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Emergence of Lie Groups and Gauge Symmetries from Complex Dynamics 

Ervin Goldfain 

Abstract 

Last decade has seen mounting evidence that complex dynamics can shed new light on many open 

questions of contemporary theoretical physics. Starting from this vantage point, our goal here is to show 

that Lie groups and the gauge structure of the Standard Model follow from the universal framework of self-

organized criticality (SOC). In particular, we find that Lie groups and their algebra arise from the flow of 

spacetime dimensions with the energy scale.  
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1. Introduction 

A fundamental assumption of Quantum Field Theory (QFT) is that its vacuum state is a 

large many-body system of quantum fluctuations whose dynamics follows the framework 

of equilibrium thermodynamics. There is no guarantee that this conjecture continues to 

hold above the low-energy scale of the Standard Model. On the contrary, many condensed 

matter studies consistently suggest the opposite: on high-energy scales, unbalanced 

vacuum fluctuations are likely to slide outside equilibrium and the perturbative treatment 

of conventional QFT is prone to break down [3, 13-14].   

When driven far away from thermodynamic equilibrium, complex systems are known to 

exhibit emergent dynamics stemming from the interplay between nonlinear interaction 

of components and steady dissipation. As paradigm of this type of emergent behavior, 
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SOC has a vast range of applications extending from astrophysics, natural hazards and 

magnetospheric physics, to complex networks, internet dynamics, biophysics, and social 

sciences [1-2]. Given these observations, our starting hypothesis is that quantum vacuum 

can be realistically modelled as a SOC system relaxing towards a non-equilibrium steady 

state at the Fermi scale. 

The relevant observables of the so-called “sandpile” models of SOC relate to the key 

concept of avalanche and include its size s  and area a , the avalanche duration t  and  

linear size r . The probability distribution associated with these observables follows the 

finite-size scaling (FSS) ansatz [1]. 

  ( , )P L  ~ ( )
c
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

−
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in which  

 ( , , , )s a t r =    (2) 

Here L  denotes the upper bound of  , whose cutoff value is set by c . The parameters 

  and D  stand for the avalanche-size exponent  and avalanche dimension, respectively, 

and their specific values determine the universality class of the SOC process described by 

(1). The cutoff function ( )c   controls the finite-size effects of critical behavior and is 

defined as  
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To enable all moments of (1) to exist, the cutoff function must decay sufficiently fast. One 

obtains the following representation of the cutoff function upon power expanding it 

around zero,      

 ( )x  ~ 
21

(0) '(0) "(0) ..., 1
2

0, 1

x x x

x


 + +  + 

 → 

  (4) 

With reference to the case s = , the avalanche-size probability must be normalized to 

unity and its average be diverging along with L→ , which leads to the following 

constraints     

 
1

( ; ) 1
s

P s L


=

=              for L   , (5) 
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= →  for L→   (6) 

Under the assumption that (0) 0  , the behavior of (1) for an infinite system size may be 

approximated as  

 lim ( ; )
L

P s L
→

 ~ (0)ss
−
   (7) 

Furthermore, compliance with (5) and (6) requires that the avalanche-size exponent must 

fall in the range 

 1 2s    (8) 
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The most straightforward analog of 1s   in the framework of the minimal fractal 

manifold (MFM) is provided by [3-5] 

 1 1(4 ) 1s D − −→ = −    (9) 

which leads to the following form of the FSS ansatz (1) 

 ( , )cP    ~ ( )s c 
   , 1     (10a) 

  ( )c   ~ SD , 1        (10b)                                                                                                             

where   stands for the running energy scale, expressed in dimensionless form. 

2. Lie groups from dimensional flows  

In general, the arbitrarily small deviation from four spacetime dimensions  4 1D= −    

may be configured as a large multivariable set that runs with   as in  

 ( )f =  ,  1 2( , ,..., )N   = ,  1N     (11) 

Let q  denote the order parameter associated with the multifractal description of (1) [4-

5]. A notable property of phase-space trajectories is that they can be represented as groups 

of continuous transformations [6]. In light of this property, the flow equations 
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 are equivalent to the group of transformations 
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 1 0 2 0 0 0( ) ( ( ), ( ),...., ( ), , )i i Nf q        =   (13) 

Given (12) and (13), the effect of an infinitesimal shift d +  on any scalar phase-space 

function F  amounts to F dF+ , such that 

 
dF

XF
d

=   (14) 

in which the linear operator X  is the infinitesimal generator of the group and assumes 

the form 
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Considering that ( ( ))F    can be expanded in a converging power series and accounting 

for the invariance of X  under the group it generates, one obtains a generic solution of the 

flow (12 ) that can be presented as [6]   
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The formalism outlined above may be extrapolated to the case of two or more flows of the 

type (13), namely 
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where the infinitesimal group generators satisfy the commutation rules of the Lie algebra 

 ,i j ijk kX X X  =    (19) 

In general, an arbitrary multivariable flow is driven by the Lie group operator 

 
1

( ) exp( )
N

i iU X =    (20) 

where i  represent a set of continuous parameters. As it is well known, (20) underlines 

the symmetry attributes of angular rotation, spin, and the special unitary groups of the 

Standard Model. These findings fall in line with the idea that quantum spin emerges as 

topological signature of the MFM, a point elaborated upon in [3].  

3. Orthogonal groups and the “sum-of-squares” relationship  

A particular case of interest derived from (13-14) is provided by the orthogonal group 

( )O N . Transformations among the elements of ( )O N , ( ), 1,2,...,ly l N=  satisfy the norm-

conservation requirement   

 2 2

1 1

( ')
N N

l ly y=    (21) 

With reference to (10), analysis indicates that the most likely value of s  for quantum 

physics and random walk models is [3, 7] 
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 2s =   (22) 

Consider now the case where (3) is a valid approximation of the FSS ansatz (1). Upon 

appropriate normalization ,i R i →  , by (3), (5) and (21-22), (10a) leads to a condition 

that mirrors (21), namely 

 
1

( , )
N

cP     2 2

0 ,

1 1

1
N N

i R i  = =     (23) 

A constraint similar to (23) can be shown to recover the Euclidean formulation of Lorentz 

symmetry and its properties [8]. 

Dimensional regularization arguments imply that, to a leading-order approximation, the 

deviation from four spacetime dimensions amounts to 2( )UVO m =  , where m  and UV  

are the particle mass measured near the Fermi scale and the ultraviolet cutoff, 

respectively. The same line of arguments suggests that the parameter 0  in (23) matches 

the ratio [3] 

 
1 4

2 2

0 ( ) ( )cc EW

EW Pl

M

M M


 = =   (24) 

in which 1 4,EW ccM   and PlM  stand for the Fermi scale, the cosmological constant scale and 

the Planck scale, respectively. Under these conditions, (23) recovers the so-called sum-

of-squares relationship linking the square of elementary particle masses to the square of 

the Fermi scale [3, 7]. We note that the sum-of-squares relationship, along with imposing 

marginal stability of Renormalization Group trajectories, contribute to fixing the flavor 

composition of the Standard Model and to reducing its number of free parameters [3, 7, 
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9, 11]. It is also worth noting that the symmetry described by (15) and (18) is naturally 

associated with local scale invariance, which typically underlies the geometry of fractal 

and multifractal objects [12]     

4. Bifurcations and the U(1) x SU(2) => SU(3) transition 

As pointed out in [9-10], the so-called Feigenbaum-Sharkovskii-Magnitskii (FSM) 

paradigm of universal transition to chaos in nonlinear dissipative systems points to the 

sequential generation of the Standard Model families. According to this scenario, the 

quartet of electroweak bosons turns into the gluon octet and lepton multiplet into the 

quark multiplet according to 

 ( )0

1 8( )W W Z gluons − +

−   (25) 

 ( ) ( )
,e r g

e antiparticles u d c s b t antiparticles      +  +   (26) 

Relationships (25-26) show that the dynamical transition (1) (2) (3)U SU SU   is a 

transformation of a stable cycle of period 4 in the electroweak sector to a stable cycle of 

period 8 in the strong sector. Note that there are 12 distinct leptons and 24 distinct 

colored quarks in (25-26). It is thus reasonable to conjecture that transition of leptons to 

quarks occurs through a bifurcation leading to a stable cycle of period 24 from a stable 

cycle of period 12.  

Finally, two important remarks are in order:  

a) color and electrical charge conservation constrain the number of independent 

flavors generated through bifurcations. For example, taking R  and G  to represent 



9 | P a g e  
 

independent color states, color conservation prohibits formation of distinct flavors of 

type B  since 1R G B+ + = , by definition. 

b) there is a natural mixing of cycles prior to their complete separation through 

bifurcation. As a result of this mixing, it is conceivable that the transition (25-26) 

allows leptons and quarks to couple through electroweak gauge bosons while 

forbiding leptons to couple to gluons. 
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