| (st) = - 161,13 1 [1L2 194& { 1:_67 @Zg}

1
e X L
(—s)l*“2 {95 6 & [2 120 | [ 6 72
+[iL“+En2|_2 —ZSL— 19 n“}i [if’ B2 —(3 0523, 1385

3 mdy+
24 6480 E 120 72 8640 216
1129(5}_ L1, 18 —ZSL3+£177“L2 (317772(3 120355}_ 180631 ,
e 720 288 960 10 3265920

—@(3 +o( j} (4.42)

Thence, the eq. (4.39) can be rewritten also éwel

1P(st) =~ C Zgizjys)l+3€t2 x (2717 j_m j dwdzl[ l_l dz,r(-z )]&jwl‘(H 3€ + W) x

JE3e-wri+z+z,+2)r(-1-e-2-2) (l+z+2)
( ri- Zz)r)(l(_ z,)r (1= z,)r(L-2¢ +)zl +2,+2,)
MN-1-¢-z-2,-z)I(2+e+Z2+2,+7+2 . _ _
XF(—1—4£—25)I'(1—z4—z7)l'(2+2£+z4+25+26+z7)xr( Erats ZS)I_(Z W+ZS)
M-1+w-z-2)xM(z+ 2, -2+ 2+ Z ) (-1+w-2,-z -2)xT(-e-2+2,- % -7, - 2
Fl-e-w+z,+2,+7+2)xI(l+e-2-2,-2+2+ % +7)=

:>_( )-;].-+3.9t2x{16i 1_3|-i [1L2 19ﬂ2}i+|:—1|_3_g @-53:|
—-S

4

9 6 & 2 12 E 6 72
+[iL“+En2L2 —ZgL— 19 ﬂd}iz [ il_g, 137723 —53 652377“L+1385772(3+
24 6480 £ 120 72 8640 216
1129

__55} o Loy 18 e 5,00, 380 (317]72(3 1203(5)__ 180631
e 7200 288~ 6°° 960 72 10 3265920

—@(3 +o( j} (4.42b)

Also this expression can be related to the numBi20 = 24 *5; 72 =24 * 3; 8640 = 360 * 24,
216 =24 *9; 720 =24 * 30; 288 =24 * 12; 96@4 * 40; 3265920 = 24 * 136080) that is
connected to the physical vibrations of the bosstriags. Indeed, we obtain:

I(3)b(st):— e x 1 jﬂm riwdwd 7 dzr(—z)(ljwl'(l+3£+w)x
e e e vy S RS U L
J3e-wri+z+z,+2)r(-1-e-2-2) (l+z+2)

( ri- Zz)r)(l(_ z,)r (1= z,)r(L-2¢ +)zl +2,+1)
((-1-e-z-2-2z)+e+z+2+7,+2) (o
><I'(—1—4£—25)F(1—z4—z7)r(2+2£+z4+25+26+z7)>< Ferzrz-z)r2-wrz)
M-1+w-z-z)xM(z+2, -2 1+ z + 7 (-1+w-2z,-2 -z )xT(-e-2+2,-2 -7 - 2)
Fl-e-w+z,+2,+7+2)xM(l+e-2-2,-2+2+ 7% +7)=
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N 161+13Li FLZ_E) }i{_gﬁ,_m ﬁli}
(-s)**t2 |9& 6 &£ |2 12 J&f | 6 T2 :
+[1L4+§n2|_2 —ZSL- 19 ”4}% [ 15 18 55 5 —Zg 6523774L+1385772Z3+
24 6480 | 120 72 8640 216
1129ZS o 16,18 54,5 S 331 77“L2 (317 0. 1203(5}_ 180631
e 720 288 6 10 3265920
= COSTDW _nvr g
anti log~ coshrx 142
—HTZw‘ : t W
163 S e * qitw)
~5 4oL

R

The iterative structure of the four-point MSYM antgpdle found at two loops is

MPE) + fAeMP(2g) +C +0fe), (4.43)
where
tOe)=-(¢, + e+ 0,87 +..), (4.44)

and the constar€®? is given by

1
cl = _EZZZ . (4.45)

The iterative relation for the three-loop four-poamplitude is the following:

M)z LM O(E] + MO P(e)+ £ Ol (ac)+C+Ofe), (a0

where

19(e)="22, + e(6¢. +50.¢)+ (6t +2). (4.a7)

and the constar€® is given by

341 2 17 2
cl = (216 3G ng (—3+9c2j53 (4.48)

The constantg, andc, are expected to be rational numbers.
A generaln-point scattering amplitude can be factorized thfollowing form
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M, = J(—a ] S(K—a ] h{h 22,0501),5]. (4.49)

For a general theory, the Sudakov form factor alesQ”® can be written as

00 e e 2 | ) 12 e

j: df[z pel @ g]( ( = (ﬂ)’gm}’ (4.50)

where ng] denotes the soft or (Wilson line) cusp anomaldasedsion, which will produce &/ £°

pole after integration. The functioi'® is a series of counter terms (pure poles i while q[g]

includes non-singular dependence @n before integration, and produces la¢ pole after
integration.
The integral oveg is very simple,

The first integral overy, gives,

I = Zlgﬁ%] —1]1“4')- (452

I1=1

Adding the %1% term to 1/2 of eg. (4.52), using the followinguatjon

#(a,, €)= ii apl), (4.53)

= 2e
we see that the “— 1" is cancelled. Then the irgegver & is properly regulated, and evaluates to
1 al qu Ify(l)
=N S A Y (454

Combining this result with eq. (4.51) gives:

m[ggqﬂ(%z,as(ﬂ)j { Za( M(ﬁ) s H (4.55)

Thence, the eq. (4.50) can be rewritten also &swel
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1w did® gl - (1 I& L[ § p) Zéo(')
R N e

For the complete amplitude for a general gauge @@y including all non-planar contributions,
the parent-graph decomposition,

Al =g?2 Nacl, (4.56)

n
il parent

is more convenient than the color-trace representat
The L -loop four-point amplitude is a Feynman integrathnihe following general structure and

normalization, ( )
Rt L dDEj N; {7, K,
= e @

n=1 'n

where k,m= 123, are the three independent external momeftaare theL independent loop
momenta, and, are the momenta of tF(GL +1) propagators which are linear combinations of the
¢; and thek .

At one loop, the structure of th& = 4 sYM four-point amplitude is especially simpleeWhodify
eg. (4.56) slightly by extracting an overall preéacand write the result as,

1 X OX
AEtl) = _g 94*7£2C1b§34| ° (S.Lz’szs)’ (4.58)

Si

where g is the gauge coupling.
At two loops, the full/ = 4 sYM amplitude is given by a similar permutatgum as for the one-
loop case (4.58),

1
AD ==L "Ry [CEL(s,,,5,)+ ORI M¥)(s,,,5,.)].  (4.59)
Sy

The UV divergence of the color-dressed amplitudeeddp only on the three integraksV, and

A/
A£14)( l2'3’4) ’Sjkélch): _6910*7{Nc2(Nc2V1 + 12(\/1 + 2\/2 +V8))X

X (S.LZ (Tr1324 + Tr1423) + SZS(Tr1243 + Tr1342) + S.I.3(Tr1234 + Tr1432)) . (460)

Thus, we find that double-trace terms are absemt the divergence in the critical dimension,

as for the case at three loops.
For a general gauge group the leading UV divergandeur loops has a similarly simple structure,
proportional to the tree-level color tensor:

AE14)( 1,2’3’4)( Gpo|e: 9105{1)(4) (S12 f~a2a3b Fba4al +s, Falazb f~ba3a4 ) . (4.61)
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where
V9 =3c,V,+2C,V, +C,V,). (4.62)

The coefficientsC, ,C, and C, are the group invariants associated with the cpomeding

vacuum diagrams. As at three loops, the four-lagug invariants are not independent; rather, they
satisfy the following relations:

C4
C, -G =2

1 2 . _d¥ge _
. (4.63) 5CV1+§CVZ_N—' (4.64) C, =C,,. (4.65)

A

As with the three-loop case, it is possible to naage the UV-divergent contributions at four loops
into one-particle-reducible parent graphs. The jest part of the amplitude then has the simple
form

A (1234)= —910562[% Clisdy, + éclvgml v * %5 Cl VS} +subleading.  (4.66)
Sy

The one-loop bubble integral is simple to evalu&t. an arbitrary dimensio® and powersn,
and n, of the two propagators, it is given by

bubble - de 1 _(_:L)nﬁn2 2\ (n+n,-D/2)
| n,)=- - =4 7 G(n,n,)-k . (4.67
)= o oo~ o S0 (467
where
_r(-p/2+n+n,)r(D/2-n)r(D/2-n,)
)= o) 4
Thence, we can rewrite the eq. (4.67) also asvalio
ey )s—ij d°p 1 _(=9"™ r(=p/2+n+n,)r(D/2-n)r(D/2-n,)
) (oK (e (4 r(n)r(n,)r(D-n—n,)

(_ kz)—(nl+nz—D/2) . (4.68b)

In D=11/2-2¢ dimensions, we havénl,nz)=(%+3£,2j and (nl,nz):G+3£,1j. Inserting

these values into eq. (4.67) we find that bothgrdaks have the same UV pole,

3 4 1 1 7 4 1 1
G —-+32|=——=<-+0(1), (469 G -+3¢l|=——F—-=+01), (4.70
(4 j er@g 1), (.69 (4 ;Lj erﬁg 1), (70)
4 4
The finite three-loop two-point integrals can belueed to a set of master integrals using the

method of integration by parts and we obtain, fanaple, the following relations for the £ pole
terms:
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T e

25 5 4)(2) 4

4

i sy Bl

|
PPty

25 4 5 4) \ 2

G(7+351j
x4/ (473)

(4”)11

Thence, we can rewrite the eq. (4.68b), considesimg of these solutions (for example the 4.71),
also as follows:

)=l d°p 1 _(=2*™ r(-p/2+n+n)r(D/2-n)r(D/2-n,)
= P (o) @ F(n)r(n)r (O —n,—n,)
(_ k2)—(n1+n2—D/2) N

| bubble(

3\ (1 3
Y
- @rs(éj_éﬁr4(§jr(1jr(1j+8 4) \4 G<2>(9,1—1j4—- (4.730)
5 (a) 5 (a)\2) (4 4'2)|  (an)*

12
2
We note that this equation can be connected wighfelowing Ramanujan equation that has 8

“modes” corresponding to the vibrations of the sapangs:

© COSTEXW

e |
anti log IO C?fzh”’( Dtg\;‘\'fz
1 e« qiw)

_513'09{ J[10+411MJ+ \/(10:7 ﬁ]] .

Indeed, 256 and 6272 are multiples of 8. Thencephbtain:

)=l d°p 1 _ (=2 r(-p/2+n+n)r(D/2-n)r(D/2-n,)
B 7 T B (2 B 0 RS CV (R CRT Y

| bubble(
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( kz) n +n, - D/z):>

3)(1
(33 o 3+2e]
- S e e ) -
25 (4) 5 (4a)(2) 4 r(lj 4’2 (47)
2
wcosntxvv’

.[0 Coshm - dX \/142

3

anti log
1 & a,(itw)

E
5 N(muﬂi) \/(10+7\/§
94 )W s

2w
ﬂ . (4.73¢)

Equating the three forms f&f at orderl/ ¢ yields

G(z)(s 11)_ 64, [3jrz[1j+928r3[ijr[;j ole), (474

" 25 \4) |2

o323 ol

and

V= 5—12r4(§j 2098 (ﬂr(ljr(lj +0(1). (4.76)
(amfe| 5 \4) 105 (4)\2) |4
511

With regard the analytic evaluation ®, after using egs. (4.74) and (4.75) P (Z Ej and

el )(Z 121j they all give the same result,

V= {ﬁ‘r’zr“ﬁj + 332 (3jr(1jr[1ﬂ+o(1). (4.77)
(4m)*e| 105 (4) 105 (4)\2) \4

There are four inequivalent ways of factorizing tiom-planar vacuum integr&j, into a product of

three-loop and one-loop two-point integrals.
That is, all four ways of factorizing, lead to the same expression,
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1 4 1 V"

Y= (477)112_1r[3j :

+0(1), (4.78)

4
where
V" = - 524853 224r.f 3\ 1)(1 +2NO,,. (4.79)
125 (4) 25 \4)\2) 4

Although it is not needed for the four-loay =4sYM amplitude, a similar factorization and
reduction procedure for, gives

1 4 1 V"

V9 1
(4m) er[ j £
4
v,in = 185520531 57603\ (L)1) N | a8l
125 \a) 25 (a)(2)'\4

In general, a massless-point L -loop gauge-theory amplituda:) in D space-time dimensions,
with all particles in the adjoint representatiorgynibe written as

+0(1), (4.80)

where

1

D
AV =itgm 2y | ” § iz, (4.82)
ior

where g is the gauge coupling constant. The sum runs dnecomplete seff of m-point L -loop

graphs with only cubic (trivalent) vertices, incing all permutations of external legs.
More surprising than the duality itself is a consenf relation between gauge and gravity
amplitudes. Once the gauge-theory amplitudes aenged into a form satisfying the following
equation

G =C,; +C, = n=n+n, (4.83)

the numerator factors of the correspondibgloop gravity amplitudes,/n,ﬂ), can be obtained
simply by multiplying together two copies of gautpeory numerator factors,

(L) —;Laf K e L deI 1 nn 4.84
M = (zj EID(ZH)DS .. 0 e

where  is the gravitational coupling. The represent numerator factors of a second gaugeytheo

amplitude and the sum runs over the same set ghgras in eq. (4.82). At least one family of
numerators § or n.) must satisfy the duality (4.83). The construct{dr84) is expected to hold in

a large class of gravity theories, including akdhes that are the low-energy limits of string
theories. At tree level, this double-copy propestycodes the KLT relations between gravity and
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gauge-theory amplitudes. Fo¥ =8 supergravity bothn and n are numerators ofV = ¥M

theory.
In terms of the 85 distinct graphs, the four-lodisamplitude is given by

le(k ')C, (4.85)
S [,

where [;,l4,1,,1; are the four independent loop momenta &ndk,,k, are the three independent
external momenta. The, are the momenta of the internal propagators andiresar combinations

)= gUaA=Y Y | (

S, i=1

of the independent loop momeritaand the external momenkg, . As usual,dDIj /(271)° is the D -

dimensional integration measure for tfié loop momentum. The numerator factdﬁ$(kj,lj) are
polynomial in both internal and external momentae Tull amplitude is obtained by summing over
the group$, of 24 permutationsf the external leg labels.

Using the double-copy relation (4.84), the fourddmur-point &/ = 8 supergravity amplitude is
obtained simply by trading the color fact@& for n :stﬁ;‘{eeNi in eq. (4.85). Employing the
relation sthA},'ee,&j'ee =istuM;* and changing the gauge coupling to the gravitatiooupling, we
have

Juy):_(ﬁj stuM“eezz I(l_! o jS ﬂlgkllz)’ (4.86)

S, i=1 Py,

where N, (k;,, ) are the gauge-theory numerator factors.

We note that in the egs. (4.85) and (4.86) theeetteg numbers 5, 8 and 13 that are all Fibonacci’'s
numbers. Furthermore, also the number of permuisitioe. 24 is important, because represent the
number of the physical vibrations of the bosonimgs.

The UV divergence in the critical dimensi@h=11 iKgiven by,

= 60 HNZ(NA, +12(V, + 2V, +V,))
( (Tr1324 Tr1423) + t(T 1243 + Tr1342) + U(Tr1234 + Tr1432)) . (487)

Al (1234)3!

pole

It is interesting to note, from eq. (4.87) that giegle-trace UV divergence iD =11 /Bas N;

and N? components, but thdl? component vanishes.

We note that the egs. (4.85) and (4.87) can béeklindeed, we have the following mathematical
connection:

=gy S o | Nr(F'a'll -

A(1234)%0= -6 HN2 (N2, +12{v; + 2V, +V,))
X (S(Trl324 + Trl423) + t(T 1243 + Trl342) + u(Tr1234 + Trl432)) . (487b)

The values of the three master integrals appearieg. (4.87) are:
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v = 111 5_12r4[§j 2048r3(3j|_
(amf'el 5 \4) 105 \4

_ 1 4352 ,(3), 832 43
V, = 1| r poll
(am)f'e| 105 |4 "105 (4

R
ey(2)on

VI _20992r4(§j L1281 PJF(EJF(E}LN% +0{1), (4.88)

11
(am)'e| 2625 \4) 75 \4)\2) 4 er(jj

where NO,, denotes a certain three-loop two-point nonplantgral. While its analytic expression
in D =11/2 is not known, it may be evaluated numerically ggine Gegen-bauer polynomial
space technique (GPXT), with the resiND, = -6.1983992267 . It's interesting note that this

number is very near at the value of the aurea rabtultiplied for 10, i.e.
0,6180339810=6,1803398_ 6180~ 6,198.

With regard theX¥ = 4YM color double-trace UV divergence, the UV diyence from graphs 1
through 50 has the followingr,,Tr,, component:

A= 5 S TN A8+ el 100 100z -osi(niz, + 257,

(4.89)
where K is defined in the following equation:

K =otA"™(1234). (4.90)

Next we evaluate the remaining graphs, 51 througtB&cause the color factors of 1PR graphs do
not contain double traces, it follows that, in famtly the integrald.,, |, and ., contribute to the
double-trace terms. The numerator factors of thiesse integrals are all equaN,, = Ny, = N,,.

All these three integrals contain an essentialgntttal subdivergence, from a three-point three-
loop subgraph whose external legs carry momenkyily and | +k,. The three-point subgraph

reduces to a propagator (two-point) subgraph fer rdspective cases of graphs 51, 52 and 72.
These integrals can be evaluateddn= 6 — 2¢ using IBP identities and gluing relations throulge

necessary ordeo(go). The results are:

Psl(lé)=-(—ls)'“%_elg +6,- 300l @)
Vo) & [1(, 1).25,17, 1

Palie)=—-12) (477)9-3;_65(53 I s +O(e)] (4.9
Ve € [1(, 1)_25,17, 1

Poliz)=-12) (477)9-35_68(53 )2 +0(e)}. (4.99

In the trace basis, the color factors for graphss2land 72 have the following form:

Cs, = ch (Nc2 + 12)(Tr1234 + Tr1432) +2N, (Nc2 + 12)(Tr12Tr34 +TrsTr, + Tr14Tr23) . (4.94)
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C52 - C72 =12N (T 1234 + Tr1432) + 24NC (Tr12Tr34 + TrlSTr24 + Tr14Tr23) ' (495)

Taking into account the relative symmetry factavg, see that the relevant linear combination of
propagator integrals for thl. part is P, =R, +2R, + P, , which is given by,

('sz):‘(‘hz)_%%{g;+%),Zs+254‘1§055+O(5)}- (4.96)

Next we need to identify a subtraction that accsdiot the three-loop counterterm needed to cancel
the pole given in the following equation:

A (1234)50)= 2g° K (NV W + 12N, (v Y + 3v ®)))
( (Tr1324 Tr1423) + t(Tr1243 Tr1342) + u(Tr1234 + Trl432)) - (497)

Now we will choose anMS scheme for the three-loop renormalization, whére necessary
counterterms are

e™ 1
(47 6¢

e’ ¢
(47)7% 2¢

ct. —
R =

, (4.98) P& = (4.99)

Notice that the factor of—lsz)_sg in egs. (4.91) and (4.96) is absent in the cotevier contributions

(4.98) and (4.99).
We will discuss in detail only the graph 51 for aiiwe consider the following subtracted integral,

d® %, N,,(I5)

1P =i ; LS R.llg)+ R3], (4.100)
J- 6 2 k1)2(|5 - k12)2(|5 - k123) [ 51( ) ]

The quadratic terms in the numerator fadQr are given by,

N = %[— 6(t T2 +urs + sr§5) + (ST, T s + 1Tyl + UT el 5 ) — (52 +t2+ uz)lj] . (4.101)

Thel/£* and1/& terms inl2® in eq. (4.100) are correctly captured by

= '(g ;j(s 2402 (dDI )t +0(g). (4.102)

271)° (Is = k. (1s = koo (s = kizs)*

To extract the UV pole it is sufficient to simplify to the form of a massive bubble integral by
rearranging the external momenta,

|30 :_i(%_%j(52+t2+u2)j (dDI R (|52)+ RSt +O(£°). (4.103)

RO{EY;

The momentum-independent parts of these bubblgraiteare given by
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PU(2+ 3¢ 16— 26) = - O [i+1+o(g)] (4.104)

- /e
PO(216-2¢)= - [2—18+1+o(5)] (4.105)
Including the overall factors, we get,
5 1) e 1 1.7) 1(1
|30 = -= S+t )xd| L+ 24 10, (L T 0L 4o
o (6—25 2)(471)12‘“( ){68 ‘" Z}(&S 16) ( j ()}

6e\ 2¢

e F+t?+u?| 1 (29 10 j 0

_ _ +o| &2 e +0l£°). (4.106
(4m)* 24 { 2¢&? 18 < 355 ( ) ( )

Similarly, the N? double-trace contribution is obtained using thmedormula (4.103) withP,
replaced byP,, , taken from egs. (4.96) and (4.99),

|;“f’—[6_525—9(;;;“(52”2*“2)"{[53+ Oyt z 55}( 7) é(i+1j+o(£°)}

8¢ 16) 2¢\2¢
et @t P 3(3 10 )
T 2 { oo g( {y+ Z 355ﬂ+o(g ). (a.107)

We notice that, similarly to the numerator factéf:™

in eq. (4.101), both (4.106) and (4.107) have
manifest permutation symmetry. Plugging eqgs. (4.186d (4.107) into the full amplitude

including the double-trace part of the color fastothe sum over all 24 permutations, and the
overall prefactor, we obtain,

10 qp —dyE
b _ g He 2,42 4 2
?)l:)Ie51—85 ( )12 P (Tr12Tr34 +Tr,Tr, +Tr14Tr23)(S +t°+u )

«J_No+360, 1), o(29, , 10 _
{ 2¢&° +£{N°(18+53 355j+453+9i4 40(5}}- (4.108)

Al

We note that the eq. (4.102), can be rewritten asstollows:

2P = A2 -Le s d’l, Fgl( )+P0t +0lg) =
2= g o G R e oY

_ii_l % +12 + 112 d’ls Fz"l(l )+P0t +0l£° )=
= (D zj( t )I(Zﬂ) 12715 - ko) o)

3(6_525_3(4;1;(52+tz+uz)x{6_t+3+gs Z}( 7} i(i+1j+o(g°)}

8 16) 6\ 2¢
et S+t +u? 1 1(29 0
= - + 2| ==+, - +0le”). (4.108b
(am)>* 24 [ 262 5(18 ¢ 3 Zf’ﬂ ( ) ( )
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Also this equation (there are the numbers 8 and &) be related with the Ramanujan equation
that has 8 “modes” corresponding to the vibratiohthe superstrings. Thence, we obtain:

b _j > _1 s? +12 + 42 d’ly P(IZ) i +0le)=>
= o o G e i O
:—i[g_%j(s%t%uz)j(d e +0(e°)=

2rf” (2 (s klz)

5 _1) €% (2 2,2 1,25, (1 0
:(6—25_5j(4n 2 (S * +u) {{6£+ 9 it ZS}(&? 16) 65(2£+1J+O(£ )}
_ e S+t +u*| 1 1(29 , 10 0

T 24 { 2£2+£(18+Z3 3Z~”ﬂ+o(€ )=

o) cosztxvve_mzw dx
0 coshrx \'142
712

anti log

1 e qiw)

g ]

Finally, we add the contribution (4.89) from theins 1-50 that have no subdivergences, in order
to obtain the total four-loop divergence:

(4.108¢)

a  _ 9OHe”

double-trace _ A( )
- pole51-85 — (4 )12—45
7T

double-trace (4)
pole + A

polel-50

AW N (T, Tr, + 0T, + T, )(s2 + 12 +u2)

2
X [_M;T:?G(s + %( N (ig Zsj + 4Z3 + 9Z4 + 20{5j:| _g(NCZZS + 25(5)(-|—r12-|—r34SZ + -I_r'lél-l_r'ZSt2 +

+Tr T2} (4.109)
Of course, the double-trace part of the four-looprderterm must be chosen to cancel these poles,

double-trace — A( )| double~trace O(]_), (4110)

pole

AL,

corresponding to a nonvanishing divergent coefficier a counterterm of the schematic form,
Tr(9**F2)Jrr(9*F?). In conclusion, the double-trace terms in the 4oaint N =4sYM
amplitude to diverge at four-loops, saturatingdbeble-trace finiteness bound Bf =4+8/L .

Appendix A.
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The new possible method of factorization of a numbidprincipally applied to the numbers 496
and 6480)

With regard this new possible method of factorimatiwe can obtain the following conclusion:
We consider, for example, the N=(3"2)x+5;

[Similar conclusions will be valid for the casad=(3"2)x+1;N=(3"2)x+3;N=(3"2)x+7. And of
course, also for the cases in which the squatdéfeent from 372=9.]

We take for example the follow: N=185=5*37=9*20+5

We can identify N among the factors on the righthe following column:
1*5 R=4

2*14 R=8

3*23 R=12

21*185 R=84
In addition, among the factors of right, we’ll fitide multiples of N in the following points:

206*(185*10) R=824=84+(185*4)

391*(185*19) R=1564=84+(185*8)

To factorize N we must try a multiple, among thetdas in the right of this column, which
corresponds R equal to a number squared. In tbes tlae multiple is the following:

576*(185*28) R=2304=48"2=84+(185*12)

Where R divided by 4 gives a number squared equal t

Q'=576=242=21+(185*3)

[Q' is equal to the left factor of the column.]

This means that will be enough to find a squareaktpu 21+185y ;where v, in this particular
column, can take any integer value. Generalizirggcan say that for each N(odd)=9x+5, we need
to find:

Q'=[(N-5)/9+1]+Ny
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And some of those Q', there are an infinite numéem,be calculated as following:
Q'1=[(N-2)/3]"2

Q'2={[(N-2)/3]*2+2}"2
Q'3={[(N-2)/3]*4+2}"2

Q'4={[(N-2)/3]*5+4}"2
Q'S={[(N-2)/3]*7+4}"2

Q'6={[(N-2)/3]*8+6}2
Q'7={[(N-2)/3]*10+6}"2

etc.

The rule that generates them, should be evidemt pbimt is that these aren’t the squares from
which it is possible factorize N. The squares Hratneeded instead are obtained by:

[Q'1MN1/2)-F1z]*2  [Where F1z is a multipleaie of the factors of N]

[Q27(1/2)+F1z]"2
[Q'37(1/2)-F1z]"2

[Q'4N(1/2)+F1z]"2
[Q'57(1/2)-F1z]"2

etc.

Also in this case, the rule should be evident.

In the case of N=185=5*37, with F1z=37*1, the vas Q' that we need are:
(61-37)"2=24"2=21+185*3

[(61%2+2)+37]"2=161"2=21+185*140
[(61*4+2)-37]"2=209"2=21+185*236

[(61*5+4)+37]"2=346"2=21+185*647
[(61*7+4)-37]"2=394/2=21+185*839

etc.

From these squares can be factorized N. But we toeletbw the factors of N.

Taking always for example N=185, we can say thaindpQ'1=61"2=Som.1/121, to obtain the
factorization of N is necessary to find a multipfeN = Som. 121/q [where q is the minor term of
the summation.]

In this case, given that:

Som 1/121=Q'1=61"2=21+185*20 and;
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Som 1/47=(61-37)"2=21+185*3
we have that:

Som 121/49=185*17

In summary, the problem at this point is, given t&{}=9x+5, calculate:
Som. {[(N-2)/3]*2-1}/ g = multiple of N [where gsithe minor term of the summation.]
We don’t know if this is a problem easily solveegardless of the knowledge of the factors of N,

but considering the initial problem for factorize any N, it seems to us should be a small step
forward. The initial problem was, in fact, given ddlculate Q=R+(Ti+2)+(Ti+4)+... + (Ti+Xx)

According to the rules previously mentioned, wewrtbat, in the case of N(odd)=9x+5,

[(N-2)/3]"2=[(N-5)#4]+(Multiple of N), and that,
{[(N-2)/3]-F1z}*2=[(N-5)/1]+(Multiple of N), thence,
[(N-2)/3]"2-{[(N)23]-F1z}"2=(Multiple of N)
In the case of N=185=5*37,
1*5
2*14
3*23

21*185
we have that:

[(185-2)/2(185-5)/9+1]+(20*185),
{[(185-2)/3]-(37*1)}*2=[@5-5)/9+1]+(3*185), and thence we have that,
[(185-2)/3]"2-{[(185¢3]-(37*1)}*2=(20-3)*185.
Doing the calculations, we have that:
6172=21+20*185,
(61-37)"2=21+3*185, and thence we have that,
6172-(61-37)"2=17*185;
that, considering the squares as sums of odd nwntear be written also as:

Som1/121=21+20*185
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(sum of all the odd nwerdfrom 1 to 121 which is equal to 3721)
Som1/47=21+3*185
(sum of all the oddwhers from 1 to 47 that is 576), thence,
Som1/126m1/47=Som49/121=17*185
(In fact: 3721 — 576 = 3145 =17 * 185)

In conclusion, in the case of N=185, we need ttoféze: Som g/121=Multiple of 185, where q(49)
is the minor term of the summation .

In the case of 6480, with Q equal to 9, we willgged to obtain a number not divisible by 9 that we
can factorize in the manner indicated above: 64829; 720/9=80, from which (80*4)=9*35+5.
We note also that: 6480 = 24*270 = 24*9*30.

This type of calculations that we have shown, caaiiplied only to numbers of the form 5 + 9x.
A particular form from which we obtain R = 4 in cespondence of the first product and an
increase of R of the same value:

1*5 R=4 (5 = 5+9*0)
2*14 R=8 (14 = 5+9*1)
3*23R=12 (23 = 5+9*2)

The basic principle, according to which to reacth®sfactorization of N is necessary to find a
square equal to a multiple of N added to anotherbr, linked to N itself, also applies to other
cases. Cases, however, do not exhibit the sameticmsdas that in which N =5 + 9x.

So,for factorize the number 49énultiply it so as to obtain a number of desiredf.

It will not change the final results.

N'=496*5=2480, indeed: N'=5+9*275

Now, we know that:

[(N'-2)/3]"2=[(N-5)/9+1]+(Multiple of N), i.e.; [R480-2)/3]*2=[(2480-5)/9+1]+(Multiple of N'),
826"2=276+2480*275.

That we can also write as:

Som 1/1651=276+2480*275

For factorize N' we have to find the following sgea

(826-F1z)"2=276+(Multiple of N)

(826-F2z')"2=276+(Multiple of N')
(826-F32")"2=276+(Multiple of N")
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(826-F4z")"2=276+(Multiple of N)

(826-F5z"")"2=276+(Multiple of N")

[The squares are 5 in total, one less than the euofifactors of N' (2;2;2;2;31;5).]
The squares in question are:

(826-660)"2=276+2480*11 ;whence:
826"2-(826-660)"2=Som1/1651-Som1/331=Som333/16586°264
(826-620)"2=276+2480*17
826"2-(826-620)"2=Som1/1651-Som1/411=Som413/16586"268
(826-412)"2=276+2480*69
826"2-(826-412)"2=Som1/1651-Som1/827=Som829/16586"2D6
(826-372)"2=276+2480*83
826"2-(826-372)"2=Som1/1651-Som1/907=Som909/16586°AD2
(826-40)"2=276+2480*249
826"2-(826-40)"2=Som1/1651-Som1/1571=Som1573/16%586"26

Not knowing a priori the values of z, z ', z";, the only way to proceed in order to obtain the
various "F" is the following:

F1z=660=2*2*3*5*11;from which, at least in one case: F1=2; z=330narnother:
F1=5; z=132

F1z'=620=2*2*5*31

F2=2;

z'=310 F2=31; z'=20

F2z"=412=2*2*103

F3=2: z"=206 F3=2;
z2"=206

F3z"'=372=2*2*3*31

F4=31; 2"'=12 F4=2;
2"'=186

F4z"'=40=2*2*2*5
F5=5; z"'=8
F5=2; z"'=20

[The ways in which the various "F" and relative &¢é ranked are only some of the possible,
precisely because of the current difficulty of kniogva priori of the values of the various "z".]
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It is therefore a result inevitably partial, buttegnly useful.

We remember that 16 is connected to the 496, ind86d- 16 * 31 and that 16 = 2 * 8, thence is
connected with the Ramanujan’s function concertivegmodes corresponding to the physical
vibrations of the superstrings, i.e.:

© COSTEXW

e™vax |
anti log - COSIVX B :2L42
) |
e .
g=1 il )

Bl

SCHEME
In this scheme, the # sign indicates multiplication
SX /Il DX

o IHLT T 1#15 1 1#13 [ 1#11 1 1#9 [ 1#7 1 1#5 [ 1#3 [ 1#1 /] 2#2 | 2#4 | 2#6 | 2#8 [/
3#3 | 3#5 [ 3#T | 3#9 I/ 4#4 | A#6 | A#8 | 4#10 /[ S5#5 [ 5#7 | 5#9 [ 5#11 // 6#6 / ...

.. | 2#26 | 2#24 | 2#22 | 2#20/ 2#18/2#16/ 2#14/2#12/2#10///3#11/3#13/3#15/3#17
114#12/4#14/4#16/ 4#18//5#13/5#15/5#17/5#19//6#14/6#16/6#18/6#20// T#15/ ...

... I3#35 [3#33 / 3#31 | 3#29/ 3#27 13#25/3#23/3#21
13#19/114#20/4#22/4#24/A#26//5#21] S5#23/5#25/5#27116#22/
6#24/6#26/6#28/[T#23/7#25/T#27/7#29// 8#24/ ...

.. [A#AA4] A#A2 | A#40 | A#38] A#36/ A#34/4#32/4#30/4#28]//
5#29/5#31/5#33/5#35//6#30/ 6#32/6#34/6#36//7#31/7#33/
T#35/7#37//8#32/8#34/8#36/8#38//9#33/ ...

Let us return to the method used to factorize @D us refer, for the moment, to the scheme
above. Wanting to place the number in the right phone of the pairs of factors present in it, the
first step is to verify which of the following fosrthe number belongs.

F1=9x+1
F2=9x+3
F3=9x+5
F4=9x+7
F5=9x+9
F6=9x+11
F7=9x+13
F8=9x+15
F9=9x+17

6480=9*719+9
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Now, since 6480 a multiple of 9 can not in any wayard, through multiplication, to the form 9x
+5, which would allow me to factorize this with theual method. Method believe that however
should have a variant refers to all other formg]Jugkng the one to which belongs 6480. In fact,
considering that scheme of numbers, in which tha t& the right of each pair increases of Q' =
372, all numbers multiples of Q' behave in a déf@rway from the others.

[The same is true for numbers multiples of 5"2hi@ scheme in which the terms of the right of the
various pairs increase in 52, for the numbers iplelt of 7/2 in the scheme in which the terms of
the right of the various pairs increase of 7°2.]

And as the numbers multiples of 9, behave evemdnebers in which the term of the right of the
pair of factors that compose them is a multipl&8.050 the numbers are divisible by Q'1/2.

Referring to the SX part of the scheme, we nod th

(1*3=3) R=1
2+12=24 R=1
3*21=63 R=1

(1*9=9) R=0
2*18=36 R=0
3*27=81 R=0

(1*15=15) R=1
2*24=48 R=1
3*33=99 R=1

(1¥21=21) R=4
2*30=60 R=4
3*39=117 R=4

(1*27=27) R=9
2*36=72 R=9
3*45=135 R=9

(1*33=33) R=16
2*42=84 R=16
3*51=153 R=16

The term of the right of each pair initial (in patieeses) is a multiple of 3, then, given that the
square of which increases is 9, the number obtdhoed the product of each pair is a multiple of 3.
In these cases the value of R is always a squéresewariation is perfectly understandable.
[Similar considerations will also apply to the gagresent in the side DX of the scheme]

The fact that 6480 is a multiple of 9 allows ugactorize without necessarily consider it as a term
of the right of a pair of factors but as a prodafcthem to which inevitably corresponds to a value
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of R equal to a square.

It should also be said that every number presetitisnscheme should refer to a pair whose factors
are both even or odd.

Then proceed as follows:

[We must also say that the natural way of procegdiould be to continue dividing N to Q, since
this represents the first step, with Q equal to #his case, to obtain a number not divisible by 9
factorize in the usual manner : 6480/9 = 720; 7208®, from which (80*4) = 9*35+5]

N=6480=9*720

We divide N for 2 so as to obtain a pair whosedecare both even or odd.
6480=2*3240

from which, by subtracting a multiple of 9 by thexend term (in this case 9*1) and a multiple
equal to 1 (in this case 1*1) from the first texg obtain:

1*3231

This is one of the initial pairs, where the termtbe right is a multiple of 3, present at the stié
of scheme of the numbers.

SX

1*1 ... (1*3) ... (1*9) ... (1*15) ... (1*21)
.. (1*27) ... (1*33) ... (1*39) ... ... ...
(1*3231)

R=1 R=0 R=1

R=4 R=9 R=16

R=25 R=?

Soml1/1 Som0 Som1/1 Som1/3
Som1/5 Som1/7 Som1/9 Som1/?

Below each pair of terms we have reported the ms@evalue of R which, we remember, remains
unchanged.

Indeed:
1*3 R=1

2*12 R=1
3*21 R=1

The next step is to calculate the value of R cpoading to 1*3231. Then we compute the second
term of the summation refers to R in this way:

3231=n
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[(n-9)/6]*2-1

from which:
R=?=Som1/1073
from which:
R=537"2

Indeed:

1*3231 + R =540"2

[To check that R is correct we must add it togheduct corresponding to it and verify that we get
a square.]

Thence:

2*3240 + R=543"2

Knowing R we can factorize N:
2*3240=Som(1073+2)/x [with x > of (1073+2).]
we obtain:

F1=1080
F2=6=2*3 [The result is trivial because we knowtthN is divisible for 3°2.]

At this point, we note that the couple of factdtsafd 3240) that comprise N is even, thence we can
proceed with a new factorization dividing by twe thecond term of the same pair:

2*3240=2*2*1620=4*1620
We obtain:

1*1593

Indeed:

1*1593

2*1602

3*1611
4*1620

Where 1 * 1593 is one of the initial couples (whtre term on the right is a multiple of 3) that are
present to the left (SX) of the schema of numbers.

we compute R=264"2=Som1/527
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and factorize N:
4*1620=Som529/x
we obtain:

F1=540
F2=12=4*3 [Also in this case the result is triviicause we know that N is divisible for 3/2.]

Proceed with a new factorization:
4*1620=4*2*810=8*810

we obtain:

1*747

We compute R=123"2 and factorize N:
8*810=Som247/x

we obtain:

F1=270
F2=24=8*3 [as above.]

At this point we have to stop since: 8*810 = 8*2548 16*405 where: 16 and 405 aren’t both even
or odd.

Then divide by 3 the second term of the couple. pAte do this because we know that N is
divisible by 9.]

16*405=16*3*135

from which we can proceed with the factorizatiorired second term of the couple:
3*135

We obtain:

1*117

we compute R=18"2 and factorize 405:

3*135=Som37/x

we obtain:

F1=45
F2=9=3*3 [as above.]
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Similar conclusions are obtained in all the caseshich N is inserted in a pattern of numbers
where the term on the right of each pair of factocseases by a number, squared, for which is

divisible N.
So having N = 6480 = 2*2*2*2*3*3*3*3*5, the increas to exclude are:

Q=4;0Q0'=16; Q'=36; Q'=9; Q'=81, etc..
We remember that 6480 appear in the formula (4.480ed:

e t)"
{"“dwdz| [ dz;r Yra+se
(e e e I Wzl[rl a2 )]@ raeru)-
r-3e-wrl+z+z+z)r(-1-e-z-z)Fl+z+2)

( ri- Zz)r)(l(_ z)r(1-z)r(1-2¢ +)zl +2,+2)
MN-1-¢-z-2,-z)I(2+e+z2+2,+7+2 . : _
XF(—1—4£—25)I'(1—z4—z7)l'(2+2£+z4+25+26+z7)xr( Erats ZS)I_(Z W+ZS)
M-1+w-z-z)xM(z +z, -2 1+ z + 7 (-1+w-2z,-2 -z )xT(-e-2+2,-2 -7 - 2)

rl-e-wtz,+z+7+2)x[(l+e-2-2,-2+2+7+2)=

SN x{lﬁl A3 1, [1|_2 19772}i+{—1L3—g772L—£1Z3}

1PP(sit)=-

(-s)**t2 |9& 6 &£ |2 12 J&f | 6 T2
+[iL4+En2L2 —ZsL— 19 nﬂ}% [ 15 13 55 5 —Zg _6523 ) 1385,
24 6480 | 120 72 8640 216
11294 Ly 18 20,5, 0, 331774L2 (317772(3 1203(5jL_ 180631
g 720 288 6 10 3265920

—@zs (tj} ®)

Furthermore, we note that 6480 £*3“ * 5 where 2, 3 and 5 are also Fibonacci’'s numbats
prime numbers and 16 is equal to 8 * 2, wheredimected with the following Ramanujan’s
function:

© COSTEXW & Wy
anti log "> COSh/x /142
A 2w
1 e * @litw)

R

Now we consider the following equation:
1°) [(72x'+44+2N+18NM-18Nx)/6]*2=[(36Q-9V+36X'+2@]*[(4Q-V+36x'+20)/4]+4Q
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where:

2°) X'={-180+[180/2+4*144*(V-56)]1/2+}/288

3°) V=4(Nx+R)-dy

and:

4°) x=(288"2*y"2-18432Ny-9216y+32/2*N"2+1280N+286"2*R)/(48"2*N)

with N, M, Q and R equal to different known numeraues.

This equation represents a try of generalizatiothefprevious method, for instance the one applied
to the number 496. A try that, as the method tactvitiis addressed, is connected to the schema of

numbers that we have obtained.

In this scheme and its variants, (one attachedsébean increase in the first term of each pairagq

to 12 and of the second term equal to 3"2. heésfirst diagram obtained and also the one provided
with further demonstrations . But we can to obthm other, similar, depending from the values of
the square in question), are also connected tedhations for the factorization of the numbers of

which we know the approximate ratio between théofac

Scheme of all the non-prime numbers such as: N=5+8x.

1t 1=21
| 2%=21+(24)
2t | 3%2%(0)
| 4%=21+(24+24)

3t | 5%4°%(16)

| 6=5%(16-24)

I 7=21+(24+24+24)
8=7%(16+16)
9=8%(16+16-24)

10=9%(16+16-24-24)
11=21+(24+24+24+24)
12=11%(16+16+16)
13=12%(16+16+16-24)

4t |
|

|

|

|

|

| 14=13%(16+16+16-24-24)
l_

|

|

|

|

St

15=14%(16+16+16-24-24-24)
16=21+(24+24+24+24+24)
17=16%(16+16+16+16)
18=17%(16+16+16+16-24)
19=18%(16+16+16+16-24-24)

6t
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=21

=69

=125
=133
=117
=117
=165
=189
=189
=165
=141
=205
=245
=261



20%=19%(16+16+16+16-24-24-24) =253

28%=27%(16+16+16+16+16-24-24-24-24-24) =285

I

| 21=20%(16+16+16+16-24-24-24-24) =221

| 22%21+(24+24+24+24+24+24) =165

| 23%=22%(16+16+16+16+16) =245

| 24%=23%(16+16+16+16+16-24) =301
7t 1 25%24%(16+16+16+16+16-24-24) =333

| 26%=25%(16+16+16+16+16-24-24-24) =341

| 27=26°%(16+16+16+16+16-24-24-24-24) =325

I

I

I

I

We note that in this scheme there are the numband®4 (where 16 = 2 * 8), numbers connected
respectively to the modes corresponding to theipalygibrations of the superstrings and of the
bosonic strings, through the following Ramanujagsiations:

© COSTEXW

TR e X |
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Bl
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G

T

We know that the factorization of a number can bbioed from the difference of two squares, but
also, in the case where N=5+8x, by the followinifetience:

[Y(M1IR2)+M40+45]-12Y"2=N
with M>(Y-1), from which we obtain N divisible b@{+5).
The formula is obtained from the schema of abovechvin turn is derived from the schema of the
initial numbers. Moreover this is not valid for thest number of each section indicated on the left

i.e., for the numbers of the type:
N =21+24 z.
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There will be similar formulas for the cases whétes 1+8 x, N =3+8 x and N = 7+8 x.

Now we briefly describe the method that we havelusearrive at the scheme of numbers and we
illustrate successfully a part of it entirely sianito the other.

Suppose that we have:
N=13withR=3; Ti=7and Tu=7+2=9
We use “Tu”, which is the term odd next to “Ti".

Let us the problem of obtaining R starting from siuen of the differences between the various
terms odd next to it and the sums in which candm®iohpose the squares.

In the case of N = 13 and Tu = 9 we consider Q =3m1/11= (1+11) + (3+9) + (5+7) = 3*12
and we proceed as follows:

(Tu-12) + (Tu +2-12) + (Tu +4-12) = (9-12) + (11)12(13-12) = -3-1 +1 = -3

This means that starting from Tu = 9 and addingweeterms odd subsequent to it, we can obtain a
square simply by adding 3. In fact:

Q=36=(9 +11+13)+3

Where 3 correspond to the value that we want to get

In particular we can see as for each value of Nviach R corresponds to Tu /3 the square that
must be considered is always (2R)"2.

Thence we can immediately calculate what is theisgwhich added to N provides us with another

square, and we are able to factorize N.

In fact doing the same for the other possible caldes of R, we obtain:

N =13, R =3; Tu =9 from which: Q = 36 and therefN = 1*13
N =44, R =5; Tu =15 from which: Q = 100 and #fere N = 2*22
N =93, R=7; Tu =21 from which: Q = 196 and #fere N = 3*31

Here is as come out the products between factatsribrease from time to time of 1 and 9.
This represents the starting point.

The operations can, however, be as follows:
N =13 = Som1/13-Som1/11 = 7"2-6"2

N =44 = Som1/23-Som1/19 = 1272-10"2
N =93 = Som1/33-Som1/27 = 17/2-14"2

61



The important fact, however, regard the valuesRsfénd “Tu” for each number that follow a clear
pattern. The one from which we can derive the fdasifor the factorization.

Generalizing the case we obtain the following daagthat represents a part of the general one.

.../ 31"2-30"2=1*61[R=83;Tu=25] /1972-18"2=1*37[R#Tu=17])/ 772-6"2=1*13[R=3;Tu=9]/
57"2-272=3*7[R=15;Tu=13]/ 8"2-2"2=6*10[R=61;Tu=33)/

.| 36"2-34"2=2*70[R+2;Tu+6] [ 2472-22"2=2{f6+2;Tu+6] /[12"2-
1072=2*22[R+2;Tu+6]/10"2-6"2=4*16[R+2;Tu+6] /13€2=7*19[R+2;Tu+6] /...

..l 41"2-38"2=3*79["] | 29"26"2=3*55["] [1772-14"2=3*31["]
/1572-10"2=5*25["] /18"2-10"2=8*28["] ...

It is noted that the starting values of R and TloW a particular consequence, in this scheme as in
the other, that are similar, which will form thengeal one, identical to that seen previously.

[To verify the starting values of the values of”‘&d “Tu” just do the test on the products that we
encounter as we go down each column.]

The kind of increasing trend of the values of ‘@id “Tu” we understand also why those that we
get directly from N correspond to the exact, aretafore useful to the factorization, only from a
certain point onwards. Precisely, when R becomsstlean “Tu”, that is, when the relationship
between the two factors of N approaches the squmatieis case 9, of which increases the factor of
right.

However, as we have said earlier, just increasedRcansequently “Tu”, for use effectively the
formulas also when the relationship between theofagnoves very away from the square.
We believe that there is very much to be exploretthis regard.

We return to the formula
[Y(M412) +M40+45]-12Y"2 = N

with M>(Y-1), from which we obtain N divisible b@{+5).
The formula works as follows:

We consider the pattern of numbers seen previotisyterm M in the formula indicates the
amount of “16” present in the various summatiovisije the term Y the quantity of “24”.

Furthermore, the first number of each sectionvssible by 3, the second is divisible by 5, thedhi

is divisible by 7, and so on.

Therefore, given that the formula does not allowdtrulate the first numbers of each section, those
of the type 21+24z, divisible by 3, we obtain Niglille (for 2Y+5).

In fact, putting Y = 0 and M = any number, considgrithence the second number of each section,
is obtained from the formula: N divisible by 5.

To give an example:

the number 285, the 28th of the scheme, we canlesdcit from the formula putting Y =5 (the
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“24” is repeated 5 times) and M =5 (the “16” ipeated 5 times).

From which:

5*(5*16-12) +5*40 +45-12*5/"2 = 285, divisible byY25 = 15. In fact:

285 =15*19

The number 253, the 2®f the schema, we can calculate it placing Y =@ Il = 4. From which:
3%(4*16-12) +4*40 +45-12* 372 = 253, divisible bgY +5 = 11. In fact;

253 =11*23

In conclusion, the best way to proceed to the faaton of a number, without of course be able to
locate it in the diagram, we believe that can lgeftiiowing:

we consider all the possible values of M, by buidgihe following series:

M=1; Y(4)-12Y"2 = N-45-40
M=2; Y(20)-12Y"2 = N-45-80
M=3, Y(36)-12Y"2 = N-45-120

So if, for example, N = 389 =5 +8*48, we obtain:

Y (4)-12Y72 = 304

Y (20)-12Y72 = 264
Y (36)-12Y72 = 224
Y (52)-12Y72 = 184
Y (68)-12Y72 = 144
Y (84)-12Y72 = 104

SO AWNE

=LKL

At this point, we just have to try Y values lesartlor equal to M to obtain a new series unchanged
within which identify N. In this case, however, 8la prime number, thence, none of the possible
values of Y may be fine.

With N = 405 = 5 +8*50 instead we get:

M1;.... =320
M2; ... =280
M3;... = 240
M4;... =200

Trying the values of Y we get:

M1;(320)Y=0;=0 M2;(280)Y=0;=0 M@40)Y=0;=0
M4; (200) Y =0;=0 M5;(160)Y=0;=0 ME20)Y=0;:=0

63



Y=1;,=8 Y=1=8 Y=1;=24

Y=1,=40 Y=1,=56 Y=1,=72

Y=2,=-8 Y=2=24 Y=2,=56 Y=2,=88  Y=2;=120[YES]
Y=3,=0, Y=3=48 Y=3=96Y=3;=144

Y=4,=16 Y=4,=80 Y=4;=144

Y=5=40 Y=5;=120[YES]

Y=6,=72

Obtained the correspondence with M6;(120), Y =@ ¥r= 5, we can say that:

2%(6%16-12) +6*40 +45-12*2/2 = 5%(6*16-12) +6*40 6412*5"2 = 405

From which:

405/(2Y+5) = 405/9 = 45 and 405/15 = 27

From the series shown above, which remains unclieageve said, we can also see many types of
orders, from which it may be possible to speedhapsteps.

Also in this possible method of factorization stavident that the various and useful numerical
results concerning the numbers 496 and 6480, canrmsdered as news possible solutions

concerning the equations of the string theory (stgags and bosonic strings). This is the goa, th
fundamental result of this interesting Appendix

Appendix B.

NEW MATHEMATICAL OBSERVATIONS CONCERNING VARIOUS
NUMBERS INCLUDED IN SOME EQUATIONS REGARDING THE
RELATIONSHIP BETWEEN YANG-MILLS THEORY AND GRAVITY

First provisional observations
First series (from eqs. 4.42):

,5,6,9,10,12, 16,17, 18, 19, 24, 67,72, 120, 163, 216, ,
288, 317, 331, , 720, , 1129, 1203, 1385, 6480, 6523, 8640,

180631, 3265920
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Numbers in green near to the Fibonacci’s numbers, that we will cover
in the unified Table

Second series (from eqgs. 4.71-4.81 and 4.88)

5, 8, 21, 25, 32, 64, 75, 105, 125, 128, 224, 256, 288, 496, 512, 576,
832, 896, 928, 2048, 2625, 4352, 5248, 6272, 12352, 12992, 15552,
20992.

224 =14%*16, 14=G2

496 perfect number and double of 248 = E8

5, 8 and 21 Fibonacci’s numbers

Blue = multiple of 5 and 25

Red = powers of 2

UNIFIED TABLE FIRST AND SECOND SERIES

In red the Fibonacci’'s numbers, Lie’s numbers or partitions that
coincide with numbers of the two series

FIRST SECOND FIBONACCI LIE PARTITIONS
SERIES SERIES

2 2 3 2 3

5 5 5 5

6 8 8 7 7
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10
12
13

16
17
18
19
24
67
72

120

163
216
241
288

317

331
341

720

960

21
25 32
64
75

105 125
128

224
256
288

496

512
576

832

896

928

13

21

34

55

72 mean
between
55 and 89

144

233

233

305 meand
233 and
610

305 mean
233 and
610

377

377
493,5
mean
between
377 and
610

798,5
mean
between
610 e 987

987

66

13

21
31
57
73

133

133
241
241
273

307

381
381
507

507
577
703

871

931

11

13 mean
between 11
and 15

15

22
30 42
56
77

96 mean
between 72
and 120
135

176

231
297

385
490

490
627
627
792

897 mean
between
792 and
1002



1129
1203
1385

6480
6523

8640

180631

3265920

2048
2625
4352
5248

6762
12352

12992
15552

20992

1597

2584
4182

6766

10498

14106
mean

28212

TABLE FACTORIZATIONS

Numbers
first series

OCAOUIN

Factors

prime
prime
2*3
372

1123
1191 1255
1333 1255
2071 1958
2653
4231 4565
5257 5604
6481 Diff. 1
6643
6807 6842
8557 8349
12433 12310
12883 12310
15501 16430 mean
14883 and
17977
180201 173525
20881
3267057 3238993
not real but
valued
Numbers Factors Observations
second
series
5 prime
8 273
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10
12

13
16
17
18
19
24
67

72

120
163
216
241
288
317

331
341

720

960

1129
1203
1385

2*%5
2/N2%3

prime
274
prime
2*X3A72
prime
2/73%*3

prime

2A3*312

2A3*%3%*5
prime
2*%4*313
prime
2A5%312
prime

prime
11*31

2/A4*3A2%5

2A6*3*5

prime
3*701
5%x277

21
25
32
64

75

105

125

128

224

256

288

496

512
576

832

896

928

2048

68

3*7
512
275
276

3*5172

3*5%7

573

217

2/A5%7

2/8

2A5%312

274%31

279

276*312

276 *13

2N7%*7

2A5%29

2711

3 Lie's
number

3 and 7 Lie's

numbers

3 Lie’'s
number
3 Lie's
number
3 Lie’'s
number
7 Lie's
number

3 Lie's
number
7 Lie’'s
number
3 Lie's
number
3 Lie’'s
number
3 Lie’'s
number

31 Lie's
number

3 Lie's
number

13 Lie's
number
7 Lie's

number

3 Lie's
number



2625 3*5A3%7 3 and 7 Lie's

numbers
4352 2A8%17
5248 2N7%*41
6480 2N4*3N4%*5 3 Lie's
number
6523 11*593 6762 2*¥3%7/A2%23 7 Lie's
number
8640 2N6*313*5 12352 276*193 3 Lie's
number
12992 2A6*%7%29 7 Lie's
number
15552 2N6*315 3 Lie's
number
180631 11*¥16421 20992 2/A9%41
3265920 AN7*3NG*5*7 3 and7 Lie's
numbers

We note that 6480 = 2? * 3% * 5 where 2, 3 and 5 are also Fibonacci’s
numbers and prime numbers and 16 is equal to 8 * 2, where 8 is
connected with the following Ramanujan’s function:

» COSTOW __ vy g
antilog - COSVX I]‘t:zl\;‘\;z
e g, (iw
g=1 ALY @
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Final observations

Between almost all the factors of the numbers of the two series, there
are always the Lie’s numbers smaller, for example 3, 7, 13, and 31,
alone or together, especially 3 and 7, and the product 3*7= 21 other
Lie’s number which however doesn’t appear directly between the
various factors, but as 3*7 where 3 and 7 are among the factors of a
number of the two series, for example 6762=21%*322, or 2625=21
*125, with 125 number of the second series; finishing at
3265920=21*155520, with 155520 = 15552*10 , with 15552 number
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of the second series. This fact (higher frequency of Lie’s numbers 3,
7,13, 21 and 31 between the prime factors and not the primes, but
only the number 21 between them) certainly reflects the symmetries
of the exceptional groups of Lie in the natural phenomenon treated in
this work. Other frequently factors are powers of 2 and 3. Wer also
remember that some powers of 2 are between the numbers of the
second series (those maked in red in the first provisional
observations):

8 = 273,
32 = 245
64 = 276
128= 2477
256= 218
512 = 279

2048= 2711

that often appear between the factors of some numbers (in addition to
being themselves nhumbers of the second series), for example

277 = 128 in the number 3265929 (first series), that, indie, is divisible
by 128, since 3265920 = 128* 25515.

About the Lie’'s groups, we recall that the number of their dimension is
a multiple of the Lie’s nhumbers.

G2=14 = 2%*7

F4 = 52 = 4*%13

E6 = 78 = 6*13

E7= 133 =19*7

E8 = 248 = 8*%31

Tables with 2”2a*k with k numbers of the series

70



TABLE 1

27a 2”"e *k numbers of the k numbers of observations
first series the two
series

272 2N2%3 =12 3 no

273 2A3*%3 =24 3 no

273 2/A3*3/2=72 9 ves, but of the
first series

273 2A3*%3*%5 =120 15 no

2175 2A5*%31/2 =288 9 ves, but of the
first series

274 2A4*¥3A72%5 =720 45 no

26 2A6*3*5 =960 15 no

2°\4 2N4*314*%5=6480 405 no

276 276*3/13*5 =8640 135 no

277 2A7*¥3/A6*¥5%7=3265920 25515 no

In this first Table 1, there is only k = 9 as nhumber of the first series,
and none of the second series

Table 2 with powers of 2 and numbers of the second series, 22a*k,
with k numbers of the first series

27Ma 2MNa*k k =numbers of observations
Numbers of the the two series
second series

2A5 2A5%7 =224 7 no
2A5 2A5%9 =288 9 yes
274 2A4*31 =496 31 no
276 2A6%13 =832 13 yes
277 2A7*7 =896 7 no
2A5 2A5%29 =928 29 no
218 2A8*17 =4352 17 yes
277 2A7*41= 5248 41 no
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276 276*193 = 193 no
12352

276 2N6*7%29= 203 no
12992

276 2N6*3N75= 375 = 243 no
15552

279 279*41 = 41 no
20992

In this Table 2, thereare k = 9, 13 and 17 as numbers of the first
series. Therefore there aren’t values of k as numbers of the second
series. We note that 9, 13 and 17 are part of the arithmetic
progression

9 +4 =13, 13+4 = 17, as tern of the general progression
1+4+4+4...=1,5,9, 13,17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61,
65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121,
125,129

Of this progression are part the numbers marked in purple,

belonging to the initial phase of the first series, and the numbers
marked in blue, the largest and belonging to the second series. Only 5
belongs to both series. Thence, also this progression may be
important, at least in the initial phase of the two series. Many numbers
of the two series differ by 1 from numbers of the said progression, for
example all the powers of 2:

5=4+1, 9=8+1, 33=32+1, 65 =64+1;129 = 128+1, 257=256+1

etc.

Second series
5,8, 21, 25, 32, 64, 75, 105, 125, 128, 224, 256, 288, 496, 512, 576,
832, 896, 928, 2048, 2625, 4352, 5248, 6272, 12352, 12992, 15552,

20992.

First series

2,5,6,9,10, 12,13, 16, 17, 18, 19, 24,67, 72, 120, 163, 216, 241,
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288, 317, 331, 341, 720, 960, 1129, 1203, 1385, 6480, 6523, 8640,
180631, 3265920

We also recall that 6, 24, 120 and 720, in the first series are also
factorial numbers

6=2!

24=3!

120=4!

720=5!

But this connection with the factorials seems to end here, although it
may be of some importance.

TABLE SUBSEQUENT RATIOS

NUMBER SUBSEQUENT NUMBER SUBSEQUENT OBSERVATION

S FIRST RATIOS S RATIOS S
SERIES SECOND
SERIES
2 - 5 -
5 5/2=2,50 8 8/5 =1,6
=~1,618
6 6/5= 1,20
9 1,50
10 1,11=vVV1,61
8
12 1,20
13 1,08
16 1,23
17 1,06
18 1,05 21 2,625~1,618"
2
=2,6179
19 1,05 25 1,19
32 1,28~/1,618
24 1,26 =~v/1,618 64 2
67 2,79 75 1,17=vVVV3,14
72 1,07
105 1,40
125 1,19
128 1,02
120 1,66~ 1,618
163 1,35 224 1,75=V3,14
216 1,32 256 1,14=/VV3,14
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241 1,11~vV1,61 288

8
288 1,19
317 1,102vV1,61
8
331 1,04
341 1,03 496 1,72=/3,14
512 1,03
576 1,12=/1,618
720 2,11 832 1,44
896 1,07
928 1,03
960 1,332vV3,14
1129 1,17
1203 1,06
1385 1,152vVvV3,1 2048 2,20
4
2625 1,28~1/1,618
4352 1,65~ 1,618
5248 1,20
6480 4,67
6523 1,006 6762 1,28=~1/1,618
8640 1,32=vV3,14 12352 1,82
12992 1,05
15552 1,19
180631 20,90 20992 1,34
3265920 18,08

Provisional conclusions

The subsequent ratios, at least in the initial phasof the first
series, vary between 1 and 2, with a few exceptio(i3,50;
2,79; 2,11). The arithmetic mean up td,15 of 1385 is

34,66/27 4,2837~V1,618 =1,2720
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thence there is a relationship with phi, with a god numerical
evidence.

The same also for the second series, where theresnit the
large ratios (20,90 and 18,08) of the final phasd the first
series. Now the arithmetic mean of all the subseqnogratios
between the numbers of the second series is:

36,785/ 28 21,31375 V3,14
Here the connection is with 3,14 =

Ratios small very frequent are also:

1,03, 1,04,1,05, 1,06, 1,07, symmetrical t&,05 as their
arithmetic mean. This number 1,05 that equal to about
1,0619=V\V1,618 and to 1,074 s\\/3,14, and with 1,03 and
1,04 as about square roots of 1,06 and 1,07, basaV1,06=
1,029~ 1,03 and V1,074= 1,036: 1,04. Thence, all the
subsequent ratios, from the smallest to the largestseem
connected t0l,618 =® and to 3,14 =n

We also note that many numbers taken at random fronthe
two series are divisible by 16. These numbers ar@d, 960,
4352, 5248, 6480, 8640, 15552, 20992 e 326592@dddwe
have that

720/16 = 45; 960/16 = 60; 4352/16 = 272; 5248£1828;
6480/16 = 405; 8640/16 = 540; 15552/16 = 972;
20992/16 = 1312; 3265920/16 = 204120 .

These numbers are also divisible by 8 and/or 24. tieed, we
have:
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720/24 = 30; 960/24 = 40; 4352/8 = 544/8 = 6&48/8 = 656/8
= 82; 6480/24 = 270; 8640/24 = 360/24 = 15; 1524 = 648;
20992/8 = 2624/8 = 328/8 =41; 3265920/24 = 136D867 5670.

We note that 16 is connected to the 496, indeed 4846 * 31
and 8 and 24 are the numbers connected respectiyeb the
modes corresponding to the physical vibrations ofhie
superstrings and of the bosonic strings, through ta following
Ramanujan’s equations:

J-w COSTOXW __ sy
antilog™ conszhm /142
1

-—W t2W
e * g(itw)

o[ E

J-w COSTXW __ ey
antilog™ conszhm Y142

-—Ww t2W
e * g,(itw)

o

)

- (3)
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