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                                                                      Abstract 
 
In the present paper in the Section 1, we have described some equations concerning the cusp 
anomalous dimension in the planar limit of N = 4 super Yang-Mills from a Thermodynamic Bethe 
Antsaz (TBA) system, the Luscher correction at strong coupling and the strong coupling expansion 
of the function F. In the Section 2, we have described some equations concerning a two-parameter 
family of Wilson loop operators in N = 4 supersymmetric Yang-Mills theory which interpolates 
smoothly between the 1/2 BPS line or circle, principally some equations concerning the one-loop 
determinants. In the Section 3, we have described some results and equations of the mathematician 
Ramanujan concerning some definite integrals and an infinite product and some equations 
concerning the development of derivatives of order n (n positive integer) of various trigonometric 
functions and divergent series. Thence, we have described some mathematical connections between 
some equations concerning this Section and the Sections 1 and 2. In the Section 4, we have 
described some equations concerning the relationship between Yang-Mills theory and gravity and, 
consequently, the complete four-loop four-point amplitude of N = 4 super-Yang-Mills theory 
including the nonplanar contributions regarding the gauge theory and the gravity amplitudes. In 
conclusion, in the Appendix A and B, we have described a new possible method of factorization of 
a number and various mathematical connections with some sectors of Number Theory (Fibonacci's 
numbers, Lie's numbers, triangular numbers, Phi, Pigreco, etc...). 
 
 

1. On some equations concerning the cusp anomalous dimension in the planar limit of N 
= 4 super Yang-Mills from a Thermodynamic Bethe Antsaz (TBA) system, the Luscher 
correction at strong coupling and the strong coupling expansion of the function F 

 
The bulk excitations are in a fundamental representation of each of the two ( )22~us  factors of the 

( )222~us  symmetry of the Z-vacuum. We can think of them as particles with two indices 
BA &,

Ψ , 
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where A  labels the fundamental of the first ( )22~us  and B&  labels the fundamental of the second 

( )22~us  factor of the ( )222~us  symmetry of the infinite chain. This central extension determines the 

dispersion relation for the excitations 
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We define g  as 
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We consider an open string ending on a D5 brane that wraps 2

4 SAdS × , or 4
2 SAdS × . There is a 

whole family of BPS branes of this kind that arises by adding flux for the ( )1U  gauge field on the 

brane worldvolume on the 2S  or 2AdS . In fact, in the limit of large electric flux on the 4
2 SAdS ×  

brane we get a boundary condition like the Wilson loop one. In fact the 4
2 SAdS ×  branes can be 

interpreted as Wilson loops in the k-fold antisymmetric representation of ( )NU . In all these cases 

one can choose the BMN vacuum in such a way that we preserve the ( )
D

us 22~~  of the spin chain. 

Therefore, we would get the same matrix structure for the reflection matrix, again assuming that 
there are no boundary degrees of freedom.  
We have the crossing equation 
 

                                                    ( ) ( ) ( )2
00 , pppRpR −= σ ,    (1.4) 

 
where the bar indicates the action of the crossing transformation. Here ( )21, ppσ  is the bulk 
dressing phase. We are going to p  along the same contour in momentum space that we choose in 
the formulation of the bulk crossing equation. In addition, we also should impose the unitarity 
condition 
                                                          ( ) ( ) 100 =− pRpR .    (1.5) 

 
We now write the ansatz 
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Here σ  is the bulk dressing phase. This would be our naïve choice for a phase factor. The explicit 
factors of ±x  have been chosen only to simplify the final formula. We have an unknown factor 

( )pBσ . Now (1.4) becomes 
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We can now solve this equation and obtain: 
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This expression is valid when 1>x . The value for χ  in other regions is given by analytic 

continuation. We have also introduced the function ( )xΦ  which is given by the integral for all 

values of x . When 1<x  these two functions differ by 
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The ambiguities in the choice of branch cuts for the logarithm cancel out when we compute Bσ  in 

(1.8). Note that  ( ) ( )xx −= χχ . This is a particular solution of the boundary crossing equation. 

Instead of (1.2) we define εiq =  and ipEm = , and use the same formulas as in (1.2). Here q  is the 

mirror momentum and mE  is the mirror energy. In order for these to be real we will need to pick a 

solution of (1.1) with 1>+x  and 1<−x . From the expression for q , we can write 
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Here ±z  just denote the values of ±x  in the mirror region. 
When we have a boundary, this time/space flip turns the boundary into a boundary state. Then a 
suitable analytic continuation of the boundary reflection matrix characterizes the boundary state. 
The boundary state creates a superposition of many particles. The total mirror momentum should be 
zero since it is translational invariant. So, schematically the state has the form 
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The formula (1.14) can be obtained by performing a 2/π  rotation of the boundary condition. Due 
to the independence of reflection events from a boundary, we can exponentiate (1.14) to get the full 
boundary state. Similarly, we can form a future boundary state. This is a boundary state that 
annihilates the particles. It is given by 
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Thence, we can rewrite the eq. (1.15) also as follows: 
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In the relativistic case (1.16) would be ( )
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When L  is very large the leading L -dependent contribution comes from the exchange of this pair 
of particles and we can write the corresponding contribution as 
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thence,  
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This formula is correct whenever the integral is finite. 
In our case, the phase factor Bσ  has a pole at 0=q . The physical interpretation of this pole at 

0=q  is that the boundary state is sourcing single particles states in the mirror theory. Obviously 
such source has to contain only zero momentum particles.  
A careful analysis leads to the formula 
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In the last equality we extracted the leading term in the integral, which comes only from the 
coefficient of the pole. Notice that the L  dependence is precisely what we expect from the 
exchange of a single particle.  
To write down the full Luscher formula we need to compute ( )qt  also for the bound states of the 
mirror theory. We find the following formula: 
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From the following relation  
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we obtain the expression for energy up to 3-loop order 
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in perfect agreement with the expansion of the following expression: 
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Now we consider an open string operator of the form ( )φθ ,r

L
l BZB  and compute the leading 

correction to the energy for large L , this correction goes as  e-(constant)L . We will compute the 
correction for 0,0 ≠= θφ  at leading order in the strong coupling expansion. In this case we have a 

string that moves on 3
2 SAdS × . We fix the solution on the 2AdS  part. This 2AdS  solution is 

completely characterized by the extent of the spatial worldsheet coordinate σ , which we take to run 
between [ ]2/,2/ ss− . In particular the spacetime energy ∆  of the solution is fixed, once s  is fixed. 
As we vary the parameters we will see that L  will change, θ  will change, and so will L−∆ . 
So we now concentrate on the solution on the 3S , which we parametrize as 
 

                               ( )σργτ 2
21 1−=+ ieixx ,        ( ) ( )σϕσρ ieixx =+ 43 .    (1.23) 

 
Inserting this in the Euler Lagrange equations for the string and imposing the Virasoro constraints, 

1=±T  one finds two integrals of motion, l  and γ . They are given by 
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The boundary conditions are ( ) 00' =ρ , ( ) 12/ =sρ . Let us define 0ρ  to be the value of ρ  at 0=σ  

where the derivative vanishes. It is a root of 
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By using (1.25) we can write the following expressions 
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This happens when 00 →ρ  and 1→γ  and 0→l . We need to scale them as 
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where v  is a new rescaled variable and l̂  is fixed as 0→ε . Now, to leading order in ε  we find 
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The integral for θ , (1.28), becomes negligibly small away from 0ρρ ≈  since there a factor of l  

multiplying. So it receives all its contribution from the small ρ  region, namely the finite v  region, 
see (1.31). We can write 
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We can similarly compute the integral for s , 
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where we used 00 vερ =   and the result (1.33), and the definition of D
~

 in (1.34). Furthermore, we 

can rewrite the eqs (1.35-1.37) also as follows: 
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Here we have split the integral in two terms, the first receives contributions only from the small ρ  

region and the second, which can be done explicitly with no need to take the small 0ρ limit. We 

now want to compute L . We will compute instead  
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We know that for 0=θ  the result should vanish due to the BPS condition. Thus we find that 
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If we changed the angle in the AdS part, then instead of 1 in (1.44) we would get some function of 
φ . However, since we know that for φθ =   we should get zero due to the BPS condition, we 
conclude that for generic angles we get 
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In order to compare this to the expected answer from the Luscher type correction we need to 
evaluate the function F  in the following expression 
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at strong coupling. This involves evaluating the function Φ  in (1.8), (1.10) at [ ]az ±  at 0=q . When 

0=q , we have that 
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which is very close to i , where the strong coupling expansion is tricky. We need to compute 
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with [ ]( )0azy = . Then the y  dependent factor can be well approximated by 
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We now insert this into the integral (1.47), and split the integral into two pieces       
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where we have defined ( )gvt π8/=  in the integral for 2r  and taken the ∞→g  limit. Furthermore, 
we note that: 
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                   ( ) ( ) ( )
( ) =









−+
−=Φ−Φ= ∫

2

0
2222

4

sin4

sin4sinh
log

sin41

12
/1log

π

π
π

π tg

tg

tyy

y
dtyiyiF    

        +



















+
= ∫ tg

g

a
t

dt
g

a
sin4

16
sin

1
2

2

0
2

2
2

π
π

π

( )++




=






 −
+∫

∞ −

go
a

g
a

v

e

av

a
dt

v

/1
8

log2
1

log
4
4

0
222 π

    

        ( )[ ]1loglog2 +Γ−−+ aaaa .    (1.52b) 
 
Summarizing, we get that the leading strong coupling approximation is 
 

                                                    ( ) ( )22

26

!

2
,

ae

g
gaF

a

aa

= .    (1.53) 

 
We have contributions from the explicit functions in the following equation 
 

                                          ( ) ( )
[ ]

[ ]
conve

z

z
gaFaC a

a
a

a
∆

+

−

−=
0

02 ,1 ,    (1.54) 

 
which can be expanded to any order independently of the Y-system solution. These give 
 

                   
[ ]

[ ] ( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )( ) =














++
+−

=






 +−−+ Φ−Φ+Φ−Φ
+

−
aaaa zzzzi

a

a

e
gaa

gaa
agaF

z

z
a 0000 /1/1

2

22

22
42

2

0

04

16

16
,  

                   ( )







Ο+








+−+







 −+= 6
4

42

2
4

2

2
24

45
16630150

7
3

86
116 g

g

aa

g

a
g

πππ .    (1.55) 

 
We can rewrite the fermionic convolutions in the TBA equation 
 

         ( ) ( ) ( )[ ] 0

2

10
2,

1010
1

10
1

1
1

1

1
log

2/1
logˆ

2/1
logˆ

=−





































−
+

+∗++






 Φ∗−






 Ψ∗=∆ u
b

baabaaconv

b

Y
BRBR     (1.56) 

 
as 

                         ( ) ( ) ΨΦ∗+
Φ
Ψ∗=Φ∗−Ψ∗ logˆlogˆlogˆ2logˆ2 ,

10
1

10
1 yaaaa KKBR .    (1.57) 

 
It is important to recall that we need only the 0→u  limit of this. For the order 4g  of the first term 
in (1.57) we get 

                                               ( )
a

g
K

g
a 3

32
0

3

16 4243 ππ = .    (1.58) 

 
The second term in (1.57) is 
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           ( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )[∫
−

+Φ+Ψ−Φ+Ψ+−=ΨΦ∗
g

g

yaya gvvvvgvdvKK
2

2

4211112
,, 24log,0logˆ   

                                     ( )( ) ( )( )( ) ]...2 422 +Φ+Ψ+ gvv ,    (1.59) 
 
where its 4g  order is 
 

             ∫
−

+−=







++−

−
−

1

1

4244
4

4244

2

244

3
8

45
12

45
32

3
4

2
4

9
~1

~2~
45

56 gg
g

g

v

v
vd

g πππππ
π

π
.    (1.60) 

 
Thus, the total 4g  order of (1.57) is 
 

                                                
45

12
3

8
3

32 444242 gg

a

g πππ −+ .    (1.61) 

 
For the remaining convolution in (1.56),  ( ) ( )[ ] ( )bbaab YBR +∗+ − 1log2 10

2,
10   we use 

 

                              ( )( ) ( ) ( ) ( ) ( )∑

−

−−=

+−− Ο++=+
2

3

2

1

2
21

10
2,

10 ,0,0

a

a
j

jbbbaab gKvKvv BR .    (1.62) 

 
We note that the eq. (1.57) can be rewritten also as follows: 
 

                                      ( ) ( ) +
Φ
Ψ∗=Φ∗−Ψ∗ logˆlogˆ2logˆ2 10

1
10
1 aaa KBR        

( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )[∫
−

+Φ+Ψ−Φ+Ψ+−+
g

g

ya gvvvvgvdvK
2

2

4211112
, 24log,0 ( )( ) ( )( )( ) ]...2 422 +Φ+Ψ gvv ,        

                                                                                                                                                 (1.62b) 
 
We go to Fourier space, where the term order 4g  is 
 

                           
( )

2
33

2

22

3

2

1
21

1
3

16
3

8
~

~~
2

wa
wb

a

a
j

jbb e
a

a
e

b
KK

−−

−

−−=

+−
−−−=

















+ ∑
ππY

.    (1.63) 

 
We Fourier transform back and evaluate for 0→u  and we get 
 

                             
( )

3

8

3

32

3

32
2

22

2

2

0

2

22

3

2

1
21

πππ −−=∗
















+
=

−

−−=

+− ∑ aab
KK

u

b

a

a
j

jbb

Y
.    (1.64) 

 
Thus, for conv∆  up the 3-loop order we have 
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                                     ( )64
2

2422

3
16

45
6

3
2

gg
a

g
conv Ο+








+−+=∆ πππ

.    (1.65) 

 
Which, together with (1.55), gives rise to 
 

              ( ) ( ) ( ) ( )86
42

24
4

2
22 204

3
116

4
1814 gg

aa
g

a
gC aaa

a Ο+







+−−+




 −−+−= πππ .    (1.66) 

 
 
 
2. On some equations concerning a two-parameter family of Wilson loop operators in N = 4 
supersymmetric Yang-Mills theory which interpolates smoothly between the 1/2 BPS line or 
circle, principally some equations concerning the one-loop determinants   
 
 
With regard the calculation of the 2-loop graphs for the Wilson loop with a cusp in the case of non-
zero θ , the resulting expression can be written as a sum of the contribution of ladder graphs and the 
interacting graphs 
                                                  ( )( ) ( )( ) ( )( )θφθφθφ ,,, 2

int
22 VVV lad +=  

                              ( )( ) ( )
∫

∞

−− 








+
+










+
+−−=

02

2
2 log

1
1

log
sin

coscos
, φ

φ

φ

φ

φ
φθθφ i

i

i

i

lad ez

ez

ze

ze

z

dz
V  

                             ( )( ) ( ) ( )∫ ++−=
1

0

222
int 1,1cos2,coscos4, φφθθφ zzzdzYV .    (2.1) 

 
The integrand in the last expression is the “scalar triangle graph” – the Feynman diagram arising at 
one-loop order from the cubic interaction between three scalars separated by distances given by the 
arguments 
 

                   ( ) ∫ −−−
= 2

3

2

2

2

1

4
2

2
13

2
23

2
12

11
,,

wxwxwx
wdxxxY

π
,        

22
jiij xxx −= .    (2.2) 

 
This integral is known in closed form. For 2

13
2
23

2
12, xxx <  it is equal to 

 

                        ( ) +










 −+−−






 −−+−=
2

1
2

2
1

2
3

1
,, 22

2

2
13

2
13

2
23

2
12

Ats
Li

Ats
Li

Ax
xxxY

π
 

                                                          










 −+−







 −−++−
2

1
ln

2
1

ln2lnln
AtsAts

ts  

                                    2
13

2
12

x

x
s = ,    2

13

2
23

x

x
t = ,    ( ) sttsA 41 2 −−−= .    (2.3) 

 
Thence, we have that: 
 

                                    ( ) =
−−−

= ∫ 2

3

2

2

2

1

4
2

2
13

2
23

2
12

11
,,

wxwxwx
wdxxxY

π
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                                +










 −+−−






 −−+−=
2

1
2

2
1

2
3

1
22

2

2
13

Ats
Li

Ats
Li

Ax

π
               

                                










 −+−







 −−++−
2

1
ln

2
1

ln2lnln
AtsAts

ts .    (2.3b) 

 
This expression is valid for 1, <ts  with the principle branch of the logarithms and dilogarithms. If 

2
12x  is the largest, then the result is the same function divided by s  and the replacement ss /1→  

and stt /→ . Likewise when 3
23x  is the largest. In our case, if we take 3/2πφ > , then for 1≤z  the 

first two arguments of Y  in (2.1) are less than unity and in that regime Y  evaluates to 
 

   ( ) ( ) ( ) ( ) ( ) ( )







+−++−+−−−−= −− φφφφφπ

φ
iiiii zeezezzeLizeLi

z

i
Y 1loglog1loglog1

6sin 22

2

.    (2.4) 

 
The integration then gives 

                                                     
( )( )

∫
+−=

1

0 sin3 φ
φφπφπ

dzY .    (2.5) 

 
With the prefactor we find the final expression (valid by analytical continuation for all πφ <≤0 ) is 
 

                                       ( )( ) ( )( )φφπφπ
φ

φθθφ +−−=
sin

coscos
3
4

,2
intV .    (2.6) 

 
The first integral in (2.1) can also be done analytically. Again one should take care in choosing 
branch cuts for the logarithms, where the principle branch is for small φ . The result is 
 

            ( )( ) ( ) ( ) ( ) ( ) 







+







+−−−−= 3

2
2

2
2

32

2
2

36
3

sin
coscos

4, φπφζ
φ

φθθφ φφ i
eLiieLiV ii

lad .    (2.7) 

 
Thence, form (2.1), we have the following expression: 
 

              ( )( ) ( ) =








+
+










+
+−−= ∫

∞

−−02

2
2 log

1
1

log
sin

coscos
, φ

φ

φ

φ

φ
φθθφ i

i

i

i

lad ez

ez

ze

ze

z

dz
V  

                             
( ) ( ) ( ) ( ) 








+







+−−−−= 3

2
2

2
2

32

2

36
3

sin
coscos

4 φπφζ
φ

φθ φφ i
eLiieLi ii .    (2.7b) 

 
The finite expression for the regularized 1-loop effective action is: 
 

                                 ∫
∞+

∞−→ ΟΟΟ
Ο−=Γ εεε

ε

ε

ωε
π
ω

21
2

0
5

822

0 detdetdet
det

ln
2

lim
2

F
reg

dT
 .    (2.8) 

 
The small φ  expansion is realized sending 0→k  (equivalently ∞→p ) in the expressions or the 
following determinants 
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( )
ω

ωε K2sinh
det 0 ≅Ο ,    (2.9)      

               
( )( )

( )( ) ( )( )
( )

( ) 

















++++−

+
≅Ο

2
2

321

2
2

422

2
2

2
3

2
3

2
1

2

2
2
2

2
32

,
2

,0'

,
2

,0

1111

sinh8
det

q
K

q

q
K

q

kkk

ZKkK

F

F

F
F παϑϑ

παϑϑ

ωωεπ
αωε .    (2.10) 

 
An efficient way to proceed, considering for example the determinant for the operator 1Ο , is to 
transform as follows 
                                                       1111 'iKK ++= βα     (2.11) 
 
which allows to identify the imaginary part of the argument of the hyperbolic function 
 

                              ( ) ( ) ( ) ( )
( ) π
β

ββ
βα i

kcn

kdnksn
KZKZK −−=

2
11

2
11

2
11

11111 222 .    (2.12) 

 
In applying this approach to the fermionic determinant, one notices that a shift analogue to (2.11) 

changes the sinh  in  cosh . One can then first compute the 0→k  expansion of ( ) ωα ∂∂ /2kZ i  

where the dependence of Z  on ω  is via α , and then perform an indefinite integration over ω . 
From examining the expansion of the determinants at small k  we find the form 
 

                                          ( )∑
∞

=

=Ο
0

2det
l

ll
ii kD ,        ,,2,1,0 Fi =     (2.13) 

 
where each ( )l

iD  is a rational function in ω  times ( )πωsinh  and ( )πωcosh . 

The zero-th order contribution to the regularized effective action (2.8) in this limit reads then 
 

                      
( )

( )

( )
( )

( )
( )

( )
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



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
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I
  

                             
( ) ( )

( ) 0
14

coth12
ln

4
1

82

8321016

=












+
+−= ∫

∞+

∞− ω
πωωωω

π
d .    (2.14) 

 
At order 2k  the result is 
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( )
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∫
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
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+
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( )
( )

( )
( ) 8
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sinh

cosh
45
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sinh2

2
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At order 4k  one finds 
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                                                                                                                                                      (2.16) 
 
 
3. On some results and equations of the mathematician Ramanujan concerning some definite 
integrals and an infinite product and on some equations concerning the development of 
derivatives of order n (n positive integer) of various trigonometric functions and divergent 
series. 
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On some results and equations of the mathematician Ramanujan concerning some definite integrals 
and an infinite product 
 
Consider the integral 
 

                                  { } ( ){ } ( ){ }∫
∞

+++++0 222222 ...2/11/1/1

2cos

axaxax

mxdx
,    (3.1) 

 
where m  and a  are positive. 
It can be easily proved that 
 

 
( ) ( ) ( ){ }

( ) ( ) ( ){ }2

22222

1
1...

2
1

1
11

natata

atnatna

na

t

a

t

a

t

a

t

+Γ+Γ−Γ
Γ++Γ−+Γ=






















−+
−






















+
−






















+
−




















− ,    (3.2) 

 
where n  is any positive integer. Hence, by splitting  
 

                                   { } ( ){ } ( ){ }222222 1/1...1/1/1

1

−+++++ naxaxax
    (3.3) 

 
into partial fractions, we see that it is equal to 
 

( ) ( ){ }
( ){ } ( ) ( ) ( )

( ) ( )( )
( )( ) ( ) 








−
++

+
+++

−−++
++

+
+
−−

++ΓΓΓ
+ΓΓ

...
2

2
122

21
!2

122

1

1
2
1

!1
2

2

22
2222222

2

xa

a

anan

nnaa

xa

a

an

na

xa

a

nana

naa

                                                                                                                                                        (3.4) 
 
Multiplying both sides by mx2cos  and integrating from 0  to ∞  with respect to x , we have 
 

{ } ( ){ } ( ){ }
( ) ( ){ }

( ){ } ( ) ( )
( )

∫
∞ +−−







 +

+
−−

+ΓΓΓ
+ΓΓ=

−+++++0

122
2

2

222222
...

2
1

!1
2

2

2

1/1...1/1/1

2cos maam e
an

na
e

nana

naa

naxaxax

mxdx π

                                                                                                                                                        (3.5) 
 
The limit of the right-hand side, as ∞→n , is 
 

          
( )
( ){ }

( ) ( ) ( )
( ) mh
a

a
e

aa
e

a
e

a

a amamaam 222122
2 sec2

1

2
1

...
!2

122
!1

22
Γ








 +Γ
=







 −++−

Γ
Γ +−+−− ππ

.    (3.6) 

 
Hence 

                       { } ( ){ } ( )∫
∞

Γ








 +Γ
=

+++0

2
2222

.sec2
1

2
1

...1/1/1

2cos
mh

a

a

axax

mxdx aπ ……    (3.7) 

 
Since 

                        
( ){ }

( ) ( )ixaixa

a

a

x

a

x

a

x

−Γ+Γ
Γ=






















+
+






















+
+




















+
2222

...
2

1
1

11 ,    (3.8) 
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the formula (3.7) is equivalent to 
 

                            ( ) ( )∫
∞








 +ΓΓ=+Γ
0

22
.sec

2
1

2
1

2cos mhaamxdxixa aπ ……(3.9) 

 
Let  

                   ( ) ( ) ( )∫ =
b

a
ndxnxFxf ψ ,    (3.10)        and        ( ) ( ) ( )∫ =

β

α
χφ ndxnxFx .    (3.11) 

 
If we suppose the functions ,,φf  and F  to be such that the order of integration is indifferent, we 
have 

                        ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫==
b

a

b

a
dynyydxnxyFyxfdydxnxxf

β

α

β

α
χφφχ .       (3.12) 

 
We have, for example, the formulae 
 

               ∫
∞

=
0 cosh2

1
cosh

2cos
n

dx
x

nx

π
,    (3.13)        ( )nx

nxdx

2cosh212
3

3
2

cosh21

2cos
0 +

=
+

∫
∞

π
,    (3.14) 

                                             ∫
∞ −− =
0

22

2
1

2cos nx enxdxe π .    (3.15) 

 
By applying the general result (3.12) to the integrals (3.13) and (3.14), we obtain 
 

                         ( )∫ ∫
∞ ∞








 +
=

+0 0

3
2

cosh21cosh2cosh21cosh
3

xnx

dx

nxx

dx

ππ
;    (3.16) 

 

or, in other words, if 2

4
3παβ = , then 

 

                        ( ) ( )∫ ∫
∞ ∞

+
=

+0 0 cosh21coshcosh21cosh xx

dx

xx

dx

πβ
β

πα
α .    (3.17) 

 
In the same way, from (3.14) and (3.15), we obtain 
 

                                      ∫ ∫
∞ ∞ −−

+
=

+0 0 cosh21cosh21

22

x

dxe

x

dxe xx

β
β

α
α ,    (3.18) 

 

with the condition παβ
3
4= ; and, from (3.13) and (3.15), 

 

                                          dx
x

e
dx

x

e xx

∫∫
∞ −∞ −

=
00 coshcosh

22

β
β

α
α ,    (3.19) 

 
with the condition παβ = . (Formulae equivalent to (3.18) and (3.19) were given by Hardy). 
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Suppose now that ,,ba and n  are positive, and 
 

                                               ( )∫
∞

0
,xaφ ( )nanxdx ,

sin

cos
ψ= .    (3.20) 

 
Then, if the conditions of Fourier’s double integral theorem are satisfied, we have 
 

                                               ( ) ( )∫
∞

=
0

,
2
1

sin

cos
, nbnxdxxb πφψ .    (3.21) 

 
Applying the formula (3.12) to (3.20) and (3.21), we obtain 
 

                                  ( ) ( ) ( ) ( )∫ ∫
∞ ∞

=
0 0

,,,,
2
1

dxnxaxbdxnxbxa ψψφφπ .    (3.22) 

 
Thus, when ba = , we have the formula 
 

                                        ( ) ( ) ( ) ( )∫ ∫
∞ ∞

=
0 02

1
dxnxxdxnxx ψψφφπ ,    (3.23) 

 
where 

                                                   ( ) ( )∫
∞

=
0 sin

cos
txdxxt φψ ;    (3.24) 

 
and, in particular, if 1=n , then 
 

                                            ( ){ } ( ){ }∫ ∫
∞ ∞

=
0 0

22

2

1
dxxdxx ψφπ .    (3.25) 

 
If 

                               ( ) { } ( ){ }...1/1/1

1
, 2222 +++

=
axax

xaφ     ( )0>a ,    (3.26) 

 
then, by (3.7), 

                                         ( ) ( ) xh
a

a
xa a

2
1

sec
2
1

2
1

, 2

Γ








 +Γ
= πψ .    (3.27) 

 
Hence, by (3.22), 
 

                         ( ) ( ) ( ) ( )∫ ∫
∞ ∞ +

ΓΓ








 +Γ






 +Γ
=

0 0

22

2
1

sec
2

2
1

2
1

,, xdxh
ba

ba
dxxbxa baφφ ;    (3.28) 

 
and so 
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  { } ( ){ } { } ( ){ }
( )

( ) ( )
∫

∞








 ++ΓΓΓ

+Γ






 +Γ






 +Γ
=

++++++0 22222222

2
1

2
1

2
1

2
1

...1/1/1...1/1/1 baba

baba

bxbxaxax

dx π ,    

                                                                                                                                                      (3.29) 
a  and b  being positive: or 
 

                 ( ) ( )
( ) ( ) ( )

∫
∞








 ++Γ

+Γ






 +ΓΓ






 +ΓΓ
=+Γ+Γ

0

2

2
1

2
1

2
1

2
1

ba

babbaa
dxixbixa π .    (3.30) 

 

We note that  
ππ

ππ
4
11

42 2

2

=⋅=









,   and    

ππ
π

π
π 28

4
8

2 22

2

=⋅=⋅









.    

 
As particular cases of the above result, we have, when 1=b , 
 

                                { } ( ){ } ( )∫
∞

+
=

+++0 2222 212...1/1/1sinh a

a

axax

dx

x

x

π
;    (3.31) 

 
when 2=b , 

                         { } ( ){ } ( )( )aa

a

axax

dx

x

x

23212...1/1/1sinh

2

22220

3

++
=

+++∫
∞

π
;    (3.32) 

 

and so on. Since  ( ){ }22 /1 nax ++Π   can be expressed in finite terms by means of hyperbolic 
functions when a2  is an integer, we can deduce a large number of special formulae from the 
preceding results. 
Suppose now that βα =  in the following expression: 
 

         ( ) ( ) ( ) ( ){ }
( ) ( )

( ) ( )
( ) 








++
−−+

++Γ++Γ
+Γ+Γ= 222

3

2
cos3cosh

2121
11

,,
βαβαπ

βαπβαπ
αββα

βααβφβαφ .    (3.33) 

 
We obtain: 

                 
( ){ }
( ) 3

3sinh
31

1
...

3
2

1
2
2

1
1
2

1
3333

πα
πα

α
α

α
α

α
α

α
α

+Γ
+Γ=






















+
+






















+
+






















+
+ .    (3.34) 

 
Similarly, putting 1+= αβ  in (3.33), we obtain: 
 

                    
( ){ }
( ) π

απ

α
α

α
α

α
α

3
2
1

cosh

32
1

...
2

12
1

1
12

1
333 







 +

+Γ
+Γ=






















+
++






















+
++ .    (3.35) 

 
Again, since 
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                             2

4

4

2

2

23

2
1

11

2
311








 +









++







 +
=






















+
+




















+

n

nnn

nn α

ααα

α
αα

,    (3.36) 

 
it is easy to see that 
 

( ) 








 −







 +Γ








Γ
=


































+
+






















+
+
















+








+ + ππα

παπα

α

α

α
α

α
ααα

α 2

22

3

3

3

3

2

cos3cosh

1
2
1

2
1

...
4

31
2

31...
2

1
1

1 .            

                                                                                                                                                      (3.36) 
 
It is known that, if the real part of α  is positive, then 
 

                        ( ) ( )
∫

∞ −

−
++−







 −=Γ
0 2

1

1
/tan

22log
2
1

log
2
1

log dx
e

x
xπ

απαααα .    (3.37) 

 
From this we can show that, if the real part of α  is positive, then 
 

( )
∫

∞ −

−
+







 −=
















+








+








+++

0 2

31

3

3

3

3

3

3

1
/tan

2
cos3cosh

log...
3

1
2

1
1

1log
3

2log
2
1

dx
e

x
xπ

α
πα

παπααααπαπα

                                                                                                                                                      (3.38) 
 
From this and the previous section it follows that 
 

                                                           ∫
∞ −

−0 2

31

1
tan

dx
e

x
nxπ ,    (3.39) 

 
can be expressed in finite terms if n  is a positive integer. Thus, for example, 
 

                             ( )∫
∞ −

−

+−−=
−0

3
2

31

1log
2
1

34
2log

4
1

1
tan π

π
ππ edx

e

x
x

;    (3.40) 

                           ( )32

0 4

31

1log
4
1

34
12log

8
1

1
tan π

π
ππ −∞ −

−−−=
−∫ edx

e

x
x

;    (3.41) 

 
and so on. 
It is also easy to see that 
 

                +






 +
+

−
+

+
+

−
+

=+
+

−
+

+
+

−
+

...
4

1
3

1
2

1
1

1
3
1

...
4

4
3

3
2

2
1

1
33

2

33

2

33

2

33

2

nnnnnnnn
    

                            ( ) ( ) ( ) 







−
+−

−+
+−

−−
+−

−+ ...
36

6

34

4

32

2
3
4

222222 nn

n

nn

n

nn

n
.    (3.42) 

 
Since 



 20 

                                       ...
5

5
3

3
1

1

2
1

cosh4
222222 −

+
+

+
−

+
=

xxxxπ

π
,    (3.43) 

 
it is clear that the left-hand side of (3.42) can be expressed in finite terms if n  is any odd integer. 
For example, 
 

                    






 +−=+
+

−
+

+
+

−
+

3
2
1

sec2log1
3
1

...
14

4
13

3
12

2
11

1
3

2

3

2

3

2

3

2

ππ h .    (3.44) 

 
The corresponding integral in this case is 
 

         
( )

∫ ∫ ∑
∞ ∞ ∞=

=

+






 +
+

−
+

+
+

−=
+








+
−+=

+0 0 66

6

1
22266

5

...
3

1
2

1
1

11
3
11

2
12

sinh nnnnxn

dxx

xxxn

dx

x

x ν

ν

ν

νππ
 

                                      ( ) ( ) ( ) 







−
++

++
++

+−
++

+− ...
36

6

34

4

32

2
3
4

222222 nn

n

nn

n

nn

n
,    (3.45) 

 
and so the integral on the left-hand side of (3.45) can be expressed in finite terms if n  is any odd 
integer. For example, 

                                     ∫
∞








 +−=
+0 6

5

3
2
1

sec12log
3
1

1sinh
ππ

π
h

x

dx

x

x
.    (3.46) 

 
 
3.1 On some equations concerning the development of derivatives of order n (n positive integer) of 
various trigonometric functions and divergent series. 
 
We have the following expression: 
 

             ( )
( ) ( ) ( )

∫ ∫ ∫
∞ ∞ −

−
−

−−−−−
−

−−−

=
−

−=
−

−===
−
−t

u

uuxux
u

u

xuxu
u

xx

du
e

eee
due

e

ee
etdt

t

tt
0 0 0

2/2/12/12/12/1

111
 

                                          
( )

( ) ( )∫
∞

==
0

tan
2/sinh

sinh
xdu

u

ux ππ ,       
2
1<x .    (3.47) 

 
Deriving the eq. (3.47) ( )n2  times, with respect to x , we obtain: 
 

( )
( ) ( )[ ]( ) ( )[ ] ( ) ( )∫ ∑ ∑

∞

= ≥

−++ −−===
0

0 1

22212122
2

21
2

tantan
2/sinh

sinh n

h k

ixknnkh
h

nn
n

eki
i

xbxdu
u

uxu πππππππ .    (3.48) 

 
Operating on the eq. (3.48), we obtain: 
 

( )
( ) ( )[ ] ( )[ ] ( ) ( ) ( )∫ ∑ ∑

∞

= ≥

−
+

++ −−===
0

0 1

22
12

12122
2

1
12

tantan
2/sinh

sinh n

h k

ixknk
nn

h
h

nn
n

ek
i

xbxdu
u

uxu ππππππ .    (3.49) 

 
Putting, in the eq. (3.49), ( ) tx =πtan , whence ( )tx arctan=π , we obtain: 
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( )

( )∫ ∑
∞

=

++=







0
0

1212

2

2/sinh

arctansinh n

h

h
h

n

n

tbdu
u

t
u

u
ππ .    (3.50) 

 
Deriving the precedent eq. (3.50) with respect to ( )t , and putting after, 0=t , we have: 
 

                     
( )

( ) ( )∫ ∫
∞ ∞ +

+

→
==








0 0 0
12

12
2

0 2/sinh

1

2/sinh

arctansinh
lim bdu

u

u
du

u

t
u

u
D n

n
n

t
t

π
π

π ,    (3.51)  

whence 

             
( ) ( )

( )∫ ∑ ∑ ∑
∞

≥ ≥ ≥
+

+

+
−−+

+
+=








 +

+=
0

0 0 0
22

32

22
2/12

21

1!122

2
1

!1222

k k k
n

n

n
ukun

k

n

k

n
dueeu
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We have the following expression: 
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and we remember that:  
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where nB2  is the Bernoulli’s number of index n2 , while ( )sζ  is the Riemann zeta function, defined 
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Applying the eq. (3.53), we obtain: 
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but: 
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With regard this equation, the values of 0b  for n variable from 1 to 6 are:  2, 16, 272, 7936, 353792 

and 22368256. We note that 272 is divisible for 16 and 7936, 353792 and 22368256 are all divisible 
for 64. It’s interesting to observe that 64 is 82 and we know that 8 is the number of the physical 
vibrations of the superstrings that can be expressed by the following Ramanujan equation that has 8 
“modes” corresponding to the vibrations above mentioned, i.e.,: 
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If a series, ( )∑
≥

=
0 !n

n

n xf
n

x
A , is divergent, for ax > , (a , constant), multiplying, both sides of the 

previous relation, for xe− , and integrating, with respect to x , between the limits zero and infinity, 
we obtain another divergent series, defined by: 
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Now, we have the following relation: 
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Applying to this relation, the integration of eq. (3.60), we have that: 
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Now we compute the integral that is to the left-hand side of the (3.62). We obtain: 
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Thence, from the (3.62), we obtain: 
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The left-hand side of the (3.64) is just a divergent series, that is represented from the value of the 
right-hand side of this expression. 
Substituting in the (3.61), x−  to x , we have: 
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For π2≥x , the precedent relation is divergent, thence, applying to the same relation, the 

integration of eq. (3.60), we have: 
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Equalling the results of the two last relations, we obtain: 
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that is identical to the (3.64). 
Now, we have the following integral formula: 
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Because 04 >kE , and 024 <+kE , we have: 
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Applying, to the eq. (3.70) the following geometrical series: 
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we obtain: 
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Now, we consider the series 

                                                       
( )

∑
≥










+
−

0

2

1

1

k

k
k

x
k

k

k
.    (3.72) 

 

The series (3.72) is a convergent series for 
4
1<x  , and is divergent for 

4
1≥x . The absolute values 

of the coefficients of the powers of the series (3.72) are the famous Catalan’s numbers, and the 
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primes values, for k = 0, 1, 2, 3,…, are the following:  1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 
16796,… From the (3.72), we obtain: 
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Applying the (3.70b) to the (3.73), we obtain: 
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Now we consider the series: 
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The right-hand side of (3.76) has been obtained applying the (3.70b). Multiplying for 
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( ) 1Re0 << q , both sides of (3.76) and integrating with respect to x , between the limits 0 and ∞ , 
we obtain another divergent series, defined by: 
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Operating, we have: 
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From the compute of the integral on the right-hand side of (3.79), we obtain: 
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                                                 3.1 Mathematical connections 
 
We note that eqs. (1.18) and (1.21) can be connected with the eqs. (3.30) and (3.59) if we consider  
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We note that the eq. (1.52b) can be connected with the eqs. (3.45) and (3.73). Indeed, we obtain the 
following mathematical connections: 
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Now, we note that we can to connect the eq. (2.7b) with the (3.66) and we obtain the following 
mathematical connection: 
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We note that the eq. (2.16), can be connected with the eq. (3.30), if we consider  
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4. On some equations concerning the relationship between Yang-Mills theory and gravity and, 
consequently, the complete four-loop four-point amplitude of N = 4 super-Yang-Mills theory 
including the nonplanar contributions regarding the gauge theory and the gravity amplitudes.      
 
 
At tree-level, the Kawai-Lewellen-Tye (KLT) relations given a complete description of the 
relationship between closed string amplitudes and open string amplitudes. For example, the open 
string amplitude for gluons is 
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where 
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The corresponding n -graviton tree amplitude in string theory is 
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cba zzz ,,  are any three of the iz , and ‘multi-linear’ means linear in each iε  and each iε . In this 

expression we have taken the graviton polarization vector to be a product of gluon polarization 
vectors 
                                                                 νµµν εεε iii = .    (4.5) 

 
The KLT relation for four-point amplitude is: 
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with M  and A  represented from the expressions (4.3) and (4.1). 
Applying the relation (4.6) yields the four-graviton amplitude 
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A relation we will use also is the following: 
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The one-loop 8=N  four-graviton amplitude is, 
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with the integral functions defined as: 
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These amplitudes were first obtained by Green, Schwarz and Brink in the field-theory limit of 
superstring theory. 
The key relation for evaluating the 4=N  two-particle cuts exactly to all loop orders is, 
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Using the KLT relation (4.6) we can use eq. (4.11) to obtain the equivalent relation for 8=N  
supergravity, 
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We perform a partial-fraction decomposition of the denominators, 
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to obtain the 8=N  basic two-particle on-shell sewing relation, 
 
                                           ( ) ( )∑

=

=−×−
statesN

treetree MM
8

124214 ,4,3,,2,1, llll  

                   ( ) ( ) ( ) ( ) ( ) 







−
+

−








−
+

−
= 2

42
2

32
2

21
2

11

4

1111
4,3,2,1

kkkk
istuM tree

llll
.    (4.14) 

 
We may recycle the sewing relation (4.14) to obtain two-particle cuts of higher-loop amplitudes. 
Consider the two-particle s -cut with a tree amplitude on the left and a one-loop amplitude on the 
right, 
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Inserting eq. (4.9) for loopM −1

4  and applying the sewing relation (4.14), we have 
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The unwanted propagators cancel and our final result is remarkably simple 
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where the scalar integrals Ploop,2
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A straightforward Feynman parameterization of the integrals (4.18) gives 
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In extracting the ε/1  pole term for ε2−= nD  it is legitimate to replace ( )tsXloop ,,2

4
−I  with 
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For the case ε27 −=D , where we can set 0=ε  from the beginning, we get: 
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For ε29 −=D , setting 0=ε  would lead to 
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We find that the ( )yx, -integral for the 2s  term can be conveniently written as the sum of two terms, 
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We can rewrite the eq. (4.23) also as follows: 
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The integral of 1C  converges for 0=ε , and ( )∫ −=
1

0 1 11088/5, πyxdxdyC . The integral over 2C  

requires analytic continuation in ε . Somewhat more generally, we need 
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where p  and q  are positive integers and α  is a positive half-integer. In the limit 0→ε  the factor 

of ( )ε2/1 Γ  in eq. (4.25) causes the term containing it to vanish, and the surviving hypergeometric 
function can be set to 1. Performing the remaining y-integral gives 
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                                                                                                                                                     (4.26) 
Thus ( ) 0,, =αqpI  (after analytic continuation in ε ) unless 2++< qpα . In the present case, 

,0,2 == qp  and 2/9=α , so the integral of 2C  vanishes.  
The final result for the planar double-box pole at ε29 −=D  and ε211−=D  is then 
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The non-planar double-box integrals are handled analogously, with the results: 
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Thence, from the eq.(4.24b), we obtain the following expression: 
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We note that this equation can be related to the number 24 (480 = 24 * 20;  360 = 24 * 15;  99792 = 
4158 * 24) that is connected to the physical vibrations of the bosonic strings by the following 
Ramanujan function: 
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Indeed, we obtain the following mathematical connection: 
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The two-loop MSYM (maximally supersymmetric N = 4 Yang-Mills theory) four-point amplitudes 
for the planar contribution, is: 
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The two-loop scalar integral ( )2

4I  is defined in the following equation: 
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The three-loop planar amplitude gives the explicit form of the integrand, 
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The two three-loop integrals ( ) ( )ba II 3

4
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4 , , appearing in the four-point amplitude (4.35), are: 
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and 
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where dimensional regularization with ε24 −=d  is implied. 
Mellin-Barnes (MB) integrations are introduced in order to replace a sum of terms raised to some 
power by their products raised to certain powers, at the cost of having extra integrations: 
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where 0Re <<− βλ .  
An eightfold MB representation can be derived with the eleventh index corresponding to the 

numerator ( )[ ] 112 a
rp

−
+ . For our integral with the powers 1... 101 === aa   and 111 −=a , this gives 
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There is a factor of ( )ε2−Γ  (i.e. the two gamma functions) in the denominator, so that the integral 
is effectively sevenfold. 
The starting point is to take minus the residue at 432125 2 zzzzxz −−−−++−= ε  and shift the 

integration contour correspondingly. The value of the residue is then symmetrized by 21 xx ↔ . This 

sum leads, in the limit 0, 21 →xx , to the following fourfold MB integral: 
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where ( )tsL /ln= .   

In the integral over the shifted contour in 5z , one can set 021 == xx  to obtain the following 

fivefold integral: 
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                                                                                                                                                 (4.41) 
where the asterisk on one of the gamma functions implies that the first pole is considered to be of 
the opposite nature. With regard the evaluation of (4.40) and (4.41), in an expansion in ε , after the 
resolution of the singularities in ε , one obtains 60 contributions where an expansion of the 
integrand in ε  becomes possible. Eventually, one reproduces the following leading asymptotic 
behaviour: 
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Thence, the eq. (4.39) can be rewritten also as follows: 
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Also this expression can be related to the number 24 (120 = 24 * 5;  72 = 24 * 3;  8640 = 360 * 24;  
216 = 24 * 9;  720 = 24 * 30;  288 = 24 * 12;  960 = 24 * 40;  3265920 = 24 * 136080) that is 
connected to the physical vibrations of the bosonic strings. Indeed, we obtain: 
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The iterative structure of the four-point MSYM amplitude found at two loops is 
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and the constant ( )2C  is given by 

                                                           ( ) 2
2

2

2
1ζ−=C .    (4.45) 

 
The iterative relation for the three-loop four-point amplitude is the following: 
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and the constant ( )3C  is given by 
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The constants 1c  and 2c  are expected to be rational numbers. 
A general n -point scattering amplitude can be factorized into the following form, 
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For a general theory, the Sudakov form factor at scale 2Q  can be written as 
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where [ ]g

Kγ  denotes the soft or (Wilson line) cusp anomalous dimension, which will produce a 2/1 ε  

pole after integration. The function [ ]gK  is a series of counter terms (pure poles in ε ), while [ ]gG  
includes non-singular dependence on ε  before integration, and produces a ε/1  pole after 
integration.  
The integral over G  is very simple, 
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The first integral over Kγ  gives, 
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Adding the [ ]gK  term to 1/2  of eq. (4.52), using the following equation 
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we see that the “– 1” is cancelled. Then the integral over ξ  is properly regulated, and evaluates to 
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Combining this result with eq. (4.51) gives: 
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Thence, the eq. (4.50) can be rewritten also as follows: 
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For the complete amplitude for a general gauge group G , including all non-planar contributions, 
the parent-graph decomposition, 
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n ICag 22 ,    (4.56) 

 
is more convenient than the color-trace representation. 
The L -loop four-point amplitude is a Feynman integral with the following general structure and 
normalization, 
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where ,3,2,1, =mkm  are the three independent external momenta, jl  are the L  independent loop 

momenta, and nl  are the momenta of the ( )13 +L  propagators which are linear combinations of the 

jl  and the mk . 

At one loop, the structure of the =N  4 sYM four-point amplitude is especially simple. We modify 
eq. (4.56) slightly by extracting an overall prefactor, and write the result as, 
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where g  is the gauge coupling.  
At two loops, the full =N  4 sYM amplitude is given by a similar permutation sum as for the one-
loop case (4.58), 
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The UV divergence of the color-dressed amplitude depends only on the three integrals 21,VV  and 

8V : 
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                                ( ) ( ) ( )( )143212341313421243231423132412 TrTrsTrTrsTrTrs +++++× .    (4.60) 

 
Thus, we find that double-trace terms are absent from the divergence in the critical dimension cD , 

as for the case at three loops. 
For a general gauge group the leading UV divergence at four loops has a similarly simple structure, 
proportional to the tree-level color tensor: 
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where 
                                              ( ) ( )821

4

821
23 VCVCVC VVV ++=V .    (4.62) 

 
The coefficients 

21
, VV CC  and 

8VC are the group invariants associated with the corresponding 

vacuum diagrams. As at three loops, the four-loop group invariants are not independent; rather, they 
satisfy the following relations: 
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,    (4.64)            
28 VV CC = .    (4.65) 

 
As with the three-loop case, it is possible to rearrange the UV-divergent contributions at four loops 
into one-particle-reducible parent graphs. The divergent part of the amplitude then has the simple 
form 
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The one-loop bubble integral is simple to evaluate. For an arbitrary dimension D  and powers 1n  

and 2n  of the two propagators, it is given by 
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where 
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Thence, we can rewrite the eq. (4.67) also as follows: 
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In ε22/11 −=D  dimensions, we have ( ) 
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, 21 εnn . Inserting 

these values into eq. (4.67) we find that both integrals have the same UV pole, 
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The finite three-loop two-point integrals can be reduced to a set of master integrals using the 
method of integration by parts and we obtain, for example, the following relations for the ε/1  pole 
terms: 
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Thence, we can rewrite the eq. (4.68b), considering one of these solutions (for example the 4.71), 
also as follows: 
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We note that this equation can be connected with the following Ramanujan equation that has 8 
“modes” corresponding to the vibrations of the superstrings: 
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Indeed, 256 and 6272 are multiples of 8. Thence, we obtain: 
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Equating the three forms for 1V  at order ε/1  yields 
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and 
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With regard the analytic evaluation of 2V , after using eqs. (4.74) and (4.75) for ( )
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There are four inequivalent ways of factorizing the non-planar vacuum integral 8V  into a product of 

three-loop and one-loop two-point integrals.  
That is, all four ways of factorizing 8V  lead to the same expression, 
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Although it is not needed for the four-loop 4=N sYM  amplitude, a similar factorization and 
reduction procedure for 9V  gives 
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In general, a massless m -point L -loop gauge-theory amplitude ( )L

mΑ  in D  space-time dimensions, 

with all particles in the adjoint representation, may be written as 
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where g  is the gauge coupling constant. The sum runs over the complete set Γ of m -point L -loop 
graphs with only cubic (trivalent) vertices, including all permutations of external legs.  
More surprising than the duality itself is a consequent relation between gauge and gravity 
amplitudes. Once the gauge-theory amplitudes are arranged into a form satisfying the following 
equation 
                                          kji CCC +=         ⇒         kji nnn += ,    (4.83) 

 
the numerator factors of the corresponding L -loop gravity amplitudes, ( )L

mM , can be obtained 

simply by multiplying together two copies of gauge-theory numerator factors, 
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where κ  is the gravitational coupling. The in~  represent numerator factors of a second gauge-theory 

amplitude and the sum runs over the same set of graphs as in eq. (4.82). At least one family of 
numerators (in  or in~ ) must satisfy the duality (4.83). The construction (4.84) is expected to hold in 

a large class of gravity theories, including all theories that are the low-energy limits of string 
theories. At tree level, this double-copy property encodes the KLT relations between gravity and 
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gauge-theory amplitudes. For 8=N  supergravity both in  and in~  are numerators of 4=N sYM  

theory. 
In terms of the 85 distinct graphs, the four-loop sYM amplitude is given by 
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where 8765 ,,, llll  are the four independent loop momenta and 321 ,, kkk  are the three independent 

external momenta. The 
i

pα are the momenta of the internal propagators and are linear combinations 

of the independent loop momenta jl  and the external momenta mk . As usual, ( )D
j

Dld π2/  is the D -

dimensional integration measure for the thj  loop momentum. The numerator factors ( )jji lkN ,  are 

polynomial in both internal and external momenta. The full amplitude is obtained by summing over 
the group 4S  of 24 permutations of the external leg labels.  
Using the double-copy relation (4.84), the four-loop four-point 8=N  supergravity amplitude is 

obtained simply by trading the color factor iC  for i
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i NAstn 4

~~ =  in eq. (4.85). Employing the 

relation =treetree AAts 44
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i treestuM 4  and changing the gauge coupling to the gravitational coupling, we 
have 
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where ( )jji lkN ,  are the gauge-theory numerator factors. 

We note that in the eqs. (4.85) and (4.86) there are the numbers 5, 8 and 13 that are all Fibonacci’s 
numbers. Furthermore, also the number of permutations, i.e. 24 is important, because represent the 
number of the physical vibrations of the bosonic strings. 
The UV divergence in the critical dimension 2/11=D  is given by, 
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It is interesting to note, from eq. (4.87) that the single-trace UV divergence in 2/11=D  has 4

cN  

and 2
cN  components, but the 0cN  component vanishes.  

We note that the eqs. (4.85) and (4.87) can be related. Indeed, we have the following mathematical 
connection: 
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The values of the three master integrals appearing in eq. (4.87) are: 
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where mNO  denotes a certain three-loop two-point nonplanar integral. While its analytic expression 

in 2/11=D  is not known, it may be evaluated numerically using the Gegen-bauer polynomial x -
space technique (GPXT), with the result ...1983992267.6−=mNO . It’s interesting note that this 

number is very near at the value of the aurea ratio multiplied for 10, i.e. 
198,6180,61803398,61061803398,0 ≈≅=× .  

With regard the 4=N sYM  color double-trace UV divergence, the UV divergence from graphs 1 
through 50 has the following 3412TrTr component: 
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where K  is defined in the following equation:    
 
                                                          ( )4,3,2,1treestA≡K .    (4.90) 
 
Next we evaluate the remaining graphs, 51 through 85. Because the color factors of 1PR graphs do 
not contain double traces, it follows that, in fact, only the integrals 5251, II  and 72I  contribute to the 

double-trace terms. The numerator factors of these three integrals are all equal, 725251 NNN == . 

All these three integrals contain an essentially identical subdivergence, from a three-point three-
loop subgraph whose external legs carry momentum 54,lk  and 45 kl + . The three-point subgraph 

reduces to a propagator (two-point) subgraph for the respective cases of graphs 51, 52 and 72. 
These integrals can be evaluated in ε26−=D  using IBP identities and gluing relations through the 
necessary order, ( )0εΟ . The results are: 
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In the trace basis, the color factors for graphs 51, 52 and 72 have the following form: 
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Taking into account the relative symmetry factors, we see that the relevant linear combination of 
propagator integrals for the 1cN  part is  725251 21 PPPP

cN
++≡  , which is given by, 
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Next we need to identify a subtraction that accounts for the three-loop counterterm needed to cancel 
the pole given in the following equation: 
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Now we will choose an SM  scheme for the three-loop renormalization, where the necessary 
counterterms are 
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Notice that the factor of ( ) ε32
5

−− l  in eqs. (4.91) and (4.96) is absent in the counterterm contributions 

(4.98) and (4.99).  
We will discuss in detail only the graph 51 for which we consider the following subtracted integral, 
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The quadratic terms in the numerator factor 51N  are given by, 
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The 2/1 ε  and ε/1  terms in subI51  in eq. (4.100) are correctly captured by 
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To extract the UV pole it is sufficient to simplify it to the form of a massive bubble integral by 
rearranging the external momenta, 
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The momentum-independent parts of these bubble integrals are given by 
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Including the overall factors, we get, 
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Similarly, the 1

cN  double-trace contribution is obtained using the same formula (4.103) with 51P  

replaced by 1
cN

P , taken from eqs. (4.96) and (4.99), 
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We notice that, similarly to the numerator factor quadN51  in eq. (4.101), both (4.106) and (4.107) have 

manifest permutation symmetry. Plugging eqs. (4.106) and (4.107) into the full amplitude, 
including the double-trace part of the color factors, the sum over all 24 permutations, and the 
overall prefactor, we obtain, 
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We note that the eq. (4.102), can be rewritten also as follows: 
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Also this equation (there are the numbers 8 and 24), can be related with the Ramanujan equation 
that has 8 “modes” corresponding to the vibrations of the superstrings. Thence, we obtain: 
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Finally, we add the contribution (4.89) from the graphs 1-50 that have no subdivergences, in order 
to obtain the total four-loop divergence: 
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Of course, the double-trace part of the four-loop counterterm must be chosen to cancel these poles, 
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corresponding to a nonvanishing divergent coefficient for a counterterm of the schematic form, 

( ) ( )224 FTrFTr kk DD − . In conclusion, the double-trace terms in the four-point 4=N sYM  

amplitude to diverge at four-loops, saturating the double-trace finiteness bound of LDc /84 += . 

 
 
 
 
 
Appendix A. 
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The new possible method of factorization of a number (principally applied to the numbers 496 
and 6480) 
 
With regard this new possible method of factorization, we can obtain the following conclusion: 
 
We consider, for example, the N=(3^2)x+5; 
 
[Similar conclusions will be valid for the cases : N=(3^2)x+1;N=(3^2)x+3;N=(3^2)x+7. And of 
course, also for the cases  in which the square is different from 3^2=9.] 
 
We take for example the follow:  N=185=5*37=9*20+5 
 
We can identify  N among the factors on the right of the following column: 
 
1*5 R=4  
2*14 R=8 
3*23 R=12 
... 
21*185 R=84 
... 
 
In addition, among the factors of right, we’ll find the multiples of N in the following points: 
 
... 
206*(185*10) R=824=84+(185*4) 
... 
391*(185*19) R=1564=84+(185*8) 
... 
 
 
To factorize N we must try a multiple, among the factors in the right of this column, which 
corresponds R equal to a number squared. In this case, the multiple is the following: 

 
... 
576*(185*28) R=2304=48^2=84+(185*12) 
 
 

Where R divided by 4 gives a number squared equal to: 
 
Q'=576=24^2=21+(185*3)   
 
 
[Q' is equal to the left factor of the column.] 
 
This means that will be enough to find a square equal to: 21+185y ;where y, in this particular 
column, can take any integer value. Generalizing, we can say that for each N(odd)=9x+5, we need 
to find: 
 
Q'=[(N-5)/9+1]+Ny 
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And some of those Q', there are an infinite number, can be calculated as following: 
 
Q'1=[(N-2)/3]^2  
 
Q'2={[(N-2)/3]*2+2}^2 
Q'3={[(N-2)/3]*4+2}^2 
 
Q'4={[(N-2)/3]*5+4}^2 
Q'5={[(N-2)/3]*7+4}^2 
 
Q'6={[(N-2)/3]*8+6}^2 
Q'7={[(N-2)/3]*10+6}^2 
 
etc. 
 
 

The rule that generates them, should be evident. The point is that these aren’t the squares from 
which it is possible factorize N. The squares that are needed instead are obtained by:  
 
[Q'1^(1/2)-F1z]^2      [Where F1z is a multiple of one of the factors of N] 
 
[Q'2^(1/2)+F1z]^2 
[Q'3^(1/2)-F1z]^2 
 
[Q'4^(1/2)+F1z]^2 
[Q'5^(1/2)-F1z]^2 
 
etc. 
 
Also in this case, the rule should be evident. 
 
In the case of  N=185=5*37, with F1z=37*1, the various Q' that we need are: 
 
(61-37)^2=24^2=21+185*3 
 
[(61*2+2)+37]^2=161^2=21+185*140 
[(61*4+2)-37]^2=209^2=21+185*236 
 
[(61*5+4)+37]^2=346^2=21+185*647 
[(61*7+4)-37]^2=394^2=21+185*839 
 
etc. 
 
From these squares can be factorized N. But we need to know the factors of N. 
 
Taking always for example N=185, we can say that: being Q'1=61^2=Som.1/121, to obtain the 
factorization of N is necessary to find a multiple of N = Som. 121/q  [where q is the minor term of 
the summation.] 
 
In this case, given that: 
 
Som 1/121=Q'1=61^2=21+185*20 and; 
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Som 1/47=(61-37)^2=21+185*3 
 
we have that: 
 
Som 121/49=185*17 
 
 
In summary, the problem at this point is, given N(odd)=9x+5, calculate: 
 
Som. {[(N-2)/3]*2-1}/ q = multiple of N  [where q is the minor term of the summation.] 
 
We don’t know if this is a problem easily solved, regardless of the knowledge of the factors of N, 
but considering the initial problem for factorize an any N, it seems to us should be a small step 
forward. The initial problem was, in fact, given N, calculate   Q=R+(Ti+2)+(Ti+4)+... + (Ti+x) 
 
 
According to the rules previously mentioned, we know that, in the case of N(odd)=9x+5,  
 
 
                               [(N-2)/3]^2=[(N-5)/9+1]+(Multiple of N), and that, 
                     
                         {[(N-2)/3]-F1z}^2=[(N-5)/9+1]+(Multiple of N), thence, 
 
                                 [(N-2)/3]^2-{[(N-2)/3]-F1z}^2=(Multiple of N) 
  
In the case of N=185=5*37, 
  
1*5    
2*14 
3*23 
... 
21*185 
we have that: 
  
                                       [(185-2)/3]^2=[(185-5)/9+1]+(20*185), 
                        
                         {[(185-2)/3]-(37*1)}^2=[(185-5)/9+1]+(3*185), and thence we have that, 
 
                             [(185-2)/3]^2-{[(185-2)/3]-(37*1)}^2=(20-3)*185. 
  
Doing the calculations, we have that: 
  
                 61^2=21+20*185, 
          
(61-37)^2=21+3*185, and thence we have that, 
 
61^2-(61-37)^2=17*185;  
 
that, considering the squares as sums of odd numbers, can be written also as: 
  
                                                          Som1/121=21+20*185   
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                           (sum of all the odd numbers from 1 to 121 which is equal to 3721) 
                  
                                                           Som1/47=21+3*185   
 
                             (sum of all the odd numbers from 1 to 47 that is 576), thence, 
 
                                          Som1/121-Som1/47=Som49/121=17*185 
 
(In fact: 3721 – 576 = 3145 = 17 * 185) 
  
In conclusion, in the case of N=185, we need to factorize: Som q/121=Multiple of 185, where q(49) 
is the minor term of the summation . 
 
In the case of 6480, with Q equal to 9, we will proceed to obtain a number not divisible by 9 that we 
can factorize in the manner indicated above: 6480/9=720; 720/9=80, from which (80*4)=9*35+5. 
We note also that: 6480 = 24*270 = 24*9*30.  
  
  
This type of calculations that we have shown, can be applied only to numbers of the form 5 + 9x. 
A particular form from which we obtain R = 4 in correspondence of the first product and an 
increase of R of the same value: 
 
1*5 R=4           (5 = 5+9*0) 
2*14 R=8         (14 = 5+9*1) 
3*23 R=12       (23 = 5+9*2) 
... 
 
The basic principle, according to which to reach to the factorization of N is necessary to find a 
square equal to a multiple of N added to another number, linked to N itself, also applies to other 
cases. Cases, however, do not exhibit the same conditions as that in which N = 5 + 9x. 
So, for factorize the number 496, multiply it so as to obtain a number of desired form. 
It will not change the final results. 
 
N'=496*5=2480, indeed: N'=5+9*275 
 
Now, we know that: 
 
[(N'-2)/3]^2=[(N-5)/9+1]+(Multiple of N'), i.e.; [(2480-2)/3]^2=[(2480-5)/9+1]+(Multiple of N'), 
 
826^2=276+2480*275.  
 
That we can also write as: 
 
Som 1/1651=276+2480*275 
 
For factorize N' we have to find the following square: 
 
(826-F1z)^2=276+(Multiple of N') 
(826-F2z')^2=276+(Multiple of N') 
(826-F3z'')^2=276+(Multiple of N') 
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(826-F4z''')^2=276+(Multiple of N') 
(826-F5z'''')^2=276+(Multiple of N') 
 
 
[The squares are 5 in total, one less than the number of factors of N' (2;2;2;2;31;5).] 
 
The squares in question are: 
 
(826-660)^2=276+2480*11 ;whence:  
826^2-(826-660)^2=Som1/1651-Som1/331=Som333/1651=2480*264  
(826-620)^2=276+2480*17  
826^2-(826-620)^2=Som1/1651-Som1/411=Som413/1651=2480*258 
(826-412)^2=276+2480*69  
826^2-(826-412)^2=Som1/1651-Som1/827=Som829/1651=2480*206 
(826-372)^2=276+2480*83  
826^2-(826-372)^2=Som1/1651-Som1/907=Som909/1651=2480*192 
(826-40)^2=276+2480*249  
826^2-(826-40)^2=Som1/1651-Som1/1571=Som1573/1651=2480*26 
 
Not knowing a priori the values of z, z ', z''; ... , the only way to proceed in order to obtain the 
various "F" is the following: 
 
F1z=660=2*2*3*5*11; from which, at least in one case: F1=2; z=330; or in another:  
 
F1=5; z=132 
 
F1z'=620=2*2*5*31  
 
F2=2;  
 
z'=310 F2=31; z'=20 
 
F2z''=412=2*2*103  
 
F3=2; z''=206 F3=2;  
z''=206 
 
F3z'''=372=2*2*3*31  
 
F4=31; z'''=12 F4=2;  
z'''=186 
 
F4z''''=40=2*2*2*5  
 
F5=5; z''''=8  
F5=2; z''''=20 
 
 
[The ways in which the various "F" and relative "z" are ranked are only some of the possible, 
precisely because of the current difficulty of knowing a priori of the values of the various "z".] 
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It is therefore a result inevitably partial, but certainly useful. 
We remember that 16 is connected to the 496, indeed 496 = 16 * 31 and that 16 = 2 * 8, thence is 
connected with the Ramanujan’s function concerning the modes corresponding to the physical 
vibrations of the superstrings, i.e.: 
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SCHEME 
 
In this scheme, the # sign indicates multiplication 
 
                                                                                                   SX /// DX 
    
   ... / 1#17 / 1#15 / 1#13 / 1#11 / 1#9  / 1#7 / 1#5  / 1#3 / 1#1 /// 2#2 / 2#4  / 2#6  / 2#8 // 
3#3  / 3#5 / 3#7  / 3#9 // 4#4 / 4#6 / 4#8 / 4#10 // 5#5 / 5#7 / 5#9 / 5#11 // 6#6 / ... 
   ... / 2#26 / 2#24 / 2#22 / 2#20/ 2#18/2#16/ 2#14/2#12/2#10///3#11/3#13/3#15/3#17 
//4#12/4#14/4#16/ 4#18//5#13/5#15/5#17/5#19//6#14/6#16/6#18/6#20// 7#15/ ... 
   ... /3#35 /3#33 / 3#31 /  3#29/ 3#27 /3#25/3#23/3#21 
/3#19///4#20/4#22/4#24/4#26//5#21/ 5#23/5#25/5#27//6#22/ 
6#24/6#26/6#28//7#23/7#25/7#27/7#29// 8#24/ ... 
   ... /4#44/ 4#42 / 4#40 /  4#38/ 4#36/ 4#34/4#32/4#30/4#28/// 
5#29/5#31/5#33/5#35//6#30/ 6#32/6#34/6#36//7#31/7#33/ 
7#35/7#37//8#32/8#34/8#36/8#38//9#33/ ...  
   ... ... ... 
 
 
 
Let us return to the method used to factorize 6480 and us refer, for the moment, to the scheme 
above. Wanting to place the number in the right part of one of the pairs of factors present in it, the 
first step is to verify which of the following forms the number belongs. 
 
 
F1=9x+1 
F2=9x+3 
F3=9x+5 
F4=9x+7 
F5=9x+9 
F6=9x+11 
F7=9x+13 
F8=9x+15 
F9=9x+17 
 
6480=9*719+9 
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Now, since 6480 a multiple of 9 can not in any way onward, through multiplication, to the form 9x 
+5, which would allow me to factorize this with the usual method. Method believe that however 
should have a variant refers to all other forms, excluding the one to which belongs 6480. In fact, 
considering that scheme of numbers, in which the term of the right of each pair increases of Q' = 
3^2, all numbers multiples of Q' behave in a different way from the others. 
[The same is true for numbers multiples of 5^2 in the scheme in which the terms of the right of the 
various pairs increase in 5^2, for the numbers multiples of 7^2 in the scheme in which the terms of 
the right of the various pairs increase of 7^2.] 
And as the numbers multiples of 9, behave even the numbers in which the term of the right of the 
pair of factors that compose them is a multiple of 3. So the numbers are divisible by Q'^1/2. 
 
Referring to the SX  part of the scheme, we note that: 
 
(1*3=3) R=1 
2*12=24 R=1 
3*21=63 R=1 
... 
 
(1*9=9) R=0 
2*18=36 R=0 
3*27=81 R=0 
... 
 
(1*15=15) R=1 
2*24=48 R=1 
3*33=99 R=1 
... 
 
(1*21=21) R=4 
2*30=60 R=4 
3*39=117 R=4 
... 
 
(1*27=27) R=9 
2*36=72 R=9 
3*45=135 R=9 
...  
 
(1*33=33) R=16 
2*42=84 R=16 
3*51=153 R=16 
... 
 
The term of the right of each pair initial (in parentheses) is a multiple of 3, then, given that the 
square of which increases is 9, the number obtained from the product of each pair is a multiple of 3. 
In these cases the value of R is always a square, whose variation is perfectly understandable. 
[Similar considerations will also apply to the pairs present in the side DX of the scheme] 
The fact that 6480 is a multiple of 9 allows us to factorize without necessarily consider it as a term 
of the right of a pair of factors but as a product of them to which inevitably corresponds to a value 
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of R equal to a square. 
 
It should also be said that every number present in this scheme should refer to a pair whose factors 
are both even or odd. 
 
Then proceed as follows: 
 
[We must also say that the natural way of proceeding would be to continue dividing N to Q, since 
this represents the first step, with Q equal to 9 in this case, to obtain a number not divisible by 9 to 
factorize in the usual manner : 6480/9 = 720; 720/9 = 80, from which (80*4) = 9*35+5] 
 
N=6480=9*720 
 
We divide N for 2 so as to obtain a pair whose factors are both even or odd. 
6480=2*3240 
 
from which, by subtracting a multiple of 9 by the second term (in this case 9*1) and a multiple 
equal to 1 (in this case 1*1) from the first term, we obtain: 
 
1*3231  
 
This is one of the initial pairs, where the term on the right is a multiple of 3, present at the side SX 
of scheme of the numbers. 
 
SX 
 
1*1 ... (1*3) ... (1*9) ... (1*15) ... (1*21)  
... (1*27) ... (1*33) ... (1*39) ... ... ...  
(1*3231) 
R=1 R=0 R=1  
R=4 R=9 R=16  
R=25 R=? 
Som1/1 Som0 Som1/1 Som1/3  
Som1/5 Som1/7 Som1/9 Som1/? 
 
Below each pair of terms we have reported the respective value of R which, we remember, remains 
unchanged.  
 
Indeed: 
 
1*3 R=1 
2*12 R=1 
3*21 R=1 
... 
 
The next step is to calculate the value of R corresponding to 1*3231. Then we compute the second 
term of the summation refers to R in this way: 
 
3231=n 
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[(n-9)/6]*2-1 
 
from which: 
 
R=?=Som1/1073 
 
from which: 
 
R=537^2 
 
Indeed: 
 
1*3231 + R =540^2  
 
 [To check that R is correct we must add it to the product corresponding to it and verify that we get 
a square.] 
 
Thence: 
 
2*3240 + R=543^2 
 
Knowing R we can factorize N: 
 
2*3240=Som(1073+2)/x [with x > of (1073+2).] 
 
we obtain: 
 
F1=1080 
F2=6=2*3  [The result is trivial because we know that  N is divisible for 3^2.] 
 
At this point, we note that the couple of factors (2 and 3240) that comprise N is even, thence we can 
proceed with a new factorization dividing by two the second term of the same pair: 
 
2*3240=2*2*1620=4*1620 
 
We obtain: 
 
1*1593 
 
Indeed: 
 
1*1593 
2*1602 
3*1611 
4*1620 
.... 
 
Where 1 * 1593 is one of the initial couples (where the term on the right is a multiple of 3) that are 
present to the left (SX) of the schema of numbers. 
 
we compute  R=264^2=Som1/527 
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and factorize N: 
 
4*1620=Som529/x 
 
we obtain: 
 
F1=540 
F2=12=4*3  [Also in this case the result is trivial because we know that  N is divisible for 3^2.] 
 
Proceed with a new factorization: 
 
4*1620=4*2*810=8*810 
 
we obtain: 
 
1*747 
 
We compute R=123^2  and factorize N: 
 
8*810=Som247/x 
 
we obtain: 
 
F1=270 
F2=24=8*3   [as above.] 
 
At this point we have to stop since: 8*810 = 8*2*405 = 16*405 where: 16 and 405 aren’t both even 
or odd. 
 
Then divide by 3 the second term of the couple. [We can do this because we know that N is 
divisible by 9.] 
 
16*405=16*3*135 
 
from which we can proceed with the factorization of the second term of the couple: 
 
3*135 
 
We obtain: 
 
1*117 
 
we compute R=18^2  and factorize 405: 
 
3*135=Som37/x 
 
we obtain: 
 
F1=45 
F2=9=3*3  [as above.] 
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Similar conclusions are obtained in all the cases in which N is inserted in a pattern of numbers 
where the term on the right of each pair of factors increases by a number, squared, for which is 
divisible N. 
So having N = 6480 = 2*2*2*2*3*3*3*3*5, the increases to exclude are: 
 
Q'= 4; Q' = 16; Q'= 36; Q' = 9; Q'= 81; etc.. 
 
We remember that 6480 appear in the formula (4.42b). Indeed: 
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Furthermore, we note that 6480 = 24 * 34 * 5 where 2, 3 and 5 are also Fibonacci’s numbers and 
prime numbers and 16 is equal to 8 * 2, where 8 is connected with the following Ramanujan’s 
function: 
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Now we consider the following equation: 
 
1°)   [(72x'+44+2N+18NM-18Nx)/6]^2=[(36Q-9V+36x'+20)/4]*[(4Q-V+36x'+20)/4]+4Q 
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where: 
 
2°)   x'={-180+[180^2+4*144*(V-56)]^1/2+}/288 
 
3°)   V=4(Nx+R)-4y 
 
and: 
 
4°)   x=(288^2*y^2-18432Ny-9216y+32^2*N^2+1280N+256-48^2*R)/(48^2*N) 
 
with N, M, Q and R equal to different known numeric values. 
 
This equation represents a try of generalization of the previous method, for instance the one applied 
to the number 496. A try that, as the method to which it is addressed, is connected to the schema of 
numbers that we have obtained. 
In this scheme and its variants, (one attached refers to an increase in the first term of each pair equal 
to 1^2 and of the second term equal to 3^2. It is the first diagram obtained and also the one provided 
with further demonstrations . But we can to obtain the other, similar, depending from the values of 
the square in question), are also connected to the equations for the factorization of the numbers of 
which we know the approximate ratio between the factors. 
 
 
 
 
 
 
 
  Scheme of all the non-prime numbers such as: N=5+8x. 
 
 
 
 
      __ 
1t  I__  1°=21                                                                         =21 
     I       2°=21+(24)                                                                =45 
2t  I__  3°=2°+(0)                                                                   =45 
     I       4°=21+(24+24)                                                         =69 
3t  I       5°=4°+(16)                                                                =85 
     I__   6°=5°+(16-24)                                                          =77 
     I       7°=21+(24+24+24)                                                  =93 
4t  I       8°=7°+(16+16)                                                         =125 
     I       9°=8°+(16+16-24)                                                    =133 
     I__10°=9°+(16+16-24-24)                                              =117 
     I    11°=21+(24+24+24+24)                                            =117 
     I    12°=11°+(16+16+16)                                                 =165 
5t  I    13°=12°+(16+16+16-24)                                           =189 
     I    14°=13°+(16+16+16-24-24)                                      =189 
     I__15°=14°+(16+16+16-24-24-24)                                =165 
     I    16°=21+(24+24+24+24+24)                                     =141 
     I    17°=16°+(16+16+16+16)                                          =205 
6t  I    18°=17°+(16+16+16+16-24)                                    =245 
     I    19°=18°+(16+16+16+16-24-24)                               =261 
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     I    20°=19°+(16+16+16+16-24-24-24)                         =253 
     I__21°=20°+(16+16+16+16-24-24-24-24)                   =221 
     I    22°=21+(24+24+24+24+24+24)                              =165 
     I    23°=22°+(16+16+16+16+16)                                   =245 
     I    24°=23°+(16+16+16+16+16-24)                             =301 
7t  I   25°=24°+(16+16+16+16+16-24-24)                        =333 
     I   26°=25°+(16+16+16+16+16-24-24-24)                   =341 
     I   27°=26°+(16+16+16+16+16-24-24-24-24)             =325 
     I_28°=27°+(16+16+16+16+16-24-24-24-24-24)        =285 
     I  ... 
     I  ... 
     I  ... 
 
 
 
We note that in this scheme there are the number 16 and 24 (where 16 = 2 * 8), numbers connected 
respectively to the modes corresponding to the physical vibrations of the superstrings and of the 
bosonic strings, through the following Ramanujan’s equations: 
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We know that the factorization of a number can be obtained from the difference of two squares, but 
also, in the case where N=5+8x, by the following difference: 
 
                                             [Y(M16-12)+M40+45]-12Y^2=N 
 
with M>(Y-1), from which we obtain N divisible by (2Y+5). 
 
The formula is obtained from the schema of above, which in turn is derived from the schema of the 
initial numbers. Moreover this is not valid for the first number of each section indicated on the left, 
i.e., for the numbers of the type: 
                                                               N = 21+24 z. 
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There will be similar formulas for the cases where: N = 1+8 x, N = 3+8 x and N = 7+8 x. 
 
 
Now we briefly describe the method that we have used to arrive at the scheme of numbers and we 
illustrate successfully  a part of it entirely similar to the other. 
 
 
 
Suppose that we have: 
 
N = 13 with R = 3; Ti = 7 and Tu = 7 +2 = 9 
 
We use “Tu”, which is the term odd next to “Ti”. 
 
Let us the problem of obtaining R starting from the sum of the differences between the various 
terms odd next to it and the sums in which can be decompose the squares. 
 
In the case of N = 13 and Tu = 9 we consider Q = 36 = Som1/11= (1+11) + (3+9) + (5+7) = 3*12 
and we proceed as follows: 
 
(Tu-12) + (Tu +2-12) + (Tu +4-12) = (9-12) + (11-12) + (13-12) = -3-1 +1 = -3 
 
This means that starting from Tu = 9 and adding the two terms odd subsequent to it, we can obtain a 
square simply by adding 3. In fact: 
 
Q = 36 = (9 +11+13)+3 
 
Where 3 correspond to the value that we want to get. 
 
In particular we can see as for each value of N for which R corresponds to Tu /3 the square that 
must be considered is always (2R)^2. 
Thence we can immediately calculate what is the square which added to N provides us with another 
square, and we are able to factorize N. 
  
In fact doing the same for the other possible odd values of R, we obtain: 
 
N = 13, R = 3; Tu = 9 from which: Q = 36 and therefore N = 1*13 
N = 44, R = 5; Tu = 15 from which: Q = 100 and therefore N = 2*22 
N = 93, R = 7; Tu = 21 from which: Q = 196 and therefore N = 3*31 
... 
 
Here is as come out the products between factors that increase from time to time of 1 and 9. 
This represents the starting point. 
 
The operations can, however, be as follows: 
 
N = 13 = Som1/13-Som1/11 = 7^2-6^2 
N = 44 = Som1/23-Som1/19 = 12^2-10^2 
N = 93 = Som1/33-Som1/27 = 17^2-14^2 
... 
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The important fact, however, regard the values of “R” and “Tu” for each number that follow a clear 
pattern. The one from which we can derive the formulas for the factorization. 
 
Generalizing the case we obtain the following diagram that represents a part of the general one. 
 
 
.../ 31^2-30^2=1*61[R=83;Tu=25]  /19^2-18^2=1*37[R=27;Tu=17]/    7^2-6^2=1*13[R=3;Tu=9]/  
5^2-2^2=3*7[R=15;Tu=13]/  8^2-2^2=6*10[R=61;Tu=33]/... 
.../ 36^2-34^2=2*70[R+2;Tu+6]      / 24^2-22^2=2*46[R+2;Tu+6]    /12^2-
10^2=2*22[R+2;Tu+6]/10^2-6^2=4*16[R+2;Tu+6]  /13^2-6^2=7*19[R+2;Tu+6]    /... 
.../ 41^2-38^2=3*79["]                     /  29^2-26^2=3*55["]                   /17^2-14^2=3*31["]                
/15^2-10^2=5*25["]               /18^2-10^2=8*28["]                  /... 
 
It is noted that the starting values of R and Tu follow a particular consequence, in this scheme as in 
the other, that are similar, which will form the general one, identical to that seen previously. 
[To verify the starting values of the values of  “R” and “Tu” just do the test on the products that we 
encounter as we go down each column.] 
 
The kind of increasing trend of the values of  “R” and “Tu” we understand also why those that we 
get directly from N correspond to the exact, and therefore useful to the factorization, only from a 
certain point onwards. Precisely, when R becomes less than “Tu”, that is, when the relationship 
between the two factors of N approaches the square, in this case 9, of which increases the factor of 
right. 
 
However, as we have said earlier, just increase R and consequently “Tu”, for use effectively the 
formulas also when the relationship between the factors moves very away from the square. 
 
 
We believe that there is very much to be explored in this regard. 
 
We return to the formula 
                                              [Y(M16-12) +M40+45]-12Y^2 = N 
 
with M>(Y-1), from which we obtain N divisible by (2Y+5). 
The formula works as follows: 
  
We consider the pattern of numbers seen previously, the term M in the formula indicates the 
amount of  “16” present in the various summations, while the term Y the quantity of “24”. 
  
Furthermore, the first number of each section is divisible by 3, the second is divisible by 5, the third 
is divisible by 7, and so on. 
Therefore, given that the formula does not allow to calculate the first numbers of each section, those 
of the type 21+24z, divisible by 3, we obtain N divisible (for 2Y+5). 
  
In fact, putting Y = 0 and M = any number, considering thence the second number of each section, 
is obtained from the formula:  N divisible by 5. 
  
To give an example: 
  
the number 285, the 28th of the scheme, we can calculate it from the formula putting Y = 5 (the 
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“24” is repeated 5 times) and M = 5 (the “16” is repeated 5 times). 
  
From which: 
  
5*(5*16-12) +5*40 +45-12*5^2 = 285, divisible by: 2Y+5 = 15. In fact: 
  
285 = 15*19 
 
The number 253, the 20th of the schema, we can calculate it placing Y = 3 and M = 4. From which: 
  
3*(4*16-12) +4*40 +45-12* 3^2 = 253, divisible by: 2Y +5 = 11. In fact: 
  
253 = 11*23 
  
In conclusion, the best way to proceed to the factorization of a number, without of course be able to 
locate it in the diagram, we believe that can be the following: 
  
we consider all the possible values of M, by building the following series: 
  
M = 1;   Y(4)-12Y^2 = N-45-40 
M = 2;   Y(20)-12Y^2 = N-45-80 
M = 3,   Y(36)-12Y^2 = N-45-120 
... 
   
So if, for example, N = 389 = 5 +8*48, we obtain: 
  
M = 1;    Y (4)-12Y^2 = 304 
M = 2;    Y (20)-12Y^2 = 264 
M = 3,    Y (36)-12Y^2 = 224 
M = 4,    Y (52)-12Y^2 = 184 
M = 5,    Y (68)-12Y^2 = 144 
M = 6,    Y (84)-12Y^2 = 104 
... 
  
At this point, we just have to try Y values less than or equal to M to obtain a new series unchanged 
within which identify N. In this case, however, N is a prime number, thence, none of the possible 
values of Y may be fine. 
  
With N = 405 = 5 +8*50 instead we get: 
  
M1;…. = 320  
M2; ... = 280 
M3;… = 240 
M4;… = 200 
... 
  
Trying the values of Y we get: 
  
M1; (320) Y = 0; = 0    M2; (280) Y = 0; = 0    M3; (240) Y = 0; = 0 
M4; (200) Y = 0; = 0    M5; (160) Y = 0; = 0    M6; (120) Y = 0; = 0 
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Y = 1; = -8        Y = 1; = 8         Y = 1; = 24 
Y = 1; = 40       Y = 1; = 56       Y = 1; = 72 
                                                      
Y = 2; = -8        Y = 2; = 24       Y = 2; = 56       Y = 2; = 88        Y = 2; = 120 [YES] 
                                                                                         
Y = 3; = 0,         Y = 3; = 48       Y = 3; = 96      Y = 3; = 144 
                                                                                                                               
Y = 4; = 16        Y = 4; = 80       Y = 4; = 144 
                                                                                                                                                                
  
Y = 5; = 40        Y = 5; = 120 [YES] 
                                                                                                                                                                
Y = 6; = 72 
  
Obtained the correspondence with M6;(120), Y = 2 and Y = 5, we can say that: 
  
2*(6*16-12) +6*40 +45-12*2^2 = 5*(6*16-12) +6*40 +45-12*5^2 = 405 
  
From which: 
  
405/(2Y+5) = 405/9 = 45 and 405/15 = 27 
  
  
From the series shown above, which remains unchanged as we said, we can also see many types of 
orders, from which it may be possible to speed up the steps. 
 
Also in this possible method of factorization, it is evident that the various and useful numerical 
results concerning the numbers 496 and 6480, can be considered as news possible solutions 
concerning the equations of the string theory (superstrings and bosonic strings). This is the goal, the 
fundamental result of this interesting Appendix. 
 
 
Appendix B. 
 
NEW MATHEMATICAL OBSERVATIONS CONCERNING VARIOUS 

NUMBERS INCLUDED IN SOME EQUATIONS REGARDING THE 

RELATIONSHIP BETWEEN YANG-MILLS THEORY AND GRAVITY 
   

 

First provisional observations 
 
First series (from eqs. 4.42): 
  

2, 5, 6, 9, 10, 12, 13, 16, 17, 18, 19, 24, 67, 72, 120, 163, 216, 241,  
 
288, 317, 331, 341, 720, 960, 1129, 1203, 1385, 6480, 6523, 8640,  
 
180631, 3265920 
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Numbers in green near to the Fibonacci’s numbers, that we will cover 
in the unified Table 
 
Second series (from eqs. 4.71-4.81 and 4.88) 
  
5, 8, 21, 25, 32, 64, 75, 105, 125, 128, 224, 256, 288, 496, 512, 576,  
 
832, 896, 928, 2048, 2625, 4352, 5248, 6272, 12352, 12992, 15552,  
 
20992. 
  

224 =14*16, 14=G2 
 
496 perfect number and double of 248 = E8 
 
5, 8  and 21 Fibonacci’s numbers 
 
Blue  =   multiple of 5 and 25 
 
Red =  powers of 2  
   
 
 

 
 
 
 
 
 
 
 
 
 
 
 

UNIFIED TABLE FIRST AND SECOND SERIES 
 

 In red the Fibonacci’s numbers,  Lie’s numbers or partitions that 
coincide with numbers of the two series  

 
 
 

 
FIRST 
SERIES  

SECOND 
SERIES 

FIBONACCI LIE PARTITIONS  

2  2 3 2      3   
5 5 5  5  
6 8 8 7 7  
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9  8    
10      
12    11  
13  13 13 13 mean 

between 11 
and 15 

 

16    15  
17      
18      
19 21 21 21 22  
24 25  32  34 31 30 42  
67 64 55 57 56  
72 75 72 mean 

between 
55 and 89 

73 77  

    96 mean 
between 72 
and 120  

 

120 105 125 
128 

 133 135  

163  144 133 176  
216 224 233 241   
241 256 233 241 231  
288 288 305 meand  

233 and 
610 

273 297  

317  305 mean  
233 and 
610 

307   

331  377 381   
341  377 381 385  
 496 493,5 

mean 
between 
377 and 
610 

507 490  

 512  507 490  
 576  577 627  
720   703 627  
 832 798,5 

mean 
between 
610 e 987  

 792  

 896  871 897 mean 
between 
792 and 
1002 

 

960 928 987 931   
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1129   1123   
1203   1191 1255  
1385  1597 1333 1255  
 2048  2071 1958  
 2625 2584 2653   
 4352 4182 4231 4565  
 5248  5257 5604  
6480   6481  Diff. 1 
6523   6643   
 6762 6766 6807 6842  
8640   8557 8349  
 12352 10498 12433 12310  
 12992  12883 12310  
 15552 14106 

mean 
15501 16430 mean 

14883 and 
17977 

 

      
180631   180201 173525  
 20992 28212 20881   
3265920   3267057 3238993 

not real but 
valued 

 

      
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
TABLE FACTORIZATIONS   
 
Numbers 
first series 

Factors Numbers 
second 
series 

Factors Observations 

2 prime 5 prime  
5 prime 8 2^3  
6 2*3    
9 3^2    
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10 2*5    
12 2^2*3   3  Lie’s 

number 
13 prime    
16 2^4    
17 prime    
18 2*3^2 21 3*7 3 and 7 Lie’s 

numbers 
19 prime 25   5^2  
  32 2^5  
24 2^3*3 64 2^6 3  Lie’s 

number 
67 prime 75 3*5^2 3  Lie’s 

number 
72 2^3*3^2   3  Lie’s 

number 
  105  3*5*7 7  Lie’s 

number 
  125 5^3  
  128 2^7  
120 2^3*3*5   3  Lie’s 

number 
163 prime 224 2^5*7 7  Lie’s 

number 
216 2*4*3^3 256 2^8 3  Lie’s 

number 
241 prime 288 2^5*3^2 3  Lie’s 

number 
288 2^5*3^2   3 Lie’s 

number 
317 prime    
331 prime    
341 11*31 496 2^4*31 31 Lie’s 

number 
  512 2^9  
  576 2^6*3^2 3  Lie’s 

number 
     
720 2^4*3^2*5 832 2^6 *13 13 Lie’s 

number 
  896 2^7*7 7 Lie’s 

number 
  928 2^5*29  
960 2^6*3*5   3 Lie’s 

number 
1129 prime    
1203 3*701    
1385 5*277 2048 2^11  
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  2625 3*5^3*7 3 and 7 Lie’s 
numbers 

  4352 2^8*17  
  5248 2^7*41  
     
6480 2^4*3^4*5   3 Lie’s 

number 
6523 11*593 6762 2*3*7^2*23 7 Lie’s 

number 
     
8640 2^6*3^3*5 12352 2^6*193 3 Lie’s 

number 
  12992 2^6*7*29 7 Lie’s 

number 
  15552 2^6*3^5 3 Lie’s 

number 
     
     
180631 11*16421 20992 2^9*41  
     
3265920 2^7*3^6*5*7   3 and7 Lie’s 

numbers 
 
We note that 6480 = 24 * 34 * 5 where 2, 3 and 5 are also Fibonacci’s 
numbers and prime numbers and 16 is equal to 8 * 2, where 8 is 
connected with the following Ramanujan’s function: 
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Final observations 
 
Between almost all the factors of the numbers of the two series, there 
are always the Lie’s numbers smaller, for example 3, 7, 13,  and 31, 
alone or together, especially 3 and 7, and the product 3*7= 21 other 
Lie’s number which however doesn’t appear directly between the 
various factors, but as  3*7 where 3 and 7 are among the factors of a 
number of the two series, for example 6762=21*322, or 2625=21 
*125, with 125 number of the second series; finishing at 
3265920=21*155520 , with 155520 = 15552*10 , with 15552 number 
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of the second series. This fact (higher frequency of Lie’s numbers   3, 
7,13, 21 and 31 between the prime factors and not the primes, but 
only the number 21 between them) certainly reflects the symmetries 
of the exceptional groups of Lie in the natural phenomenon treated in 
this work. Other frequently factors are powers of 2 and 3. Wer also 
remember that some powers of 2 are between the numbers of the 
second series (those maked in red in the first provisional 
observations):  
 
 
 8 =      2^3,   
 
 32 =    2^5 
 
 64 =    2^6 
 
128=    2^7 
 
256=    2^8 
 
512 =  2^9 
 
2048= 2^11 
  
that often appear between the factors of some numbers (in addition to 
being themselves numbers of the second series), for example   
2^7 = 128 in the number 3265929 (first series), that, indie, is divisible 
by 128, since 3265920 = 128* 25515. 
About the Lie’s groups, we recall that the number of their dimension is 
a multiple of the Lie’s numbers. 
 
G2=14 =   2*7 
 
F4 = 52 = 4*13 
 
E6 = 78 = 6*13 
 
E7= 133 =19*7 
 
E8 = 248  = 8*31 
 
 
Tables with 2^a*k with k numbers of the series 
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TABLE  1    
 
 
 
 
 
2^a 2^e *k numbers of the 

first series 
k numbers of 
the two 
series 

observations 

2^2 2^2*3 =12 3 no 
2^3 2^3*3 =24 3 no 
2^3 2^3*3^2= 72 9 yes, but of the 

first series 
2^3 2^3*3*5 =120 15 no 
2^5 2^5*3^2 =288 9 yes, but of the 

first series 
2^4 2^4*3^2*5 =720 45 no 
2^6 2^6*3*5 =960 15 no 
2^4 2^4*3^4*5=6480 405 no 
2^6 2^6*3^3*5 =8640 135 no 
2^7 2^7*3^6*5*7=3265920 25515 no 
    
 
 
 
In this first Table 1, there is only   k = 9 as number of the first series, 
and none of the second series 
 
Table 2  with powers of 2 and numbers of the second series, 2^a*k , 
with k numbers of the first series   
 
 
2^a 2^a*k  

Numbers of the 
second series 

k =numbers of 
the two series 

observations 

2^5 2^5*7  = 224 7 no 
2^5 2^5*9   =288 9 yes 
2^4 2^4*31 =496 31 no 
2^6 2^6*13 =832 13 yes 
2^7 2^7*7   =896 7 no 
2^5 2^5*29 =928 29 no 
2^8 2^8*17 =4352 17 yes 
2^7 2^7*41= 5248 41 no 
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2^6 2^6*193 = 
12352 

193 no 

2^6 2^6*7*29= 
12992 

203 no 

2^6 2^6*3^5= 
15552 

3^5 = 243 no 

2^9 2^9*41= 
20992 

41 no 

 
In this Table 2, there are k = 9,  13 and 17 as numbers of the first 
series. Therefore there aren’t values of k as numbers of the second 
series. We note that 9, 13 and 17 are part of the arithmetic 
progression  
 
9 +4 = 13,    13+4 = 17, as tern of the general progression 
 
1+4+4+4… = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61,  
 
65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121,  
 
125,129 
 
Of this progression are part the numbers marked in  purple,  
belonging to the initial phase of the first series, and the numbers 
marked in blue, the largest and belonging to the second series. Only 5 
belongs to both series. Thence, also this progression may be 
important, at least in the initial phase of the two series. Many numbers 
of the two series differ by 1 from numbers of the said progression, for 
example all the powers of 2: 
 
 
 5=4+1,  9=8+1,    33=32+1,   65 = 64+1 ; 129 = 128+1,   257=256+1   
 
etc. 
 
 
Second series 
  
5, 8, 21, 25, 32, 64, 75, 105, 125, 128, 224, 256, 288, 496, 512, 576,  
 

832, 896, 928, 2048, 2625, 4352, 5248, 6272, 12352, 12992, 15552,  

 

20992. 

  

 
First series 
 
2, 5, 6, 9, 10, 12, 13, 16, 17, 18, 19, 24, 67, 72, 120, 163, 216, 241,  
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288, 317, 331, 341, 720, 960, 1129, 1203, 1385, 6480, 6523, 8640,  

 

180631, 3265920 

 

We also recall that 6, 24, 120 and 720, in the first series are also 
factorial numbers 
6=2! 
24=3! 
120=4! 
720=5! 
 
But this connection with the factorials seems to end here, although it 
may be of some importance. 
 
 
TABLE SUBSEQUENT RATIOS 
 
 
NUMBER
S FIRST 
SERIES 

SUBSEQUENT 
RATIOS 

NUMBER
S 
SECOND 
SERIES 

SUBSEQUENT 
RATIOS 

OBSERVATION
S 

2 - 5 -  
5 5/2= 2,50 8 8/5 =1,6 

≈1,618 
 

6 6/5= 1,20    
9 …       1,50    
10 1,11≈√√1,61

8 
   

12 1,20    
13 1,08    
16 1,23    
17 1,06    
18 1,05 21 2,625≈1,618^

2 
=2,6179 

 

19 1,05 25   1,19  
  32 1,28≈√1,618  
24 1,26 ≈√1,618 64 2  
67 2,79 75 1,17≈√√√3,14  
72 1,07    
  105  1,40  
  125 1,19  
  128 1,02  
120 1,66≈ 1,618    
163 1,35 224 1,75≈√3,14  
216 1,32 256 1,14≈√√√3,14  
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241 1,11≈√√1,61
8 

288   

288 1,19    
317 1,10≈√√1,61

8 
   

331 1,04    
341 1,03 496 1,72≈√3,14  
  512 1,03  
  576 1,12≈√√1,618  
     
720 2,11 832 1,44  
  896 1,07  
  928 1,03  
960 1,33≈√√3,14    
1129 1,17    
1203 1,06    
1385 1,15≈√√√3,1

4 
2048 2,20  

  2625 1,28≈√1,618  
  4352 1,65≈ 1,618  
  5248 1,20  
     
6480 4,67    
6523 1,006 6762 1,28≈√1,618  
     
8640 1,32≈√√3,14 12352 1,82  
  12992 1,05  
  15552 1,19  
     
     
180631 20,90 20992 1,34  
     
3265920 18,08    
 
 

Provisional conclusions 
 
The subsequent ratios, at least in the initial phase of the first 
series, vary between 1 and 2, with a few exceptions (2,50;   
2,79;   2,11). The arithmetic mean up to 1,15  of  1385  is   
 

34,66/27 =1,2837  ≈√1,618  = 1,2720 
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thence there is a relationship with phi, with a good numerical 
evidence. 
The same also for the second series, where there aren’t the 
large ratios (20,90 and 18,08) of the final phase of the first 
series. Now the arithmetic mean of all the subsequent ratios 
between the numbers of the second series is:  

 
36,785 / 28 = 1,31375 ≈ √3,14 

 
Here the connection is with  3,14 = π 
 
Ratios small very frequent are also: 
1,03 ,   1,04,   1,05,    1,06,   1,07,  symmetrical to 1,05  as their 
arithmetic mean. This number  1,05, that equal to about 
1,0619  ≈√√√1,618  and to 1,074 = √√√√3,14, and with 1,03 and 
1,04  as about square roots of  1,06 and 1,07, because √1,06= 
1,029 ≈ 1,03 and  √1,074= 1,036 ≈ 1,04. Thence, all the 
subsequent ratios, from the smallest to the largest, seem 
connected to 1,618 = Ф  and to  3,14 = π  
 
We also note that many numbers taken at random from the 
two series are divisible by 16. These numbers are 720, 960, 
4352, 5248, 6480, 8640, 15552, 20992 e 3265920. Indeed, we 
have that 
 
720/16 = 45;  960/16 = 60;  4352/16 = 272;  5248/16 = 328; 
 
6480/16 = 405;  8640/16 = 540;  15552/16 = 972;   
 
20992/16 = 1312;  3265920/16 = 204120 . 
 
These numbers are also divisible by 8 and/or 24. Indeed, we 
have: 
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720/24 = 30;  960/24 = 40;  4352/8 = 544/8 = 68;  5248/8 = 656/8  
 
= 82;  6480/24 = 270;  8640/24 = 360/24 = 15;  15552/24 = 648; 
 
20992/8 = 2624/8 = 328/8 =41;  3265920/24 = 136080/24 = 5670. 
 
We note that 16 is connected to the 496, indeed 496 = 16 * 31 
and  8 and 24 are the numbers connected respectively to the 
modes corresponding to the physical vibrations of the 
superstrings and of the bosonic strings, through the following 
Ramanujan’s equations: 
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